Technical Papers
Jan 31, 2017

Economic Value of Climate Change Adaptation Strategies for Water Management in Spain’s Jucar Basin

Publication: Journal of Water Resources Planning and Management
Volume 143, Issue 5

Abstract

Although many recent studies have quantified the potential effects of climate change on water resource systems, the scientific community faces now the challenge of developing methods for assessing and selecting climate change adaptation options. This paper presents a method for assessing impacts and adaptation strategies to global change in a river basin system at different temporal horizons using a hydro-economic model. First, a multiobjective analysis selects climate change projections based on the fitting of the climate models to the historical conditions for the historical period. Inflows for climate change scenarios are generated using calibrated rainfall-runoff models, perturbing observed meteorological time series according to the projected anomalies in mean and standard deviation. Demands are projected for the different scenarios and characterized using economic demand curves. With the new water resource and demand scenarios, the impact of global change on system performance is assessed using a hydro-economic model with reliability and economic indices. A new economic loss index is defined to assess the economic equity of the system. Selected adaptation strategies are simulated to compare performance with the business-as-usual scenario. The approach is applied to the Jucar River water resource system, in eastern Spain, using climate projections from the European Union (EU) ENSEMBLES project. Results show that the system is vulnerable to global change, especially over the long term, and that adaptation actions can save 365  million/year.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R and CGL2013-48424-C2-2-R) of the National Research Plan (Plan Estatal I+D+I 2013-2016), funded by the Spanish Ministry MINECO (Ministerio de Economía y Competitividad) and European Federation funds. It was also partially funded by the PMAFI06/14 project (UCAM). The work was also partially supported by a stay grant from the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering—TEE Project. The authors would like to thank Professor Jay R. Lund (University of California, Davis) for his insights. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract Number 505539) whose support is gratefully acknowledged. The data can be downloaded from http://ensembles-eu.metoffice.com/.

References

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). “Crop evapotranspiration: Guidelines for computing crop water requirements.” FAO irrigation and drainage paper 56, FAO, Rome.
Andreu, J., Capilla, J., and Sanchis, E. (1996). “AQUATOOL, a generalized decision-support system for water-resources planning and operational management.” J. Hydrol., 177(3–4), 269–291.
Asefa, T., Clayton, J., Adams, A., and Anderson, D. (2014). “Performance evaluation of a water resources system under varying climatic conditions: Reliability, resilience, vulnerability and beyond.” J. Hydrol., 508, 53–65.
Ashofteh, P. S., Haddad, O. B., and Marino, M. A. (2013). “Climate change impact on reservoir performance indexes in agricultural water supply.” J. Irrig. Drain. Eng., 85–97.
Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M., and Hayhoe, K. (2008). “Climate change scenarios for the California region.” Climatic Change, 87, 21–42.
Chirivella Osma, V. (2010). “Caracterización de los futuros escenarios climáticos en la comunidad Valenciana: Propuestas de mejora para la evaluación de la oferta y la demanda de recursos hídricos,” Universidad Politécnica de Valencia, Valencia, Spain.
CHJ (Confederación Hidrográfica del Júcar). (2009). “Documento técnico de referencia: Metodología y resultados de la estimación de demandas.” Confederación Hidrográfica del Júcar, Ministerio de Medio Ambiente, Valencia, Spain.
CHJ (Demarcación Hidrográfica del Júcar). (2014). “Memoria proyecto del plan hidrológico de Cuenca (Borrador).” Confederación Hidrográfica del Júcar, Ministerio de Medio Ambiente, Valencia, Spain.
Connell-Buck, C., Medellín-Azuara, J., Lund, J., and Madani, K. (2011). “Adapting California’s water system to warm vs. dry climates.” Climatic Change, 109(S1), 133–149.
Diaz-Nieto, J., and Wilby, R. L. (2005). “A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom.” Climatic Change, 69(2–3), 245–268.
EC (European Commission). (2012). “A blueprint to safeguard Europe’s water resources.” Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels, 14.11.2012, Brussels, Belgium.
Ekstrom, M., et al. (2013). “Examination of climate risk using a modified uncertainty matrix framework—Applications in the water sector.” Global Environ. Change-Human and Policy Dimen., 23(1), 115–129.
El-Baroudy, I., and Simonovic, S. P. (2004). “Fuzzy criteria for the evaluation of water resource systems performance.” Water Resour. Res., 40(10), W10503.
Erfani, T., Binions, O., and Harou, J. J. (2014). “Simulating water markets with transaction costs.” Water Resour. Res., 50(6), 4726–4745.
Estrela, T., Perez-Martin, M. A., and Vargas, E. (2012). “Impacts of climate change on water resources in Spain.” Hydrol. Sci. J., 57(6), 1154–1167.
Estrela, T., and Quintas, L. (1996). “A distributed hydrological model for water resources assessment in large basins.” 1st Int. Conf. on Rivertech 96, IWRA, Chicago, 861–868.
Ferrer, J., Perez-Martin, M. A., Jimenez, S., Estrela, T., and Andreu, J. (2012). “GIS-based models for water quantity and quality assessment in the Jucar River basin, Spain, including climate change effects.” Sci. Total Environ., 440, 42–59.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C. (2007). “Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling.” Int. J. Climatol., 27(12), 1547–1578.
Fowler, K. J. A., Peel, M. C., Western, A. W., Zhang, L., and Peterson, T. J. (2016). “Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models.” Water Resour. Res., 52, 1820–1846.
Garcia-Valiñas, M. A. (2004). “La demanda de agua en las ciudades: estimación comparada para tres municipios españoles.” III Congreso Ibérico sobre Gestión y Planificación del Agua—La Directiva Marco del Agua, realidades y futuros, L. Del Moral, ed., Universidad de Sevilla, Universidad Pablo de Olavide, Fundación Nueva Cultura del Agua, Spain, 232–253 (in Spanish).
Girard, C., Pulido-Velazquez, M., Rinaudo, J.-D., Pagé, C., and Caballero, Y. (2015a). “Integrating top-down and bottom-up approaches to design global change adaptation at the river basin scale.” Global Environ. Change, 34, 132–146.
Girard, C., Rinaudo, J. D., and Pulido-Velazquez, M. (2015b). “Index-based cost-effectiveness analysis vs. least-cost river basin optimization model: Comparison in the selection of a programme of measures at the river basin scale.” Water Resour. Manage., 29(11), 4129–4155.
Girard, C., Rinaudo, J. D., Pulido-Velazquez, M., and Caballero, Y. (2015c). “An interdisciplinary modelling framework for selecting adaptation measures at the river basin scale in a global change scenario.” Environ. Modell. Softw., 29(11), 4129–4155.
Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellin-Azuara, J., Lund, J. R., and Howitt, R. E. (2009). “Hydro-economic models: Concepts, design, applications, and future prospects.” J. Hydrol., 375(3–4), 627–643.
Hashimoto, T., Loucks, D. P., and Stedinger, J. R. (1982a). “Robustness of water-resources systems.” Water Resour. Res., 18(1), 21–26.
Hashimoto, T., Stedinger, J. R., and Loucks, D. P. (1982b). “Reliability, resiliency, and vulnerability criteria for water-resource system performance evaluation.” Water Resour. Res., 18(1), 14–20.
Heinz, I., Pulido-Velazquez, M., Lund, J. R., and Andreu, J. (2007). “Hydro-economic modeling in river basin management: Implications and applications for the European water framework directive.” Water Resour. Manage., 21(7), 1103–1125.
Herrera, S., Gutierrez, J. M., Ancell, R., Pons, M. R., Frias, M. D., and Fernandez, J. (2012). “Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02).” Int. J. Climatol., 32(1), 74–85.
Hurd, B. H., and Coonrod, J. (2012). “Hydro-economic consequences of climate change in the upper Rio Grande.” Climate Res., 53(2), 103–118.
INE (Instituto Nacional de Estadística). (2016). “Estadística sobre el suministro y saneamiento de agua.” ⟨http://www.ine.es/dyngs/INEbase/es/categoria.htm?c=Estadistica_P&cid=1254735976602⟩ (Mar. 13, 2016).
IPCC (Intergovernmental Panel on Climate Change). (2013). “Summary for policymakers.” Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Rep. of the Intergovernmental Panel on Climate Change, T. F. Stocker, et al., eds., Cambridge University Press, Cambridge, U.K.
IVE (Instituto Valenciano de Estadídtica). (2012). “Proyecciones de población a Largo Plazo, 2010–2050.” ⟨http://www.ive.es/#WWC-50003⟩ (Apr. 2, 2014).
JCRMO (Junta Central de Regantes de la Mancha Oriental). (2012). “Memoria de la junta central de regantes de La Mancha Oriental de 2011.” Albacete, Spain.
Jenkins, M. W., Lund, J. R., and Howitt, R. E. (2003). “Using economic loss functions to value urban water scarcity in California.” J. Am. Water Works Assn., 95(2), 58–70.
Kragt, M. E., Robson, B. J., and Macleod, C. J. (2013). “Modellers’ roles in structuring integrative research projects.” Environ. Modell. Softw., 39, 322–330.
Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J., and Ort, D. R. (2006). “Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations.” Science, 312(5782), 1918–1921.
Lopez-Gunn, E. (2003). “The role of collective action in water governance: A comparative study of groundwater user associations in La Mancha aquifers in Spain.” Water Int., 28(3), 367–378.
Macian-Sorribes, H., Pulido-Velazquez, M., and Tilmant, A. (2015). “Definition of efficient scarcity-based water pricing policies through stochastic programming.” Hydrol. Earth Syst. Sci., 19(9), 3925–3935.
MAGRAMA. (2000). “Plan hidrológico nacional. Volumen 5: Análisis económicos. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid, septiembre de 2000.” Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, Spain.
Maidment, D. R., Miaou, S. P., and Crawford, M. M. (1985). “Transfer-function models of daily urban water-use.” Water Resour. Res., 21(4), 425–432.
Martin-Carrasco, F., Garrote, L., Iglesias, A., and Mediero, L. (2013). “Diagnosing causes of water scarcity in complex water resources systems and identifying risk management actions.” Water Resour. Manage., 27(6), 1693–1705.
Martin-Carrasco, F. J., and Garrote, L. (2007). “Drought-induced water scarcity in water resources systems.” Extreme hydrological events: New concepts for security, O. F. Vasiliev, et al., eds., Vol. 78, Springer, Netherlands, 301–311.
Medellin-Azuara, J., et al. (2008). “Adaptability and adaptations of California’s water supply system to dry climate warming.” Climatic Change, 87, 75–90.
MMA (Ministerio de Medio Ambiente). (2004). “Caracterización económica del uso del agua en el sector energético y análisis de los factores determinantes de las presiones y escenarios de evolución del 2015 al 2025.” Madrid, Spain.
Molina, J. L., Pulido-Velazquez, D., García-Aróstegui, J. L., and Pulido-Velazquez, M. (2013). “Dynamic Bayesian networks as a decision support tool for assessing climate change impacts on highly stressed groundwater systems.” J. Hydrol., 479, 113–129.
Pulido-Velazquez, D., García-Aróstegui, J. L., Molina, J. L., and Pulido-Velazquez, M. (2015). “Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate?” Hydrological Process., 29(6), 828–844.
Pulido-Velazquez, D., Garrote, L., Andreu, J., Martin-Carrasco, F. J., and Iglesias, A. (2011). “A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale.” J. Hydrol., 405(1–2), 110–122.
Pulido-Velazquez, M., et al. (2015). “Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in Mancha Oriental (Spain).” Hydrol. Earth Syst. Sci., 19, 1677–1693.
Pulido-Velazquez, M., Alvarez-Mendiola, E., and Andreu, J. (2013). “Design of efficient water pricing policies integrating basinwide resource opportunity costs.” J. Water Resour. Plann. Manage., 583–592.
Pulido-Velazquez, M., Andreu, J., and Sahuquillo, A. (2006). “Economic optimization of conjunctive use of surface water and groundwater at the basin scale.” J. Water Resour. Plann. Manage., 454–467.
Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., and Pulido-Velazquez, D. (2008). “Hydro-economic river basin modelling: The application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain.” Ecological Economics, 66(1), 51–65.
Quevauviller, P., et al. (2012). “Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change.” Sci. Total Environ., 440, 167–177.
Riegels, N., et al. (2013). “Systems analysis approach to the design of efficient water pricing policies under the EU Water Framework Directive.” J. Water Resour. Plann. Manage., 574–582.
Sanz, D., et al. (2011). “Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental system (SE Spain).” Hydrogeol. J., 19(2), 475–487.
Seiller, G., and Anctil, F. (2014). “Climate change impacts on the hydrologic regime of a Canadian river: Comparing uncertainties arising from climate natural variability and lumped hydrological model structures.” Hydrol. Earth Syst. Sci., 18(6), 2033–2047.
Sumpsi, J., Garrido, A., Blanco, M., Varela-Ortega, C., and Iglesias, A. (1998). “Economía y política de gestión del agua en la agricultura.” MAPA/Ediciones Mundi-Prensa, Madrid, Spain.
Tanaka, S. K., et al. (2006). “Climate warming and water management adaptation for California.” Climatic Change, 76(3–4), 361–387.
Temez, J. R. (1977). “Modelo matemático de transformación precipitación-aportación, ASINEL.” Asociación de Investigación Industrial Eléctrica, Madrid, Spain.
Thirel, G., Andréassianand, V., and Perrin, C. (2015). “On the need to test hydrological models under changing conditions.” Hydrol. Sci. J., 60(7–8), 1165–1173.
UN (United Nations). (2011). “World population prospects: The 2010 revision, highlights and advance tables.” Dept. of Economic and Social Affairs, Population Division, ⟨http://www.un.org/en/development/desa/publications/world-population-prospects-the-2010-revision.html⟩ (Apr. 2, 2014).
van der Linden, P., and Mitchell, J. F. B. (2009). “ENSEMBLES: Climate change and its impacts: Summary of research and results form the ENSEMBLES project.” Met Office Hadley Centre, Exeter, U.K.
Vicuna, S., and Dracup, J. A. (2007). “The evolution of climate change impact studies on hydrology and water resources in California.” Climatic Change, 82(3–4), 327–350.
Wilby, R. L., et al. (2009). “A review of climate risk information for adaptation and development planning.” Int. J. Climatol., 29(9), 1193–1215.
Yang, Y. C. E., Brown, C. M., Yu, W. H., and Savitsky, A. (2013). “An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan’s Indus River basin.” Water Int., 38(5), 632–650.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 143Issue 5May 2017

History

Received: Oct 14, 2015
Accepted: Sep 6, 2016
Published online: Jan 31, 2017
Published in print: May 1, 2017
Discussion open until: Jun 30, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Alvar Escriva-Bou, Ph.D. [email protected]
Water Policy Center, Public Policy Institute of California, San Francisco, CA (corresponding author). E-mail: [email protected]
Manuel Pulido-Velazquez, Ph.D., A.M.ASCE
Associate Professor and Vice-Director, Research Institute of Water and Environmental Engineering, IIAMA, Universitat Politècnica de València, Valencia, Spain.
David Pulido-Velazquez, Ph.D.
Senior Researcher, Instituto Geológico y Minero de España, Granada, Spain; Adjunct Professor, Departamento de Ciencias Politécnicas, Escuela Universitaria Politécnica, Universidad Católica San Antonio de Murcia, Murcia, Spain.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share