TECHNICAL PAPERS
Jan 17, 2011

Efficiency of Storm Detention Tanks for Urban Drainage Systems under Climate Variability

Publication: Journal of Water Resources Planning and Management
Volume 138, Issue 1

Abstract

Climate change effects on combined sewer systems efficiency is a great matter of concern. In fact, changes in rainfall regime could significantly affect combined sewer overflows (CSOs) into receiving water bodies. Given that CSOs are a significant source of pollution, a better understanding and modeling of climate change effects on urban drainage systems is a compelling requirement to support design of adaptation strategies. This paper aims at studying the resilience of storm water detention tanks efficiency with respect to changes in rainfall forcing. In detail, an analytical probabilistic model is proposed to assess overflow reduction efficiency and volumetric efficiency of detention tanks depending on behaviors of climate and urban catchment. Sensitivity of tank efficiencies is evaluated under assigned changes in rainfall forcing. Results show that resilience of storm tanks benefits from filtering of climate change effects operated by the urban catchment.

Get full access to this article

View all available purchase options and get full access to this article.

References

Adams, B. J., and Papa, F. (2000). “Urban stormwater management planning with analytical probabilistic methods.” Wiley, New York.
Alexander, L. V., et al. (2006). “Global observed changes in daily climate extremes of temperature and precipitation.” J. Geophys. Res., 111(D05109), 22.
Andrés-Doménech, I., Montanari, A., and Marco, J. B. (2010). “Stochastic rainfall analysis for storm tank performance evaluation.” Hydrol. Earth Syst. Sci., 14(7), 1221–1232.
Ashkar, F., and Ouarda, T. B. M. J. (1996). “On some methods of fitting the generalized Pareto distribution.” J. Hydrol. (Amsterdam), 177(1–2), 117–141.
Ashley, R. M., Balmforth, D. J., Saul, A. J., and Blanskby, J. D. (2005). “Flooding in the future—Predicting climate change, risks and responses in urban areas.” Water Sci. Technol., 52(5), 265–273.
Blöschl, G., and Montanari, A. (2010). “Climate change impacts—Throwing the dice?” Hydrol. Process., 24(3), 374–381.
Bonta, J. V., and Rao, R. (1988). “Factors affecting the identification of independent store events.” J. Hydrol. (Amsterdam), 98(3–4), 275–293.
Brunet, M., et al. (2009). “Generación de escenarios regionalizados de cambio climático para España.” Agencia Estatal de Meteorología (AEMET), Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid (in Spanish).
Calenda, G., and Napolitano, F. (1999). “Parameter estimation of Neyman-Scott processes for temporal point rainfall simulation.” J. Hydrol. (Amsterdam), 225(1–2), 45–66.
Castillo, E., and Hadi, A. S. (1997). “Fitting the generalizad Pareto distribution to data.” J. Am. Stat. Assoc., 92(440), 1609–1620.
Cohn, T. A., and Lins, H. F. (2005). “Nature’s style: Naturally trendy.” Geophys. Res. Lett., 32(L23402), 5.
Cox, D., and Isham, V. (1980). Point processes, Chapman and Hall, London.
De Zea Bermudez, P., and Amaral Turkman, M. A. (2003). “Bayesian approach to parameter estimation of the generalizad Pareto distribution.” Test, 12(1), 259–277.
Di Toro, D. M., and Small, M. J. (1979). “Stormwater interception and storage.” J. Envir. Engrg. Div., 105(1), 43–54.
Driscoll, E. D., Di Toro, D. M., and Gaboury, D. (1986). “Methodology for analysis for detention basins for control or urban runoff quality.” Rep. No. EPA 440/5-87-001, U.S. Environmental Protection Agency, Washington, DC.
Entekhabi, D., Rodriguez-Iturbe, I., and Eagleson, P. S. (1989). “Probabilistic representation of the temporal rainfall process by the modified Neymann-Scott rectangular pulses model: Parameter estimation and validation.” Water Resour. Res., 25(2), 295–302.
European Environment Agency (EEA). (2007). “Climate change and water adaptation issues.” EEA Tech. Rep. No. 2/2007, 110, Copenhagen, Denmark.
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). (2006). “Water resource management in Germany. Part 2. Water quality.” BMU Public Relations Division, Berlin.
González, J. (2001). “Metodología para la modelación y diseño de redes de saneamiento urbano aplicada a la ciudad de Valencia.” Tech. dissertation. Universidad Politécnica de Valencia, Valencia (in Spanish).
Islam, S., Entekhabi, D., Bras, R. L., and Rodriguez-Iturbe, I. (1990). “Parameter estimation and sensitivity for the modified Bartlett-Lewis rectangular pulses model of rainfall.” J. Geophys. Res., 95(D3), 2093–2100.
Kavvas, M. L., and Delleur, J. W. (1981). “A stochastic cluster model of daily rainfall sequences.” Water Resour. Res., 17(4), 1151–1160.
Klein, R. J. T., Schipper, E. L. F., and Dessai, S. (2005). “Integrating mitigation and adaptation into climate and development policy: Three research questions.” Environ. Sci. Policy, 8(6), 579–588.
Koutsoyiannis, D. (2005). “Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling.” Hydrol. Sci. J., 50(3), 381–404.
Koutsoyiannis, D., et al. (2009). “HESS opinions: Climate, hydrology, energy, water: Recognizing uncertainty and seeking sustainability.” Hydrol. Earth Syst. Sci., 13(2), 247–257.
Mailhot, A., and Duchesne, S. (2010). “Design criteria of urban drainage infrastructures under climate change.” J. Water Resour. Plann. and Mgmt. Div., 136(2), 201–208.
Morgan, A., Branfireum, B., and Csillag, F. (2004). “An evaluation of the contributions of urbanization and climatic change to runoff characteristics in the Laurel Creek Watershed. Ontario.” Can. Water Resour. J., 29(3), 171–182.
Municipality of Valencia. (2004). “Normativa para obras de saneamiento de la ciudad de Valencia.” Ciclo Integral del Agua, Concejalía de Medio Ambiente, Ayuntamiento de Valencia, Valencia (in Spanish).
Öztekin, T. (2005). “Comparison of parameter estimation methods for the three-parameter generalized Pareto Distribution.” Turk J. Agric. For., 29(6), 419–428.
Papa, F., and Adams, B. J. (1997). “Application of derived probability and dynamic programming techniques to planning regional stormwater management systems.” Water Sci. Technol., 36(5), 227–234.
Perales Momparler, S., and Andrés-Doménech, I. (2008). “Los sistemas urbanos de drenaje sostenible: una alternativa a la gestión del agua de lluvia.” RETEMA, Revista Técnica de Medio Ambiente, C&M Publicaciones, SL (in Spanish), 124(XXI), 92–104.
Restrepo-Posada, P. J., and Eagleson, P. S. (1982). “Identification of independent rainstorms.” J. Hydrol. (Amsterdam), 55(1–4), 303–319.
Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1987). “Some models for rainfall based on stochastic point processes.” Proc. R. Soc. London Ser. A., 410(1839), 269–288.
Rodriguez-Iturbe, I., Gupta, V. K., and Waymire, E. (1984). “Scale considerations in the modeling of temporal rainfall.” Water Resour. Res., 20(11), 1611–1619.
Singh, V. P., and Guo, H. (1995). “Parameter estimation for 3-parameter generalized Pareto distribution by the principle of maximum entropy (POME).” Hydrol. Sci. J., 40(2), 165–181.
Smit, B., and Wandel, J. (2006). “Adaptation, adaptive capacity and vulnerability.” Glob. Environ. Change, 16(3), 282–292.
Trenberth, K. E., et al. (2007). “Observations: Surface and atmospheric climate change. In climate change 2007: The physical science basis.” Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, eds., Cambridge University Press, Cambridge, United Kingdom and New York.
U.S. Environmental Protection Agency (USEPA). (2008). “A screening assessment of the potential impacts of climate change on combined sewer overflow (CSO) mitigation in the Great Lakes and New England regions (final report).” Rep. No. EPA/600/R-07/033F, Office of Research and Development, Center of Environmental Research Information, Cincinnati.
Velghe, T., Troch, P. A., De Troch, F. P., and Van De Velde, J. (1994). “Evaluation of cluster-based rectangular pulses point process models for rainfall.” Water Resour. Res., 30(10), 2847–2857.
Walker, D., Golden, J., Bingham, D., and Driscoll, E. D. (1993). “Combined sewer overflow control.” Rep. No. EPA 625/R-93-007, U.S. Environmental Protection Agency, Office of Research and Development, Center of Environmental Research Information, Cincinnati.
InfoWorks CS version 8.5.0 [Computer software]. Wallingford Software, Oxfordshire, UK.
Willey, M. W., and Palmer, R. N. (2008). “Estimating the impacts and uncertainty of climate change on a municipal water supply system.” J. Water Resour. Plann. Mgmt. Div., 134(3), 239–246.
World Health Organization (WHO). (2003). Climate change and human health : Risks and responses. Summary, World Health Organization, Paris.
Zangh, J. (2007). “Likelihood moment estimation for the generalized Pareto distribution.” Aust. N. Z. J. Stat., 49(1), 69–77.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 138Issue 1January 2012
Pages: 36 - 46

History

Received: Apr 29, 2010
Accepted: Jan 14, 2011
Published online: Jan 17, 2011
Published in print: Jan 1, 2012

Permissions

Request permissions for this article.

Authors

Affiliations

I. Andrés-Doménech [email protected]
Associate Professor, Instituto de Ingeniería del Agua y Medio Ambiente, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain (corresponding author). E-mail: [email protected]
A. Montanari [email protected]
Professor, Facoltà di Ingegneria, Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italia. E-mail: [email protected]
J. B. Marco [email protected]
Professor, Instituto de Ingeniería del Agua y Medio Ambiente, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share