Abstract

During the last two decades, the water resources planning and management profession has seen a dramatic increase in the development and application of various types of evolutionary algorithms (EAs). This observation is especially true for application of genetic algorithms, arguably the most popular of the several types of EAs. Generally speaking, EAs repeatedly prove to be flexible and powerful tools in solving an array of complex water resources problems. This paper provides a comprehensive review of state-of-the-art methods and their applications in the field of water resources planning and management. A primary goal in this ASCE Task Committee effort is to identify in an organized fashion some of the seminal contributions of EAs in the areas of water distribution systems, urban drainage and sewer systems, water supply and wastewater treatment, hydrologic and fluvial modeling, groundwater systems, and parameter identification. The paper also identifies major challenges and opportunities for the future, including a call to address larger-scale problems that are wrought with uncertainty and an expanded need for cross fertilization and collaboration among our field’s subdisciplines. Evolutionary computation will continue to evolve in the future as we encounter increased problem complexities and uncertainty and as the societal pressure for more innovative and efficient solutions rises.

Get full access to this article

View all available purchase options and get full access to this article.

References

Afshar, M. H., Afshar, A., Mariño, M. A., and Darbandi, A. A. S. (2006). “Hydrograph-based storm sewer design optimisation by genetic algorithm.” Can. J. Civ. Eng., 33(3), 319–325.
Aksoy, A., and Culver, T. B. (2000). “Effect of sorption assumptions on aquifer remediation designs.” Ground Water, 38(2), 200–208.
Aksoy, A., and Culver, T. B. (2004). “Impacts of physical and chemical heterogeneities on aquifer remediation design.” J. Water Resour. Plann. Manage., 130(4), 311–320.
Alperovits, E., and Shamir, U. (1977). “Design of optimal water distribution systems.” Water Resour. Res., 13(6), 885–900.
Aly, A., and Peralta, R. C. (1999a). “Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems.” Water Resour. Res., 35(8), 2415–2425.
Aly, A., and Peralta, R. C. (1999b). “Optimal design of aquifer cleanup systems under uncertainty using a neural network and genetic algorithm.” Water Resour. Res., 35(8), 2523–2532.
Amaziane, B., Naji, A., Ouazar, D., and Cheng, A. H. D. (2005). “Chance-constrained optimization of pumping in coastal aquifers by stochastic boundary element method and genetic algorithm.” Comput., Mater., Continua, 2(2), 85–96.
Atkinson, R., van Zyl, J. E., Walters, G. A., and Savic, D. A. (2000). “Genetic algorithm optimisation of level-controlled pumping station operation.” Water network modelling for optimal design and management, Centre for Water Systems, Exeter, U.K., 79–90.
Babbar, M., and Minsker, B. S. (2002). “A multiscale master-slave parallel genetic algorithm with application to groundwater remediation design.” Proc., Late Breaking Papers of the Proc. of the Genetic and Evolutionary Computation Conf. (GECCO 2002), Morgan Kaufmann, New York.
Babbar, M., and Minsker, B. S. (2006). “Groundwater remediation design using multiscale genetic algorithms.” J. Water Resour. Plann. Manage., 132(5), 341–350.
Babovic, V., Wu, Z., and Larsen, L. C. (1994). “Calibrating hydrodynamic models by means of simulated evolution.” Proc., 1st Int. Conf. on Hydroinformatics, Balkema, Rotterdam, The Netherlands, 193–200.
Back, T., Fogel, D., and Michalewicz, Z. (2000). Handbook of evolutionary computation, IOP Publishing Ltd. and Oxford University Press, Bristol, U.K.
Barreto, W. J., Vojinovic, Z., Price, R. K., and Solomatine, D. P. (2006). “Approaches to multiobjective multi-tier optimisation in urban drainage planning.” Proc., 7th Hydroinformatics Conf., Research Publishing, Chennai, India.
Bates, B. C. (1994). “Calibration of the SFB model using a simulated annealing approach.” Proc., Water Down Under 94: Surface Hydrology and Water Resources Papers, Institute of Engineers, Barton, ACT, Australia, 1–6.
Baú, D., and Mayer, A. (2006). “Stochastic management of pump-and-treat strategies using surrogate functions.” Adv. Water Resour., 29(12), 1901–1917.
Bayer, P., Burger, C. M., and Finkel, M. (2008). “Computationally efficient stochastic optimization using multiple realizations.” Adv. Water Resour., 31(2), 399–417.
Bayer, P., and Finkel, M. (2004). “Evolutionary algorithms for the optimization of advective control of contaminated aquifer zones.” Water Resour. Res., 40, W06506.
Bayer, P., and Finkel, M. (2007). “Optimization of concentration control by evolution strategies: Formulation, application, and assessment of remedial solutions.” Water Resour. Res., 43, W02410.
Behzadian, K., Kapelan, Z., Savic, D. A., and Ardeshir, A. (2009). “Stochastic sampling design using multiobjective genetic algorithm and adaptive neural networks.” Environ. Modell. Software, 24(4), 530–541.
Bekele, E. G., and Nicklow, J. W. (2005). “Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms.” Water Resour. Res., 41, W10406.
Beven, K. J., and Binley, A. (1992). “The future of distributed models: Model calibration and uncertainty prediction.” Hydrolog. Process., 6, 279–298.
Bobbin, J., and Recknagel, F. (2001). “Inducing explanatory rules for the prediction of algal blooms by genetic algorithms.” Environ. Int., 27, 237–242.
Brill, E. D., Jr. (1979). “The use of optimization models in public-sector planning.” Manage. Sci., 25, 413–422.
Broad, D., Dandy, G., and Maier, H. (2005). “Water distribution system optimization using metamodels.” J. Water Resour. Plann. Manage., 131(3), 172–180.
Bürger, C. M., Bayer, P., and Finkel, M. (2007). “Algorithmic funnel-and-gate system design optimization.” Water Resour. Res., 43, W08426.
Burn, D. H., and Yulianti, J. S. (2001). “Waste-load allocation using genetic algorithms.” J. Water Resour. Plann. Manage., 127(2), 121–129.
Bush, C. A., and Uber, J. G. (1998). “Sampling design methods for water distribution model calibration.” J. Water Resour. Plann. Manage., 124(6), 334–344.
Cai, X., McKinney, D. C., and Lasdon, L. (2001). “Solving nonlinear water management models using a combined genetic algorithm and linear programming approach.” Adv. Water Resour., 24, 667–676.
Cantu-Paz, E. (2000). Efficient and accurate parallel genetic algorithms, Kluwer, Norwell, Mass.
Cembrowicz, R. G. (1994). “Evolution strategies and genetic algorithms in water supply and waste water systems design.” Proc., Water Resources and Distribution, W. R. Blain et al., eds., Comp. Mechanics, Southampton, U.K., 27–39.
Cembrowicz, R. G., and Krauter, G. E. (1987). “Design of cost optimal sewer networks.” Proc., 4th Int. Conf. on Urban Storm Drainage, W. Gujer et al., eds., Ecole Poly Fed., Lausanne, Switzerland, 367–372.
Chadalavada, S., and Datta, B. (2008). “Dynamic optimal monitoring network design for transient transport of pollutants in groundwater aquifers.” Water Resour. Manage., 22(6), 651–670.
Chan Hilton, A. B., and Culver, T. B. (2000). “Constraint handling for genetic algorithms in optimal remediation design.” J. Water Resour. Plann. Manage., 126(3), 128–137.
Chan Hilton, A. B., and Culver, T. B. (2001). “Sensitivity of optimal groundwater remediation designs to residual water quality violations.” J. Water Resour. Plann. Manage., 127(5), 316–323.
Chan Hilton, A. B., and Culver, T. B. (2005). “Groundwater remediation design under uncertainty using genetic algorithms.” J. Water Resour. Plann. Manage., 131(1), 25–34.
Chang, L. C., Chu, H. J., and Hsiao, C. T. (2007). “Optimal planning of a dynamic pump-treat-inject groundwater remediation system.” J. Hydrol., 342(3–4), 295–304.
Chang, N. B., Chen, W. C., and Shieh, W. K. (2001). “Optimal control of wastewater treatment plants via integrated neural network and genetic algorithms.” Civ. Eng. Environ. Syst., 18(1), 1–17.
Chen, H. W., and Chang, N. B. (1998). “Water pollution control in the river basin by genetic algorithm-based fuzzy multi-objective programming modeling.” Water Sci. Technol., 37(8), 55–63.
Chen, W. C., Chang, N. B., and Chen, J. C. (2003). “Rough set-based hybrid fuzzy-neural controller design for industrial wastewater treatment.” Water Res., 37(1), 95–107.
Cho, J. H., Sung, K. S., and Ha, S. R. (2004). “A river water quality management model for optimising regional wastewater treatment using a genetic algorithm.” J. Environ. Manage., 73(3), 229–242.
Cieniawski, S. E., Eheart, J. W., and Ranjithan, S. R. (1995). “Using genetic algorithms to solve a multiobjective groundwater monitoring problem.” Water Resour. Res., 31(2), 399–409.
Coello Coello, C., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems, 2nd Ed., Springer, New York.
Cooper, V. A., Nguyen, V. T. V., and Nicell, J. A. (1997). “Evaluation of global optimization methods for conceptual rainfall-runoff model calibration.” Water Sci. Technol., 36(5), 53–60.
Cui, L., and Kuczera, G. (2003). “Optimizing urban water supply headworks using probabilistic search methods.” J. Water Resour. Plann. Manage., 129(5), 380–387.
Cui, L., and Kuczera, G. (2005). “Optimizing water supply headworks operating rules under stochastic inputs: Assessment of genetic algorithm performance.” Water Resour. Res., 41, W05016.
Cunha, M. D. (2002). “Groundwater cleanup: The optimization perspective (a literature review).” Eng. Optimiz., 34(6), 689–702.
Dandy, G. C., and Engelhardt, M. (2001). “Optimal scheduling of water pipe replacement using genetic algorithms.” J. Water Resour. Plann. Manage., 127(4), 214–223.
Dandy, G. C., and Engelhardt, M. (2006). “Multi-objective trade-offs between cost and reliability in the replacement of water mains.” J. Water Resour. Plann. Manage., 132(2), 79–88.
Das, I., and Dennis, J. E. (1997). “A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems.” Struct. Optim., 14(1), 63–69.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms, Wiley, New York.
Deb, K., and Agrawal, R. B. (1995). “Simulated binary crossover for continuous search space.” Complex Syst., 9, 115–148.
Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II.” Parallel problem solving from nature, Vol. VI(PPSN-VI), Springer, Berlin/Heidelberg, 849–858.
Deb, K., Anand, A., and Joshi, D. (2002). “A computationally efficient evolutionary algorithm for real-parameter optimization.” Evol. Comput., 10(4), 371–395.
Deb, K., Mohan, M., and Mishra, S. (2003). “A fast multi-objective evolutionary algorithm for finding well-spread Pareto-optimal solutions.” KanGAL Rep. No. 2003002, Indian Institute of Technology, Kanpur, India.
Dessalegne, T., Nicklow, J. W., and Minder, E. (2004). “Evolutionary computation to control unnatural water level fluctuations in multi-reservoir river systems.” River. Res. Appl., 20(6), 619–634.
Dhar, A., and Datta, B. (2007). “Multiobjective design of dynamic monitoring networks for detection of groundwater pollution.” J. Water Resour. Plann. Manage., 133(4), 329–338.
di Pierro, F., Khu, S. T., and Savic, D. A. (2007). “An investigation on preference ordering ranking scheme in multiobjective evolutionary optimization.” IEEE Trans. Evol. Comput., 11(1), 17–45.
di Pierro, F., Khu, S. T., Savic, D. A., and Berardi, L. (2009). “Efficient multi-objective optimal design of water distribution networks on a budget of simulations using hybrid algorithms.” Environ. Modell. Software, 24, 202–213.
Dougherty, D. E., and Marryott, R. A. (1991). “Optimal groundwater management 1. Simulated annealing.” Water Resour. Res., 27(10), 2493–2508.
Duan, Q., Gupta, H. V., Sorooshian, S., Rousseau, A. N., and Turcotte, R. (2003). Advances in calibration of watershed models, AGU, Washington, D.C.
Duan, Q., Gupta, V. K., and Sorooshian, S. (1992). “Effective and efficient global optimization for conceptual rainfall-runoff models.” Water Resour. Res., 28(4), 1015–1031.
Eckhardt, K., Fohrer, N., and Frede, H. -G. (2005). “Automatic model calibration.” Hydrolog. Process., 19(3), 651–658.
Efstratiadis, A., and Koutsoyiannis, D. (2002). “An evolutionary annealing-simplex algorithm for global optimization of water resource systems.” Proc., 5th Int. Conf. on Hydroinformatics (Hydroinformatics 2002), IWA Publishing, Colchester, U.K.
Engelhardt, M., Savic, D. A., Skipworth, P., Cashman, A., Saul, A. J., and Walters, G. A. (2003). “Whole life costing: Application to water distribution network.” Water Sci. Technol.: Water Supply, 3(1–2), 87–93.
Erickson, M., Mayer, A., and Horn, J. (2001). “The niched Pareto genetic algorithm 2 applied to the design of groundwater remediation systems.” Proc., First Int. Conf. on Evolutionary Multi-Criterion Optimization, Springer, Berlin, 681–695.
Erickson, M. A., Mayer, A., and Horn, J. (2002). “Multi-objective optimal design of groundwater remediation systems: Application of the niched Pareto genetic algorithm (NPGA).” Adv. Water Resour., 25(1), 51–65.
Espinoza, F., and Minsker, B. (2006a). “Development of the enhanced self-adaptive hybrid genetic algorithm (e-SAHGA).” Water Resour. Res., 42, W08501.
Espinoza, F., Minsker, B., and Goldberg, D. E. (2005). “Adaptive hybrid genetic algorithm for groundwater remediation design.” J. Water Resour. Plann. Manage., 131(1), 14–24.
Espinoza, F. P., and Minsker, B. S. (2006b). “Effects of local search algorithms on groundwater remediation optimization using a self adaptive hybrid genetic algorithm.” J. Comput. Civ. Eng., 20(6), 420–430.
Farina, M., and Amato, P. (2002). “On the optimal solution definition for many-criteria optimization problems.” Proc., NAFIPS-FLINT Int. Conf. 2002, J. Keller and O. Nasraoui, eds., IEEE Computer Society Press, Piscataway, N.J., 233–238.
Farmani, R., Savic, D. A., and Walters, G. A. (2005a). “Evolutionary multi-objective optimization in water distribution network design.” Eng. Optimiz., 37(2), 167–183.
Farmani, R., Savic, D. A., and Walters, G. A. (2006). “A hybrid technique for optimisation of branched urban water systems.” Proc., 7th Hydroinformatics Conf., Vol. 1, Research Publishing, Chennai, India, 985–992.
Farmani, R., Walters, G. A., and Savic, D. A. (2005b). “Trade-off between total cost and reliability for any town water distribution network.” J. Water Resour. Plann. Manage., 131(3), 161–171.
Fleming, P. J., Purshouse, R. C., and Lygoe, R. J. (2005). Many-objective optimization: An engineering design perspective, Springer, Berlin.
Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial intelligence through simulated evolution, Wiley, New York.
Fonseca, C. M., and Fleming, P. J. (1993). “Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization.” Proc., 5th Int. Conf. on Genetic Algorithms, S. Forrest, ed., Morgan Kaufmann, San Francisco, 416–423.
Franchini, M. (1996). “Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models.” J. Hydrol. Sci., 41(1), 21–39.
Franchini, M., and Galeati, G. (1997). “Comparing several genetic algorithm schemes for the calibration of conceptual rainfall-runoff models.” J. Hydrol. Sci., 42(3), 357–379.
Franchini, M., Galeati, G., and Berra, S. (1998). “Global optimization techniques for the calibration of conceptual rainfall-runoff models.” J. Hydrol. Sci., 43(3), 443–458.
Fujiwara, O., and Khang, D. B. (1990). “A two-phase decomposition method for optimal design of looped water distribution networks.” Water Resour. Res., 26(4), 539–549.
Gamerman, D. (1997). Markov chain Monte Carlo: Statistical simulation for Bayesian inference, Chapman & Hall, London.
Ganji, A., Karamouz, M., and Khalili, D. (2007). “Development of stochastic conflict resolution models for reservoir operation. II. The value of players’ information availability and cooperative behavior.” Adv. Water Resour., 30, 528–542.
Geiringer, H. (1944). “On the probability theory of linkage in Mendelian heredity.” Ann. Math. Stat., 15, 25–57.
Gessler, J. (1985). “Pipe network optimization by enumeration.” Proc., Computer Applications for Water Resources, ASCE, New York, 572–581.
Gibbs, M. S., Dandy, G. C., and Maier, H. R. (2008). “A genetic algorithm calibration method based on convergence due to genetic drift.” Inf. Sci. (N.Y.), 178(14), 2857–2869.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Reading, Mass.
Goldberg, D. E. (2002). The design of innovation: Lessons from and for competent genetic algorithms, Kluwer, Norwell, Mass.
Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G. (1993). “Rapid, accurate optimization of difficult problems using fast messy genetic algorithms.” IlliGAL Rep. No. 93004, Illinois Genetic Algorithms Laboratory, Univ. of Illinois at Urbana-Champaign, Urbana, Ill.
Goldberg, D. E., and Kuo, C. H. (1987). “Genetic algorithms in pipeline optimization.” J. Comput. Civ. Eng., 1(2), 128–141.
Guan, J., and Aral, M. M. (1999). “Optimal remediation with well locations and pumping rates selected as continuous decision variables.” J. Hydrol., 221(1–2), 20–42.
Guan, J. B., and Aral, M. M. (2004). “Optimal design of groundwater remediation systems using fuzzy set theory.” Water Resour. Res., 40, W01518.
Guan, J. B., and Aral, M. M. (2005). “Remediation system design with multiple uncertain parameters using fuzzy sets and genetic algorithm.” J. Hydrol. Eng., 10(5), 386–394.
Gumrah, F., Durgut, I., Oz, B., and Yeten, B. (2000a). “The use of genetic algorithms for determining the transport parameters of core experiments.” In Situ, 24(1), 21–56.
Gumrah, F., Erbas, D., Oz, B., and Altintas, S. (2000b). “Genetic algorithms for optimizing the remediation of contaminated aquifer.” Transp. Porous Media, 41(2), 149–171.
Guo, Y., Walters, G. A., Khu, S. T., and Keedwell, E. C. (2006). “Optimal design of sewer networks using hybrid cellular automata and genetic algorithm.” Proc., 5th IWA WorldWater Congress, IWA Pub., London.
Guo, Y., Walters, G. A., and Savic, D. A. (2008). “Optimal design of storm sewer networks: Past, present and future.” Proc., 11th Int. Conf. on Urban Drainage (ICUD 2008) (CD-ROM), IWA Pub., London, 10.
Gupta, H. V., Bastidas, L. A., Sorroshian, S., Shuttleworth, W. J., and Yang, Z. L. (1999). “Parameter estimation of a land surface scheme using multicriteria methods.” J. Geophys. Res., 104(D16), 19491–19503.
Guria, C., Bhattacharya, P. K., and Gupta, S. K. (2005). “Multi-objective optimization of reverse osmosis desalination units using different adaptations of the non-dominated sorting genetic algorithm (NSGA).” Comput. Chem. Eng., 29(9), 1977–1995.
Halhal, D., Walters, G. A., Ouazar, D., and Savic, D. A. (1997). “Multi-objective improvement of water distribution systems using a structured messy genetic algorithm approach.” J. Water Resour. Plann. Manage., 123(3), 137–146.
Halhal, D., Walters, G. A., Savic, D. A., and Ouazar, D. (1999). “Scheduling of water distribution system rehabilitation using structured messy genetic algorithms.” Evol. Comput., 7(3), 311–329.
Hansen, N., and Ostermeier, A. (2001). “Completely derandomized self-adaptation in evolution strategies.” Evol. Comput., 9(2), 159–195.
Hansen, N. S., Muller, D., and Koumoutsakos, P. (2003). “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES).” Evol. Comput., 11(1), 1–18.
Harrell, L. J., and Ranjithan, S. (2003). “Integrated detention pond design and land use planning for watershed management.” J. Water Resour. Plann. Manage., 129(2), 98–106.
He, K. J., Zheng, L., Dong, S. B., Tang, L. Q., Wu, J. F., and Zheng, C. M. (2007). “PGO: A parallel computing platform for global optimization based on genetic algorithm.” Comput. Geosci., 33(3), 357–366.
He, L., Huang, G. H., Lu, H. W., and Zeng, G. M. (2008). “Optimization of surfactant-enhanced aquifer remediation for a laboratory BTEX system under parameter uncertainty.” Environ. Sci. Technol., 42(6), 2009–2014.
Holland, J. H. (1962). “Outline for a logical theory of adaptive systems.” J. Assoc. Comput. Mach., 3, 297–314.
Holland, J. H. (1975). Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, Mich.
Hsiao, C. T., and Chang, L. C. (2005). “Optimizing remediation of an unconfined aquifer using a hybrid algorithm.” Ground Water, 43(6), 904–915.
Hu, Z. Y., Chan, C. W., and Huang, G. H. (2007). “Multi-objective optimization for process control of the in-situ bioremediation system under uncertainty.” Eng. Applic. Artif. Intell., 20(2), 225–237.
Huang, C. L., and Mayer, A. S. (1997). “Pump-and-treat optimization using well locations and pumping rates as decision variables.” Water Resour. Res., 33(5), 1001–1012.
Huang, W., Yuan, L., and Lee, C. (2002). “Linking genetic algorithms with stochastic dynamic programming to the long-term operation of a multireservoir system.” Water Resour. Res., 38, 319–333.
Ines, A. V. M., and Droogers, P. (2002). “Inverse modeling in estimating soil hydraulic functions: A genetic algorithm approach.” Hydrology Earth Syst. Sci., 6(1), 49–65.
Jin, Y., Olhofer, M., and Sendhoff, B. (2002). “A framework for evolutionary optimization with approximate fitness functions.” IEEE Trans. Evol. Comput., 6(5), 481–494.
Jonkergouw, P., Khu, S. -T., Kapelan, Z., and Savic, D. A. (2008). “Water quality model calibration under unknown demands.” J. Water Resour. Plann. Manage., 134(4), 326–336.
Jourdan, L., Corne, D. W., Savic, D. A., and Walters, G. A. (2006). “LEMMO: Hybridising rule induction and NSGA II for multi-objective water systems design.” Proc., 8th Int. Conf. on Computing and Control for the Water Industry, Vol. 2, D. A. Savic, G. A. Walters, R. King, and S. -T. Khu, eds., Exeter Press, Exeter, U.K., 45–50.
Kalwij, I. M., and Peralta, R. C. (2006). “Simulation/optimization modeling for robust pumping strategy design.” Ground Water, 44(4), 574–582.
Kapelan, Z., Savic, D. A., and Walters, G. A. (2003a). “A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks.” J. Hydraul. Res., 41(5), 481–492.
Kapelan, Z., Savic, D. A., and Walters, G. A. (2003b). “Multiobjective sampling design for water distribution model calibration.” J. Water Resour. Plann. Manage., 129(6), 466–479.
Kapelan, Z., Savic, D. A., and Walters, G. A. (2005). “Multiobjective design of water distribution systems under uncertainty.” Water Resour. Res., 41, W11407.
Kapelan, Z., Savic, D. A., and Walters, G. A. (2007). “Calibration of WDS hydraulic models using the Bayesian recursive procedure.” J. Hydraul. Eng., 133(8), 927–936.
Karamouz, M., Mojahedi, A., and Ahmadi, A. (2007). “Economic assessment of operational policies of inter-basin water transfer.” Water Resour. Res., 3(2), 86–101 (in Persian).
Karpouzos, D. K., Delay, F., Katsifarakis, K. L., and de Marsily, G. (2001). “A multipopulation genetic algorithm to solve the inverse problem in hydrogeology.” Water Resour. Res., 37(9), 2291–2302.
Katsifarakis, K. L., Karpouzos, D. K., and Theodossiou, N. (1999). “Combined use of BEM and genetic algorithms in groundwater flow and mass transport problems.” Eng. Anal. Boundary Elem., 23(7), 555–565.
Keedwell, E., and Khu, S. T. (2005). “Using cellular automata to seed genetic algorithms for water distribution network design problems.” Eng. Applic. Artif. Intell., 18(4), 461–472.
Kerachian, R., and Karamouz, M. (2005). “Waste-load allocation for seasonal river water quality management: Application of sequential dynamic genetic algorithms.” J. of Scientia Iranica, 12(2), 117–130.
Kerachian, R., and Karamouz, M. (2006). “Optimal reservoir operation considering the water quality issues: A stochastic conflict resolution approach.” Water Resour. Res., 42, W12401.
Kerachian, R., and Karamouz, M. (2007). “A stochastic conflict resolution model for water quality management in reservoir-river system.” Adv. Water Resour., 30(4), 866–882.
Kerachian, R., Karamouz, M., and Soltay, F. (2006). “Optimal reservoir operation considering the water quality issues: Application of adaptive neuro-fuzzy inference systems (ANFIS).” ASCE World Environmental and Water Resources Congress 2006, Omaha, Neb.
Khu, S. -T., and Madsen, H. (2005). “Multiobjective calibration with Pareto preference ordering: An application to rainfall-runoff model calibration.” Water Resour. Res., 41, W03004.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by simulated annealing.” Science, 220(4598), 671–680.
Ko, N. Y., Lee, K. K., and Hyun, Y. (2005). “Optimal groundwater remediation design of a pump and treat system considering cleanup time.” Geosci. J., 9(1), 23–31.
Kobayashi, K., Hinkelmann, R., and Helmig, R. (2008). “Development of a simulation-optimization model for multiphase systems in the subsurface: A challenge to real-world simulation-optimization.” J. Hydroinform., 10(2), 139–152.
Kollat, J. B., and Reed, P. (2007a). “A framework for visually interactive decision-making and design using evolutionary multiobjective optimization (VIDEO).” Environ. Modell. Software, 22(12), 1691–1704.
Kollat, J. B., and Reed, P. M. (2006). “Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design.” Adv. Water Resour., 29(6), 792–807.
Kollat, J. B., and Reed, P. M. (2007b). “A computational scaling analysis of multiobjective evolutionary algorithms in long-term groundwater monitoring applications.” Adv. Water Resour., 30(3), 408–419.
Kollat, J. B., Reed, P. M., and Kasprzy, J. R. (2008). “A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems.” Adv. Water Resour., 31, 828–845.
Koza, J. R. (1992). Genetic programming, MIT Press, Cambridge, Mass.
Krishnakumar, K. (1989). “Micro-genetic algorithms for stationary and non-stationary function optimization.” Proc., SPIE: Intelligent Control and Adaptive Systems, Vol. 1196, SPIE, Bellingham, Wash., 289–296.
Kuczera, G. (1997). “Efficient subspace probabilistic parameter optimization for catchment models.” Water Resour. Res., 33(1), 177–185.
Kumar, S. V., and Ranjithan, S. (2002). “Evaluation of the constraint method-based multiobjective evolutionary algorithm (CMEA) for a three-objective optimization problem.” Proc., Genetic and Evolutionary Computation Conf., GECCO 2002, W. B. Langdon et al., eds., Morgan Kaufmann, New York, 431–438.
Kuo, J. T., Wang, Y. Y., and Lung, W. (2006). “A hybrid neural-genetic algorithm for reservoir water quality management.” Water Res., 40, 1367–1376.
Labadie, J. (2004). “Optimal operation of multireservoir systems: State-of-the-art review.” J. Water Resour. Plann. Manage., 130(2), 93–111.
Langeveld, J. G., Clemens, F. H. L. R., and van der Graaf, J. H. J. M. (2002). “Increasing wastewater system performance—The importance of interactions between sewerage and wastewater treatment.” Water Sci. Technol., 45(3), 45–52.
Laumanns, M., Thiele, L., Zitzler, E., and Deb, K. (2002). “Archiving with guaranteed convergence and diversity in multi-objective optimization.” W. B. Langdon et al., eds., Proc., Gecco-2002 Genetic and Evolutionary Computation Conf., Morgan Kaufmann, New York, 447–439.
Lavric, V., Iancu, P., and Plesu, V. (2005). “Genetic algorithm optimization of water consumption and wastewater network topology.” J. Cleaner Prod., 13(15), 1405–1415.
Lee, Y. M., and Ellis, J. H. (1996). “Comparison of algorithms for nonlinear integer optimization: Application to monitoring network design.” J. Environ. Eng., 122(6), 524–531.
Li, Y., Du, J., and Yao, P. J. (2003). “Design of water network with multiple contaminants and zero discharge.” Chin. J. Chem. Eng., 11(5), 559–564.
Liang, L. Y., Thompson, R. G., and Young, D. M. (2004). “Optimising the design of sewer networks using genetic algorithms and tabu search.” Eng., Constr., Archit. Manage., 11(2), 101–112.
Lingireddy, S., and Ormsbee, L. E. (1998). “Optimal network calibration model based on genetic algorithms.” Tech. Rep., Univ. of Kentucky, Lexington, Ky.
Lingireddy, S., and Ormsbee, L. E. (1999). “Optimal network calibration model based on genetic algorithms.” WRPMD 1999, Vol. 102, E. M. Wilson, ed., ASCE, Tempe, 45.
Liong, S. Y., Khu, S. T., and Chan, W. T. (2001). “Derivation of Pareto front with genetic algorithm and neural network.” J. Hydrol. Eng., 6(1), 52–61.
Liu, W. H., Medina, M. A., Thomann, W., Piver, W. T., and Jacobs, T. L. (2000). “Optimization of intermittent pumping schedules for aquifer remediation using a genetic algorithm.” J. Am. Water Resour. Assoc., 36(6), 1335–1348.
Loughlin, D. H., Ranjithan, S. R., Baugh, J. W., Jr., and Brill, E. D., Jr. (2000). “Application of GAs for the design of ozone control strategies.” J. Air Waste Manage. Assoc., 50, 1050–1063.
Mackle, G., Savic, D. A., and Walters, G. A. (1995). “Application of genetic algorithms to pump scheduling for water supply.” Proc., Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA ‘95, IEE, London, 400–405.
Madsen, H. (2000). “Automatic calibration of a conceptual rainfall-runoff model using multiple objectives.” J. Hydrol., 235, 276–288.
Madsen, H. (2003). “Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives.” Adv. Water Resour., 26(2), 205–216.
Mahinthakumar, G., and Sayeed, M. (2005). “Hybrid genetic algorithm: Local search methods for solving groundwater source identification inverse problems.” J. Water Resour. Plann. Manage., 131(1), 45–57.
Mantoglou, A., and Kourakos, G. (2007). “Optimal groundwater remediation under uncertainty using multi-objective optimization.” Water Resour. Manage., 21(5), 835–847.
Maskey, S., Jonoski, A., and Solomatine, D. P. (2002). “Groundwater remediation strategy using global optimization algorithms.” J. Water Resour. Plann. Manage., 128(6), 431–440.
Matott, L. S., Rabideau, A. J., and Craig, J. R. (2006). “Pump-and-treat optimization using analytic element method flow models.” Adv. Water Resour., 29(5), 760–775.
Mayer, A. S., Kelley, C. T., and Miller, C. T. (2002). “Optimal design for problems involving flow and transport phenomena in saturated subsurface systems.” Adv. Water Resour., 25(8–12), 1233–1256.
McKinney, D. C., and Lin, M. D. (1994). “Genetic algorithm solution of groundwater management models.” Water Resour. Res., 30(6), 1897–1906.
McLaughlin, D., and Townley, L. R. (1996). “A reassessment of the groundwater inverse problem.” Water Resour. Res., 32(5), 1131–1161.
McPhee, J., and Yeh, W. G. (2004). “Multiobjective optimization for sustainable groundwater management in semiarid regions.” J. Water Resour. Plann. Manage., 130(6), 490–497.
Merabtene, T., Kawamra, A., Jinno, K., and Olsson, J. (2002). “Risk assessment for optimal drought management of an integrated water resources system using a genetic algorithm.” Hydrolog. Process., 16(11), 2189–2208.
Michalski, R. (2000). “Learnable evolution model: Evolutionary processes guided by machine learning.” Mach. Learn., 38(1–2), 9–40.
Miller, B. L., and Goldberg, D. E. (1996). “Optimal sampling for genetic algorithms.” C. H. Dagli, M. Akay, C. L. P. Chan, B. R. Fernandez, and J. Ghosh, eds., Proc., Intelligent Engineering Systems through Artificial Neural Networks (ANNIE ’96), Vol. 6, ASME Press, New York, 291–298.
Milly, P. C. D., et al. (2008). “Stationarity is dead: Whither water management?” Science, 319(5863), 573–574.
Mugunthan, P., and Shoemaker, C. (2005). “Comparison of function approximation, heuristic, and derivative-based methods for automatic calibration of computationally expensive groundwater bioremediation models.” Water Resour. Res., 41, W1427.
Muleta, M. K., and Nicklow, J. W. (2004). “Application of artificial neural networks and evolutionary algorithms to watershed management.” Water Resour. Manage., 18(5), 459–482.
Muleta, M. K., and Nicklow, J. W. (2005). “Decision support for watershed management using evolutionary algorithms.” J. Water Resour. Plann. Manage., 131(1), 35–44.
Munavalli, G. R., and Mohan-Kumar, M. S. (2003). “Optimal scheduling of multiple chlorine sources in water distribution systems.” J. Water Resour. Plann. Manage., 129(6), 493–504.
Murthy, Z. V. P., and Vengal, J. C. (2006). “Optimization of a reverse osmosis system using genetic algorithm.” Sep. Sci. Technol., 41(4), 647–663.
Nagesh Kumar, D., Srinivasa Raju, K., and Ashok, B. (2006). “Optimal reservoir operation for irrigation of multiple crops using genetic algorithms.” J. Irrig. Drain. Eng., 132(2), 123–129.
National Research Council. (2004). Confronting the nation’s water problems: The role of research, Washington, D.C.
Ndiritu, J. G., and Daniell, T. M. (1999). “An improved genetic algorithm for continuous and mixed discrete-continuous optimization.” Eng. Optimiz., 31, 589–614.
Nelder, J. A., and Mead, R. (1965). “A simplex method for function minimization.” Comput. J., 7, 308–313.
Nixon, J., Dandy, G. C., and Simpson, A. R. (2001). “A genetic algorithm for optimizing off-farm irrigation scheduling.” J. Hydroinform., 3(1), 11–22.
Oliveira, R., and Loucks, D. P. (1997). “Operating rules for multireservoir systems.” Water Resour. Res., 33(4), 839–852.
Ostfeld, A., and Salomons, E. (2006). “Sensor network design proposal for the battle of the water sensor networks (BWSN).” Proc., 8th Annual Int. Symp. on Water Distribution Systems Analysis (CD-ROM), ASCE, Reston, Va.
Pareto, V. (1896). Cours D’Economie Politique, Rouge, Lausanne, Switzerland.
Park, D. K., Ko, N. Y., and Lee, K. K. (2007). “Optimal groundwater remediation design considering effects of natural attenuation processes: Pumping strategy with enhanced-natural-attenuation.” Geosci. J., 11(4), 377–385.
Parker, M. A., Savic, D. A., Walters, G. A., and Kapelan, Z. (2000). “SewerNet: A genetic algorithm application for optimising urban drainage systems.” Proc., Int. Internet Conf. on Urban Drainage, Hydroinform, Prague, Czech Rep.
Pelikan, M. (2002). “Bayesian optimization algorithm: From single level to hierarchy.” IlliGAL Rep. No. 2002023, Illinois Genetic Algorithms Laboratory, Univ. of Illinois at Urbana-Champaign, Urbana, Ill.
Perez-Pedini, C., Limbrunner, J. F., and Vogel, R. M. (2005). “Optimal location of infiltration-based best management practices for storm water management.” J. Water Resour. Plann. Manage., 131(6), 441–448.
Prasad, T. D., and Park, N. -S. (2004). “Multiobjective genetic algorithms for design of water distribution networks.” J. Water Resour. Plann. Manage., 130(1), 73–82.
Prasad, T. D., Walters, G. A., and Savic, D. A. (2004). “Booster disinfection of water supply networks: A multi-objective approach.” J. Water Resour. Plann. Manage., 130(5), 367–376.
Price, W. L. (1983). “Global optimization by controlled random search.” J. Optim. Theory Appl., 40, 333–348.
Qin, X. S., Huang, G. H., and He, L. (2009). “Simulation and optimization technologies for petroleum waste management and remediation process control.” J. Environ. Manage., 90(1), 54–76.
Rao, Z., and Salomons, E. (2007). “Development of a real-time, near-optimal control process for water-distribution networks.” J. Hydroinform., 9(1), 25–37.
Rauch, W., and Harremoes, P. (1999). “Genetic algorithms in real time control applied to minimize transient pollution from urban waste water systems.” Water Res., 33(5), 1265–1277.
Rechenberg, I. (1973). Evolutionsstrategie: Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution, Frommann-Holzboog, Stuttgart, Germany.
Reed, P., Kollat, J. B., and Devireddy, V. K. (2007). “Using interactive archives in evolutionary multiobjective optimization: A case study for long-term groundwater monitoring design.” Environ. Modell. Software, 22(5), 683–692.
Reed, P., and Minsker, B. S. (2004). “Striking the balance: Long-term groundwater monitoring design for conflicting objectives.” J. Water Resour. Plann. Manage., 130(2), 140–149.
Reed, P., Minsker, B. S., and Goldberg, D. E. (2000a). “Designing a competent simple genetic algorithm for search and optimization.” Water Resour. Res., 36(12), 3757–3761.
Reed, P., Minsker, B. S., and Goldberg, D. E. (2001). “A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data.” J. Hydroinform., 3(2), 71–90.
Reed, P., Minsker, B. S., and Goldberg, D. E. (2003). “Simplifying multiobjective optimization: An automated design methodology for the nondominated sorted genetic algorithm-II.” Water Resour. Res., 39, 21–25.
Reed, P., Minsker, B. S., and Valocchi, A. J. (2000b). “Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation.” Water Resour. Res., 36(12), 3731–3741.
Reed, P., and Yamaguchi, S. (2004a). “Making it easier to use the multiple population parallelization scheme for evolutionary algorithms.” Proc., World Water and Environmental Resources Congress, ASCE, Reston, Va.
Reed, P., and Yamaguchi, S. (2004b). “Simplifying the parameterization of real-coded evolutionary algorithms.” Proc., World Water and Environmental Resources Congress, ASCE, Reston, Va.
Regis, R. G., and Shoemaker, C. A. (2004). “Local function approximation in evolutionary algorithms for the optimization of costly functions.” IEEE Trans. Evol. Comput., 8(5), 490–505.
Ren, X., and Minsker, B. S. (2005). “Which groundwater remediation objective is better: A realistic one or a simple one?” J. Water Resour. Plann. Manage., 131(5), 351–361.
Ritzel, B. J., Eheart, J. W., and Ranjithan, S. R. (1994). “Using genetic algorithms to solve a multiple objective groundwater pollution containment problem.” Water Resour. Res., 30(5), 1589–1603.
Rizzo, D. M., and Dougherty, D. E. (1996). “Design optimization for multiple management period groundwater remediation.” Water Resour. Res., 32(8), 2549–2561.
Rogers, L. L., Dowla, F. U., and Johnson, V. M. (1995). “Optimal field-scale groundwater remediation using neural networks and the genetic algorithm.” Environ. Sci. Technol., 29(5), 1145–1155.
Savic, D., and Walters, G. (1997). “Genetic algorithms for least cost design of water distribution networks.” J. Water Resour. Plann. Manage., 123(2), 67–77.
Savic, D. A., Kapelan, Z., and Jonkergouw, P. M. R. (2009). “Quo vadis water distribution model calibration?” Urban Water, 6(1), 3–22.
Savic, D. A., and Walters, G. A. (1995a). “An evolution program for optimal pressure regulation in water distribution networks.” Eng. Optimiz., 24(3), 197–219.
Savic, D. A., and Walters, G. A. (1995b). “Genetic algorithm techniques for calibrating network models.” Tech. Rep. 95/12, Centre for Systems and Control Engineering, Univ. of Exeter, Exeter, U.K.
Savic, D. A., Walters, G. A., and Schwab, M. (1997). “Multiobjective genetic algorithms for pump scheduling in water supply.” Proc., AISB ’97, Lecture Notes in Computer Science 1305, D. Corne and J. L. Shapiro, eds., Springer, Berlin, 227–236.
Schaake, J. C., and Lai, D. (1969). “Linear programming and dynamic programming application to water distribution network design.” Rep. No. 116, Dept. of Civil Engineering, MIT, Cambridge, Mass.
Schutze, M., Butler, D., and Beck, M. B. (1999). “Optimisation of control strategies for the urban wastewater system—An integrated approach.” Water Sci. Technol., 39(9), 209–216.
Schwefel, H. -P. (1981). Numerical optimization of computer models, Wiley, Chichester.
Schwefel, H. -P. (1995). Evolution and optimum seeking, Wiley, New York.
Shieh, H. J., and Peralta, R. C. (2005). “Optimal in situ bioremediation design by hybrid genetic algorithm-simulated annealing.” J. Water Resour. Plann. Manage., 131(1), 67–78.
Sidiropoulos, E., and Tolikas, P. (2008). “Genetic algorithms and cellular automata in aquifer management.” Appl. Math. Model., 32(4), 617–640.
Simpson, A. R., Dandy, G. C., and Murphy, L. J. (1994). “Genetic algorithms compared to other techniques for pipe optimization.” J. Water Resour. Plann. Manage., 120(4), 423–443.
Singh, A., and Minsker, B. S. (2008). “Uncertainty-based multiobjective optimization of groundwater remediation design.” Water Resour. Res., 44, W02404.
Singh, A., Minsker, B. S., and Valocchi, A. J. (2008). “An interactive multi-objective optimization framework for groundwater inverse modeling.” Adv. Water Resour., 31, 1269–1283.
Sinha, E., and Minsker, B. S. (2007). “Multiscale island injection genetic algorithms for groundwater remediation.” Adv. Water Resour., 30(9), 1933–1942.
Skaggs, R. L., Mays, L. W., and Vail, L. W. (2001). “Application of enhanced annealing to groundwater remediation design.” J. Am. Water Resour. Assoc., 37(4), 867–875.
Smalley, J. B., Minsker, B. S., and Goldberg, D. E. (2000). “Risk-based in situ bioremediation design using a noisy genetic algorithm.” Water Resour. Res., 36(10), 3043–3052.
Solomatine, D. P. (1998). “Genetic and other global optimization algorithms comparison and use in calibration problems.” Proc., Hydroinformatics ‘98, V. Babovic and L. C. Larsen, eds., Balkema, Rotterdam, The Netherlands, 1021–1028.
Solomatine, D. P., Dibike, Y. B., and Kukuric, N. (1999). “Automatic calibration of groundwater models using global optimization techniques.” J. Hydrol. Sci., 44(6), 879–894.
Sorooshian, S., Duan, Q., and Gupta, V. K. (1993). “Calibration of rainfall-runoff models: Application of global optimization to the Sacramento soil moisture accounting model.” Water Resour. Res., 29(4), 1185–1194.
Storn, R., and Price, K. (1997). “Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces.” J. Global Optim., 11, 341–359.
Suggala, S. V., and Bhattacharya, P. K. (2003). “Real coded genetic algorithm for optimization of pervaporation process parameters for removal of volatile organics from water.” Ind. Eng. Chem. Res., 42(13), 3118–3128.
Sumner, N., Fleming, P., and Bates, B. (1997). “Calibration of a modified SFB model for twenty-five Australian catchments using simulated annealing.” J. Hydrol., 197, 166–188.
Sun, M., and Zheng, C. M. (1999). “Long-term groundwater management by a MODFLOW based dynamic optimization tool.” J. Am. Water Resour. Assoc., 35(1), 99–111.
Takagi, H. (2001). “Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation.” Proc. IEEE, 89(9), 1275–1296.
Tang, K., Karney, B., Pendlebury, M., and Zhang, F. (1999). “Inverse transient calibration of water distribution systems using genetic algorithms.” Proc., Water Industry Systems: Modelling and Optimization Applications, Vol. 1, D. A. Savic and G. A. Walters, eds., Research Studies Press, Baldock, U.K.
Tang, Y., Reed, P., and Kollat, J. B. (2007). “Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications.” Adv. Water Resour., 30(3), 335–353.
Tang, Y., Reed, P., and Wagener, T. (2006). “How efficient and effective are evolutionary multiobjective algorithms at hydrologic model calibration?” Hydrol. Earth Syst. Sci., 10, 289–307.
Thierens, D., Goldberg, D. E., and Pereira, A. G. (1998). “Domino convergence, drift, and the temporal-salience structure of problems.” Proc., IEEE Int. Conf. on Evolutionary Computation, IEEE, Piscataway, N.J., 535–540.
Thyer, M., Kuczera, G., and Bates, B. C. (1999). “Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms.” Water Resour. Res., 35(3), 767–773.
Tsai, F. T. C., Sun, N. Z., and Yeh, W. W. G. (2003). “A combinatorial optimization scheme for parameter structure identification in groundwater modeling.” Ground Water, 41(2), 156–169.
Tsai, M. -J., and Chang, C. -T. (2001). “Water usage and treatment network design using genetic algorithm.” Ind. Eng. Chem. Res., 40, 4874–4888.
Vairavamoorthy, K., and Ali, M. (2005). “Pipe index vector: A method to improve genetic-algorithm-based pipe optimization.” J. Hydraul. Eng., 131(12), 1117–1125.
Vamvakeridou-Lyroudia, L. S., Walters, G. A., and Savic, D. A. (2005). “Fuzzy multiobjective optimization of water distribution networks.” J. Water Resour. Plann. Manage., 131(6), 467–476.
van Zyl, J., Savic, D. A., and Walters, G. A. (2004). “Operational optimization of water distribution systems using a hybrid genetic algorithm method.” J. Water Resour. Plann. Manage., 130(2), 160–170.
Vasquez, J. A., Maier, H. R., Lence, B. J., Tolson, B. A., and Foschi, R. O. (2000). “Achieving water quality system reliability using genetic algorithms.” J. Environ. Eng., 126(10), 954–962.
Vítkovský, J. P., Liggett, J. A., Simpson, A. R., and Lambert, M. F. (2003). “Optimal measurement site locations for inverse transient analysis in pipe networks.” J. Water Resour. Plann. Manage., 129(6), 480–492.
Vítkovský, J. P., and Simpson, A. R. (1997). “Calibration and leak detection in pipe networks using inverse transient analysis and genetic algorithms.” Tech. Rep. No. R 157, Dept. of Civil and Environmental Engineering, Univ. of Adelaide, Adelaide, Australia.
Vítkovský, J. P., Simpson, A. R., and Lambert, M. F. (2000). “Leak detection and calibration using transients and genetic algorithms.” J. Water Resour. Plann. Manage., 126(4), 262–265.
Vorosmarty, C., Green, P., Salisbury, J., and Lammers, R. (2000). “Global water resources: Vulnerability from climate change and population growth.” Science, 289, 284–288.
Vrugt, J., Gupta, H. V., Bastidas, L. A., Bouten, W., and Sorooshian, S. (2003a). “Effective and efficient algorithm for multiobjective optimization of hydrologic models.” Water Resour. Res., 39, 1214.
Vrugt, J., Gupta, H. V., Bouten, W., and Sorooshian, S. (2003b). “A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters.” Water Resour. Res., 39, SWC1.1–SWC1.16.
Vrugt, J. A., et al. (2004). “Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization.” Water Resour. Res., 40, W06503.
Vrugt, J. A., and Robinson, B. A. (2007). “Improved evolutionary search from genetically adaptive multi-method search.” Proc. Natl. Acad. Sci. U.S.A., 104(3), 708–711.
Wagener, T., and Gupta, H. V. (2005). “Model identification for hydrological forecasting under uncertainty.” Stochastic Environ. Res. Risk Assess., 19(6), 378–387.
Walters, G. A., and Lohbeck, T. (1993). “Optimal layout of tree networks using genetic algorithms.” Eng. Optimiz., 22(1), 27–48.
Walters, G. A., Savic, D. A., Morley, M., and de Schaetzen, W. (1998). “Calibration of water distribution network models using genetic algorithms.” Proc., 7th Int. Conf. on Hydraulic Engineering Software—Hydrosoft 98, W. R. Blain, ed., Comp. Mechanics, Southampton, U.K.
Walters, G. A., and Smith, D. K. (1995). “Evolutionary design algorithm for optimal layout of tree networks.” Eng. Optimiz., 24, 261–281.
Wang, C. G., and Jamieson, D. G. (2002). “An objective approach to regional wastewater treatment planning.” Water Resour. Res., 38(3), 1022.
Wang, J., Lu, Z., and Habu, H. (2001). “The SCE-UA to solution of constrained nonlinear problem.” J. Hohai Univ., 29(3), 46–50.
Wang, M., and Zheng, C. (1997). “Optimal remediation policy selection under general conditions.” Ground Water, 35(5), 757–764.
Wang, M., and Zheng, C. (1998). “Groundwater management optimization using genetic algorithms and simulated annealing: Formulation and comparison.” J. Am. Water Resour. Assoc., 34(3), 519–530.
Wang, Q. J. (1991). “The genetic algorithm and its application to calibration of conceptual rainfall-runoff models.” Water Resour. Res., 27(9), 2467–2471.
Wardlaw, R., and Sharif, M. (1999). “Evaluation of genetic algorithms for optimal reservoir system operation.” J. Water Resour. Plann. Manage., 125(1), 25–33.
Wu, J., Zheng, C., Chien, C., and Zheng, L. (2006). “A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty.” Adv. Water Resour., 29, 899–911.
Wu, J. F., Zheng, C. M., and Chien, C. C. (2005). “Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions.” J. Contam. Hydrol., 77(1–2), 41–65.
Wu, J. F., Zhu, X. Y., and Liu, J. L. (1999). “Using genetic algorithm based simulated annealing penalty function to solve groundwater management model.” Sci. China, Ser. E: Technol. Sci., 42(5), 521–529.
Wu, Z. Y., and Sage, P. (2006). “Water loss detection via genetic algorithm optimization-based model calibration.” Proc., 8th Annual Water Distribution System Symp. (CD-ROM), ASCE, Reston, Va., 11.
Wu, Z. Y., and Walski, T. (2005). “Self-adaptive penalty approach compared with other constraint-handling techniques for pipeline optimization.” J. Water Resour. Plann. Manage., 131(3), 181–192.
Yan, S., and Minsker, B. (2006). “Optimal groundwater remediation design using an adaptive neural network genetic algorithm.” Water Resour. Res., 42, W05407.
Yandamuri, S. R. M., Srinivasan, K., and Bhallamudi, S. M. (2006). “Multiobjective optimal waste load allocation models for rivers using nondominated sorting genetic algorithm-II.” J. Water Resour. Plann. Manage., 132(3), 133–143.
Yapo, P. O., Gupta, H. V., and Sorooshian, S. (1998). “Multi-objective global optimization for hydrologic models.” J. Hydrol., 204, 83–97.
Yeh, C. -H., and Labadie, J. W. (1997). “Multiobjective watershed-level planning of storm-water detention basins.” J. Water Resour. Plann. Manage., 123(6), 336–343.
Yeh, W. W.-G. (1986). “Review of parameter identification procedures in groundwater hydrology: The inverse problem.” Water Resour. Res., 22(2), 95–108.
Yoon, J., and Shoemaker, C. (2001). “An improved real-coded GA for groundwater bioremediation.” J. Comput. Civ. Eng., 15(3), 224–231.
Yoon, J. H., and Shoemaker, C. A. (1999). “Comparison of optimization methods for ground-water bioremediation.” J. Water Resour. Plann. Manage., 125(1), 54–63.
Yu, K. P., and Harrell, L. J. (2004). “Evaluation of constraint handling techniques for evolutionary algorithm-based watershed management.” Proc., World Water and Environmental Resources Congress, ASCE, Reston, Va.
Zahraie, B., Kerachian, R., and Malekmohammadi, B. (2008). “Reservoir operation optimization using adaptive varying chromosome length genetic algorithm.” Water Int., 33(3), 380–391.
Zechman, E. M., and Ranjithan, S. (2007a). “Evolutionary computation-based approach for model error correction and calibration.” Adv. Water Resour., 30(5), 1360–1370.
Zechman, E. M., and Ranjithan, S. (2007b). “Generating alternatives using evolutionary algorithms for water resources and environmental management problems.” J. Water Resour. Plann. Manage., 133(2), 156–165.
Zhang, Y. Q., Pinder, G. F., and Herrera, G. S. (2005). “Least cost design of groundwater quality monitoring networks.” Water Resour. Res., 41, W08412.
Zheng, C. (1997). “ModGA documentation and user’s guide.” Rep. Prepared for the DuPont Company, Hydrogeology Group, Univ. of Alabama, Tuscaloosa, Ala.
Zheng, C., and Wang, P. P. (1996). “Parameter structure identification using tabu search and simulated annealing.” Adv. Water Resour., 19(4), 215–224.
Zheng, C. M., and Wang, P. P. (2002). “A field demonstration of the simulation optimization approach for remediation system design.” Ground Water, 40(3), 258–266.
Zitzler, E., Laumanns, M., and Thiele, L. (2002). “SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization.” Proc., Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), K. Giannakoglou et al., eds., Barcelona, Spain, 95–100.
Zitzler, E., and Thiele, L. (1999). “Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach.” IEEE Trans. Evol. Comput., 3(4), 257–271.
Zou, R., and Lung, W. (2004). “Robust water quality model calibration using an alternating fitness genetic algorithm.” J. Water Resour. Plann. Manage., 130(6), 471–479.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 136Issue 4July 2010
Pages: 412 - 432

History

Received: Sep 16, 2008
Accepted: Oct 1, 2009
Published online: Oct 12, 2009
Published in print: Jul 2010

Permissions

Request permissions for this article.

Authors

Affiliations

John Nicklow, F.ASCE [email protected]
Associate Dean and Professor, College of Engineering, Southern Illinois Univ. Carbondale, Carbondale, IL 62901-6603 (corresponding author). E-mail: [email protected]
Patrick Reed, M.ASCE
Associate Professor, Civil and Environmental Engineering, Pennsylvania State Univ., University Park, PA.
Dragan Savic
Professor, School of Engineering, Computing and Mathematics, Univ. of Exeter, U.K.
Tibebe Dessalegne, M.ASCE
Senior Engineer, BEM Systems, Inc., West Palm Beach, FL.
Laura Harrell, M.ASCE
Associate Professor, Civil and Environmental Engineering, Old Dominion Univ., Norfolk, VA.
Amy Chan-Hilton, M.ASCE
Associate Professor, Civil and Environmental Engineering, Florida A&M-Florida State Univ., Tallahassee, FL.
Mohammad Karamouz, F.ASCE
Professor, School of Civil Engineering, Univ. of Tehran, Iran.
Barbara Minsker, M.ASCE
Professor, Civil and Environmental Engineering, Univ. of Illinois, Urbana, IL.
Avi Ostfeld, M.ASCE
Senior Lecturer, Civil and Environmental Engineering, Technion—Israel Institute of Technology, Israel.
Abhishek Singh, M.ASCE
Environmental Scientist, INTERA, Inc., Austin, TX.
Emily Zechman, M.ASCE
Assistant Professor, Civil Engineering, Texas A&M Univ., College Station, TX.
ASCE Task Committee on Evolutionary Computation in Environmental and Water Resources Engineering

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share