Technical Papers
Nov 18, 2021

The 95% Confidence Interval for GNSS-Derived Site Velocities

Publication: Journal of Surveying Engineering
Volume 148, Issue 1

Abstract

Linear trends, or site velocities, derived from global navigation satellite system (GNSS) positional time series have been commonly applied to site stability assessments, structural health monitoring, sea-level rise, and coastal submergence studies. The uncertainty of the velocity has become a big concern for stringent users targeting structural or ground deformation at a few millimeters per year. GNSS-derived positional time series are autocorrelated. Consequently, conventional methods for calculating the standard errors of the linear trends result in unrealistically small uncertainties. This article presents an approach to accounting for the autocorrelation with an effective sample size (Neff). A robust methodology has been developed to determine the 95% confidence interval (95%CI) for the site velocities. It is found that the 95%CI fits an inverse power-law relationship over the time span of the time series (vertical direction: 95%CI=5.2T1.25; east–west or north–south directions: 95%CI=1.8T1.0). For static GNSS monitoring projects, continuous observations longer than 2.5 and 4 years are recommended to achieve a 95%CI below 1  mm/year for the horizontal and vertical site velocities, respectively; continuous observations longer than 7 years are recommended to achieve a 95%CI below 0.5  mm/year for the vertical land movement rate (subsidence or uplift). The 95%CI from 7-year GNSS time series is equivalent to the 95%CI of the sea-level trend derived from 60-year tide gauge observations. The method and the empirical formulas developed through this study have the potential for broad applications in geosciences, sea-level and coastal studies, and civil and surveying engineering.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All processed data, models, or code that support the findings of this study are available from the author upon request.

Acknowledgments

I acknowledge Geoff Blewitt and his team at the Nevada Geodetic Laboratory for sharing processed daily PPP solutions and colleagues at NOAA for sharing tide gauge data. I appreciate the thoughtful comments from the three reviewers.

References

Agnew, D. C. 1992. “The time-domain behavior of power law noises.” Geophys. Res. Lett. 19 (4): 333–336. https://doi.org/10.1029/91GL02832.
Agudelo, G., G. Wang, Y. Liu, Y. Bao, and M. J. Turco. 2020. “GPS geodetic infrastructure for subsidence and fault monitoring in Houston, Texas, USA.” Proc. Int. Assoc. Hydrol. Sci. 382 (Apr): 11–18. https://doi.org/10.5194/piahs-97-1-2020.
Altamimi, Z., P. Rebischung, L. Métivier, and X. Collilieux. 2016. “ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions.” J. Geophys. Res. 121 (8): 6109–6131. https://doi.org/10.1002/2016JB013098.
Bao, Y., W. Guo, G. Wang, W. Gan, M. Zhang, and J. S. Shen. 2018. “Millimeter-accuracy structural deformation monitoring using stand-alone GPS: Case study in Beijing, China.” J. Surv. Eng. 144 (1): 05017007. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000242.
Bao, Y., X. Yu, G. Wang, H. Zhou, X. Ding, G. Xiao, S. Shen, R. Zhao, and W. Gan. 2021. “SChina20: A stable geodetic reference frame for ground movement and structural deformation monitoring in South China.” J. Surv. Eng. 147 (3): 04021006. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000352.
Bertiger, W., et al. 2020. “GipsyX/RTGx, a new tool set for space geodetic operations and research.” Adv. Space Res. 66 (3): 469–489. https://doi.org/10.1016/j.asr.2020.04.015.
Bertiger, W., S. D. Desai, B. Haines, N. Harvey, A. W. Moore, S. Owen, and J. P. Weiss. 2010. “Single receiver phase ambiguity resolution with GPS data.” J. Geod. 84 (5): 327–337. https://doi.org/10.1007/s00190-010-0371-9.
Bettinelli, P., J. P. Avouac, M. Flouzat, F. Jouanne, L. Bollinger, P. Willis, and G. R. Chitrakar. 2006. “Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements.” J. Geod. 80 (8): 567–589. https://doi.org/10.1007/s00190-006-0030-3.
Blewitt, G., W. C. Hammond, and C. Kreemer. 2018. “Harnessing the GPS data explosion for interdisciplinary science.” Eos 99 (10.1029): 485. https://doi.org/10.1029/2018EO104623.
Blewitt, G., C. Kreemer, W. C. Hammond, and J. Gazeaux. 2016. “MIDAS robust trend estimator for accurate GPS station velocities without step detection.” J. Geophys. Res. 121 (3): 2054–2068. https://doi.org/10.1002/2015JB012552.
Blewitt, G., and D. Lavallee. 2002. “Effect of annual signals on geodetic velocity.” J. Geophys. Res. 107 (B7): ETG-9. https://doi.org/10.1029/2001JB000570.
Bogusz, J. 2015. “Geodetic aspects of GPS permanent stations non-linearity studies.” Acta Geodyn. Geomater. 12 (4): 323–333. https://doi.org/10.13168/AGG.2015.0033.
Bos, M. S., R. M. S. Fernandes, S. D. P. Williams, and L. Bastos. 2013. “Fast error analysis of continuous GNSS observations with missing data.” J. Geod. 87 (4): 351–360. https://doi.org/10.1007/s00190-012-0605-0.
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 2008. Time series analysis, forecasting and control. 4th ed. Hoboken, NJ: Wiley.
Chen, Q., T. van Dan, N. Sneeuw, X. Collilieux, M. Weigelt, and P. Rebischung. 2013. “Singular spectrum analysis for modeling seasonal signals from GPS time series.” J. Geodyn. 72 (2013): 25–35. https://doi.org/10.1016/j.jog.2013.05.005.
Cleveland, W. S. 1981. “LOWESS: A program for smoothing scatterplots by robust locally weighted regression.” Am. Stat. 35 (1): 54. https://doi.org/10.2307/2683591.
Davis, J. L., B. P. Wernicke, and M. E. Tamisiea. 2012. “On seasonal signals in geodetic time series.” J. Geophys. Res. 117 (B1): B01403. https://doi.org/10.1029/2011JB008690.
Didova, O., B. Gunter, R. Riva, R. Klees, and L. Roese-Koerner. 2016. “An approach for estimating time-variable rates from geodetic time series.” J. Geod. 90 (11): 1207–1221. https://doi.org/10.1007/s00190-016-0918-5.
Dixon, T. H., M. Killer, F. Farina, H. Wang, and D. Wang. 2000. “Present-day motion of the Sierra Nevada block and some tectonic implications for the Basin and Range province, North American Cordillera.” Tectonics 19 (1): 1–24. https://doi.org/10.1029/1998TC001088.
Dong, D., P. Fang, Y. Bock, M. K. Cheng, and S. Miyazaki. 2002. “Anatomy of apparent seasonal variations from GPS-derived site position time series.” J. Geophys. Res. 107 (B4): 2075. https://doi.org/10.1029/2001JB000573.
Ford, B. L. 1983. “An overview of hot-deck procedures.” In Vol. 2 of Incomplete data in sample surveys, edited by W. G. Madow, I. Olkin, and D. B. Rubin, 185–207. New York: Academic.
Geyer, C. J. 1992. “Practical Markov chain Monte Carlo.” Stat. Sci. 7 (4): 473–483. https://doi.org/10.1214/ss/1177011137.
Griffiths, J., and J. Ray. 2009. “On the precision and accuracy of IGS orbits.” J. Geod. 83 (3): 277–287. https://doi.org/10.1007/s00190-008-0237-6.
Guo, W., G. Wang, Y. Bao, P. Li, M. Zhang, Q. Gong, R. Li, Y. Gao, R. Zhao, and S. Shen. 2019. “Detection and monitoring of tunneling-induced riverbed deformation using GPS and BeiDou: A case study.” Appl. Sci. 9 (13): 2759. https://doi.org/10.3390/app9132759.
Hackl, M., R. Malservisi, U. Hugentobler, and R. Wonnacott. 2011. “Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network.” J. Geophys. Res. 116 (B11): 11404. https://doi.org/10.1029/2010JB008142.
Heflin, M., A. Donnellan, J. Parker, G. Lyzenga, A. Moore, L. G. Ludwig, J. Rundle, J. Wang, and M. Pierce. 2020. “Automated estimation and tools to extract positions, velocities, breaks, and seasonal terms from daily GNSS measurements: Illuminating nonlinear Salton Trough deformation.” Earth Space Sci. 7 (7): e2019EA000644. https://doi.org/10.1029/2019EA000644.
Herring, T. A., T. I. Melbourne, M. H. Murray, M. A. Floyd, W. M. Szeliga, R. W. King, D. A. Phillips, C. M. Puskas, M. Santillan, and L. Wang. 2016. “Plate boundary observatory and related networks: GPS data analysis methods and geodetic products.” Rev. Geophys. 54 (4): 759–808. https://doi.org/10.1002/2016RG000529.
IPCC (Intergovernmental Panel on Climate Change). 2013. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.
JPL (Jet Propulsion Laboratory). 2021. “Time series for THSU.” Accessed January 20, 2021. https://sideshow.jpl.nasa.gov/post/links/THSU.html.
Kass, R. E., B. P. Carlin, A. Gelman, and R. Neal. 1998. “Markov chain Monte Carlo in practice: A roundtable discussion.” Am. Stat. 52 (2): 93–100. https://doi.org/10.2307/2685466.
Kearns, T. J., G. Wang, Y. Bao, J. Jiang, and D. Lee. 2015. “Current land subsidence and groundwater level changes in the Houston metropolitan area (2005–2012).” J. Surv. Eng. 141 (4): 05015002. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000147.
King, M. A., and S. D. P. Williams. 2009. “Apparent stability of GPS monumentation from short-baseline time series.” J. Geophys. Res. 114 (B10): B10403. https://doi.org/10.1029/2009JB006319.
Klos, A., J. Bogusz, M. Figurski, and W. Kosek. 2014. “Uncertainties of geodetic velocities from permanent GPS observations: The Sudeten case study.” Acta Geodyn. Geomater. 11 (3): 201–209. https://doi.org/10.13168/AGG.2014.0005.
Klos, A., M. S. Bos, and J. Bogusz. 2018. “Detecting time-varying seasonal signal in GPS position time series with different noise levels.” GPS Solut. 22: 21. https://doi.org/10.1007/s10291-017-0686-6.
Krarup, T. 1969. “A contribution to the mathematical foundation of physical geodesy.” Geod. Inst. Med. 44: 80.
Langbein, J. 2004. “In two-color electronic distance meter measurements revisited.” J. Geophys. Res. 109 (B4): B04406. https://doi.org/10.1029/2003JB002819.
Langbein, J. 2008. “Noise in GPS displacement measurements from Southern California and Southern Nevada.” J. Geophys. Res. 113 (B5): B05405. https://doi.org/10.1029/2007JB005247.
Langbein, J. 2012. “Estimating rate uncertainty with maximum likelihood: Differences between power-law and flicker-random-walk models.” J. Geod. 86 (9): 775–783. https://doi.org/10.1007/s00190-012-0556-5.
Langbein, J. 2017. “Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors.” J. Geod. 91: 985–994. https://doi.org/10.1007/s00190-017-1002-5.
Langbein, J., and H. Johnson. 1997. “Correlated errors in geodetic time series: Implication for time dependent deformations.” J. Geophys. Res. 102 (B1): 591–603. https://doi.org/10.1029/96JB02945.
Liu, Y., X. Sun, G. Wang, M. J. Turco, G. Agudelo, Y. Bao, R. Zhao, and S. Shen. 2019. “Current activity of the long point fault in Houston, Texas constrained by continuous GPS measurements (2013–2018).” Remote Sens. 11 (10): 1213. https://doi.org/10.3390/rs11101213.
Mao, A., C. A. Harrison, and T. H. Dixon. 1999. “Noise in GPS coordinate time series.” J. Geophys. Res. 104 (B2): 2797–2816. https://doi.org/10.1029/1998JB900033.
Moritz, H. 1973. “Least-squares collocation.” Publ. Deut. Geod. Komm. A 75: 91.
Murray, J. R., and J. Svarc. 2017. “Global positioning system data collection, processing, and analysis conducted by the US Geological Survey Earthquake Hazards Program.” Seismol. Res. Lett. 88 (3): 916–925. https://doi.org/10.1785/0220160204.
NGL (Nevada Geodetic Laboratory). 2021. “Station ID: THSU continuously updated data set.” Accessed January 20, 2021. http://geodesy.unr.edu/NGLStationPages/stations/THSU.sta.
Parker, A. 2014. “Minimum 60 years of recording are needed to compute the sea level rate of rise in the Western South Pacific.” Nonlinear Eng. 3 (1): 1–10. https://doi.org/10.1515/nleng-2013-0011.
Ray, J. M., M. S. Vijayan, and A. Kumar. 2019. “Noise characteristics of GPS time series and their influence on velocity uncertainties.” J. Earth Syst. Sci. 128 (6): 146. https://doi.org/10.1007/s12040-019-1179-5.
Rebischung, P., Z. Altamimi, J. Ray, and B. Garay. 2016. “The IGS contribution to ITRF2014.” J. Geod. 90 (7): 611–630. https://doi.org/10.1007/s00190-016-0897-6.
Santamaría-Gómez, A., M. Gravelle, X. Collilieux, M. Guichard, B. M. Miguez, P. Tiphaneau, and G. Wöppelmann. 2012. “Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field.” Global Planet. Change 98–99 (Dec): 6–17. https://doi.org/10.1016/j.gloplacha.2012.07.007.
Snay, R., M. Cline, W. Dillinger, R. Foote, S. Hilla, W. Kass, J. Ray, J. Rohde, G. Sella, and T. Soler. 2007. “Using global positioning system-derived crustal velocities to estimate rates of absolute sea level change from North American tide gauge records.” J. Geophys. Res. 112 (B4): B04409. https://doi.org/10.1029/2006JB004606.
Soler, T., and G. Wang. 2016. “Interpreting OPUS-Static results accurately.” J. Surv. Eng. 142 (4): 05016003. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000191.
Stan Development Team. 2021. “Stan user’s guide, version 2.28.” Accessed November 1, 2021. https://mc-stan.org/docs/2_28/stan-users-guide/index.html.
Straatsma, T. P., H. J. C. Berendsen, and A. J. Stam. 1986. “Estimation of statistical errors in molecular simulation calculations.” Mol. Phys. 57 (1): 89–95. https://doi.org/10.1080/00268978600100071.
Thompson, M. B. 2010. A comparison of methods for computing autocorrelation time. Technical Rep. No. 1007. Toronto: Univ. of Toronto.
Wang, G. 2011. “GPS landslide monitoring: Single base vs. network solutions, a case study based on the Puerto Rico and Virgin Islands permanent GPS network.” J. Geodetic Sci. 1 (3): 191–203. https://doi.org/10.2478/v10156-010-0022-3.
Wang, G. 2013. “Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity resolution: A case study in Puerto Rico.” J. Geodetic Sci. 3 (1): 22–31. https://doi.org/10.2478/jogs-2013-0001.
Wang, G., Y. Bao, Y. Cuddus, X. Jia, J. Serna, and Q. Jing. 2015a. “A methodology to derive precise landslide displacements from GPS observations in tectonically active and cold regions: A case study in Alaska.” Nat. Hazards 77 (3): 1939–1961. https://doi.org/10.1007/s11069-015-1684-z.
Wang, G., Y. Bao, W. Gan, J. Geng, G. Xiao, and J. S. Shen. 2018. “NChina16, a stable geodetic reference frame for geological hazard studies in North China.” J. Geodyn. 115 (Apr): 10–22. https://doi.org/10.1016/j.jog.2018.01.003.
Wang, G., T. J. Kearns, J. Yu, and G. Saenz. 2014. “A stable reference frame for landslide monitoring using GPS in the Puerto Rico and Virgin Islands Region.” Landslides 11 (1): 119–129. https://doi.org/10.1007/s10346-013-0428-y.
Wang, G., H. Liu, G. S. Mattioli, M. M. Miller, K. Feaux, and J. Braun. 2019. “CARIB18, a stable geodetic reference frame for geological hazard monitoring in the Caribbean region.” Remote Sens. 11 (6): 680. https://doi.org/10.3390/rs11060680.
Wang, G., M. J. Turco, T. Soler, T. J. Kearns, and J. Welch. 2017. “Comparisons of OPUS and PPP solutions for subsidence monitoring in the greater Houston area.” J. Surv. Eng. 143 (4): 05017005. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000241.
Wang, G., J. Welch, T. J. Kearns, L. Yang, and J. Serna. 2015b. “Introduction to GPS geodetic infrastructure for land subsidence monitoring in Houston, Texas, USA.” Proc. Int. Assoc. Hydrol. Sci. 372 (Nov): 297–303. https://doi.org/10.5194/piahs-372-297-2015.
Wang, G., X. Zhou, K. Wang, X. Ke, Y. Zhang, R. Zhao, and Y. Bao. 2020. “GOM20, a stable geodetic reference frame for subsidence, faulting, and sea-level rise studies along the coast of the Gulf of Mexico.” Remote Sens. 12 (3): 350. https://doi.org/10.3390/rs12030350.
Wang, W., B. Zhao, Q. Wang, and S. Yang. 2012. “Noise analysis of continuous GPS coordinate time series for CMONOC.” Adv. Space Res. 49 (5): 943–956. https://doi.org/10.1016/j.asr.2011.11.032.
Wenzel, M., and J. Schroter. 2014. “Global and regional sea level change during the 20th century.” J. Geophys. Res. 119 (11): 7493–7508. https://doi.org/10.1002/2014JC009900.
Wessel, P., W. H. Smith, R. Scharroo, J. Luis, and F. Wobbe. 2013. “Generic mapping tools: Improved version released.” Eos 94 (45): 409–410. https://doi.org/10.1002/2013EO450001.
Wilks, D. S. 2006. Statistical methods in the atmospheric sciences. 2nd ed. Cambridge, MA: Academic.
Williams, S. D. P. 2008. “CATS: GPS coordinate time series analysis software.” GPS Solut. 12 (2): 147–153. https://doi.org/10.1007/s10291-007-0086-4.
Williams, S. D. P., Y. Bock, P. Fang, P. Jamason, R. M. Nikolaidis, L. Prawirodirdjo, M. Miller, and D. J. Johnson. 2004. “Error analysis of continuous GPS position time series.” J. Geophys. Res. 109 (B3): B03412. https://doi.org/10.1029/2003JB002741.
Xu, C., and D. Yue. 2015. “Monte Carlo SSA to detect time-variable seasonal oscillations from GPS-derived site position time series.” Tectonophysics 665 (8): 118–126. https://doi.org/10.1016/j.tecto.2015.09.029.
Yang, L., G. Wang, Y. Bao, T. J. Kearns, and J. Yu. 2016. “Comparisons of ground-based and building-based CORS: A case study in the Puerto Rico and Virgin Islands region.” J. Surv. Eng. 142 (3): 05015006. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000155.
Zervas, C. 2009. Sea level variations of the United States 1854-2006. Silver Spring, MD: National Oceanic and Atmospheric Administration.
Zervas, C., S. Gill, and W. Sweet. 2013. Estimating vertical land motion from long-term tide gauge records. Silver Spring, MD: National Oceanic and Atmospheric Administration.
Zhang, J., Y. Bock, H. Johnson, P. Fang, S. Williams, J. Genrich, S. Wdowinski, and J. Behr. 1997. “Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities.” J. Geophys. Res. 102 (B8): 18035–18055. https://doi.org/10.1029/97JB01380.
Zhao, R., G. Wang, X. Yu, X. Sun, Y. Bao, G. Xiao, W. Gan, and S. Shen. 2020. “Rapid land subsidence in Tianjin, China derived from continuous GPS observations (2010–2019).” Proc. Int. Assoc. Hydrol. Sci. 382 (Apr): 241–247. https://doi.org/10.5194/piahs-382-241-2020.
Zhou, X., G. Wang, K. Wang, H. Liu, H. Lyu, and M. J. Turco. 2021. “Rates of natural subsidence and submergence along the Texas coast derived from GPS and tide gauge measurements (1904–2020).” J. Surv. Eng. 147 (4): 04021020. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000371.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 148Issue 1February 2022

History

Received: Mar 30, 2021
Accepted: Sep 30, 2021
Published online: Nov 18, 2021
Published in print: Feb 1, 2022
Discussion open until: Apr 18, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Earth and Atmospheric Sciences, Univ. of Houston, Houston, TX 77204. ORCID: https://orcid.org/0000-0003-3731-3839. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Seasonal Subsidence and Heave Recorded by Borehole Extensometers in Houston, Journal of Surveying Engineering, 10.1061/JSUED2.SUENG-1369, 149, 1, (2023).
  • GNSS_Vel_95CI.py: A Python Module for Calculating the Uncertainty of GNSS-Derived Site Velocity, Journal of Surveying Engineering, 10.1061/(ASCE)SU.1943-5428.0000410, 149, 1, (2023).
  • Sentinel-1 InSAR and GPS-Integrated Long-Term and Seasonal Subsidence Monitoring in Houston, Texas, USA, Remote Sensing, 10.3390/rs14236184, 14, 23, (6184), (2022).
  • Land Subsidence in the Texas Coastal Bend: Locations, Rates, Triggers, and Consequences, Remote Sensing, 10.3390/rs14010192, 14, 1, (192), (2022).
  • Houston GNSS Network for Subsidence and Faulting Monitoring: Data Analysis Methods and Products, Journal of Surveying Engineering, 10.1061/(ASCE)SU.1943-5428.0000399, 148, 4, (2022).
  • The variance inflation factor to account for correlations in likelihood ratio tests: deformation analysis with terrestrial laser scanners, Journal of Geodesy, 10.1007/s00190-022-01654-5, 96, 11, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share