Abstract

A unique local tsunami had a very large impact on the coastal stations near Dålk Glacier; this kind of tsunami is related to iceberg activity. To provide a reference for tsunami warning and disaster prevention at these coastal research stations, a total of 41 abnormal water-surface oscillations caused by iceberg-induced tsunamis have been recorded and analyzed since February 2010. The seasonal and interannual variations in the tsunamis were determined by analyzing meteorological data and Landsat imagery. Based on these variation characteristics, double exponential smoothing was employed to fit the historical records and predict the next occurrence of an iceberg-induced tsunami, including the time and maximum absolute value of elevation of water-surface oscillation. The results showed that the date prediction error could be within a week, and the mean relative error of prediction for the elevation of water-surface oscillation was approximately 36.8%. Despite instability of prediction accuracies, this study provides an important clue to iceberg-induced tsunami warning and disaster prevention at coastal stations near calving glaciers, as well as for safe berthing and unloading of research vessels near these stations.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data in this study, except the Landsat image data, can be accessed via the website of the Polar Spatial Data Center (PSDC): http://data.hbaa.cn/. The Landsat image data can be downloaded via the website https://earthexplorer.usgs.gov/.

Acknowledgments

We appreciate the funding obtained by the National Natural Science Foundation of China (41941010) and the Polar Science Collaborative Innovation Program of the Chinese Arctic and Antarctic Administration (CXPT2020001).

References

Adams, R. D. 1982. Antarctic geoscience, 955–958. Madison, WI: University of Wisconsin Press.
Ai, S., S. Wang, Y. Li, G. Moholdt, C. Zhou, L. Liu, and Y. Yang. 2019. “High-precision ice-flow velocities from ground observations on Dalk Glacier, Antarctica.” Polar Sci. 19 (1): 13–23. https://doi.org/10.1016/j.polar.2018.09.003.
Amundson, J. M., J. F. Clinton, M. Fahnestock, M. Truffer, M. P. Lüthi, and R. J. Motyka. 2012. “Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland.” Ann. Glaciol. 53 (60): 79–84. https://doi.org/10.3189/2012/AoG60A200.
Amundson, J. M., M. Truffer, M. P. Lüthi, M. Fahnestock, M. West, and R. J. Motyka. 2008. “Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland.” Geophys. Res. Lett. 35 (22): L22501. https://doi.org/10.1029/2008GL035281.
Antolik, M. 2009. “Tsunami: The underrated hazard.” Pure Appl. Geophys. 16 (12): 2115–2116. http:// doi:10.1007/s00024-009-0545-7.
Bassis, J. N., H. A. Fricker, R. Coleman, and J. B. Minster. 2008. “An investigation into the forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East Antarctica.” J. Glaciol. 54 (184): 17–27. https://doi.org/10.3189/002214308784409116.
Bassis, J. N., and S. Jacobs. 2013. “Diverse calving patterns linked to glacier geometry.” Nat. Geosci. 6 (10): 833–836. https://doi.org/10.1038/ngeo1887.
Boyce, E. S., R. J. Motyka, and M. Truffer. 2007. “Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA.” J. Glaciol. 53 (181): 211–224. https://doi.org/10.3189/172756507782202928.
Brown, R. G. 1956. Exponential smoothing for predicting demand, 1–15. Cambridge, MA: Arthur D. Little.
Burton, J. C., J. M. Amundson, D. S. Abbot, A. Boghosian, L. M. Cathles, S. Correa-Legisos, K. N. Darnell, N. Guttenberg, D. M. Holland, and D. R. MacAyeal. 2012. “Laboratory investigation of iceberg capsize dynamics, energy dissipation and tsunamigenesis.” J. Geophys. Res. 117: F01007. https://doi.org/10.1029/2011JF002055.
Chen, F., V. Heller, and R. Briganti. 2020. “Numerical modelling of tsunamis generated by iceberg calving validated with large-scale laboratory experiments.” Adv. Water Resour. 142: 103647. https://doi.org/10.1016/j.advwatres.2020.103647.
Elíasson, J. 2017. “Initial wave height and total energy of landslide-generated tsunamis from translatory wave theory.” In Earthquake engineering and structural dynamics in memory of Ragnar Sigbjornsson, edited by R. Rupakhety and S. Olafsson, 1–13. Cham, Switzerland: Springer.
Haresign, E. C. 2004. “Glacio-limnological interactions at lake-calving glaciers.” Ph.D. thesis, School of Geography and Geosciences, Univ. of St Andrews.
Heller, V., T. Attili, F. Chen, R. Gabl, and G. Wolters. 2020. “Large-scale investigation into iceberg-tsunamis generated by various iceberg calving mechanisms.” Coastal Eng. 163: 103745. https://doi.org/10.1016/j.coastaleng.2020.103745.
Heller, V., F. Chen, M. Bruhl, R. Gabl, X. Chen, G. Wolters, and H. Fuchs. 2019. “Large-scale experiments into the tsunamigenic potential of different iceberg calving mechanisms.” Sci. Rep. 9 (1): 1–10. https://doi.org/10.1038/s41598-018-36634-3.
Heller, V., and W. H. Hager. 2009. “Impulse product parameter in landslide generated impulse waves.” J. Waterw. Port Coastal Ocean Eng. 136 (3): 145–155. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037.
Heller, V., and J. Spinneken. 2015. “On the effect of the water body geometry on landslide-tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation.” Coastal Eng. 104 (10): 113–134. https://doi.org/10.1016/j.coastaleng.2015.06.006.
Hodgson, D. A., et al. 2001. “Were the Larsemann Hills ice-free through the last glacial maximum?” Antarct. Sci. 13 (4): 440–454. https://doi.org/10.1017/S0954102001000608.
Holt, C. C. 2004. “Forecasting seasonals and trends by exponentially weighted moving averages.” Int. J. Forecasting 20 (1): 5–10. https://doi.org/10.1016/j.ijforecast.2003.09.015.
Howat, I. M., I. Joughin, and T. A. Scambos. 2007. “Rapid changes in ice discharge from Greenland outlet glaciers.” Science 315 (5818): 1559–1561. https://doi.org/10.1126/science.1138478.
Iizuka, Y., K. Shun’Ichi, and R. Naruse. 2004. “Water surface waves induced by calving events at Perito Moreno Glacier, southern Patagonia.” Bull. Glaciol. Res. 21 (Feb): 91–96.
James, T. D., T. Murray, N. Selmes, K. Scharrer, and M. O’Leary. 2014. “Buoyant flexure and basal crevassing in dynamic mass loss at Helheim Glacier.” Nat. Geosci. 7 (8): 593–596. https://doi.org/10.1038/ngeo2204.
Kanao, M. 2014. “Seismicity in the Antarctic continent and surrounding ocean.” Open J. Earthquake Res. 3 (Feb): 5–14. https://doi.org/10.4236/ojer.2014.31002.
Ke, H., F. Li, S. Ai, and S. Zhang. 2020. “Establishment of chart datum and vertical datum transformation for hydrography in the Chinese Great Wall Bay, Antarctic Peninsula.” J. Surv. Eng. 146 (2): 05020003. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000312.
Kiernan, K., D. B. Gore, D. Fink, D. A. White, and I. A. Sigurdsson. 2009. “Deglaciation and weathering of Larsemann Hills, east Antarctica.” Antarct. Sci. 21 (4): 373–382. https://doi.org/10.1017/S0954102009002028.
Lazzara, M. A., K. C. Jezek, T. A. Scambos, D. R. MacAyeal, and C. J. Van Der Veen. 1999. “On the recent calving of icebergs from the Ross Ice Shelf.” Polar Geogr. 23 (3): 201–212. https://doi.org/10.1080/10889379909377676.
Liu, C., C. Zhou, and Q. Liang. 2017. “Monitoring the changes of ice shelf and glaciers around Zhongshan station using multiple-source remote sensing data.” [In Chinese.] Chin. J. Polar Res. 29 (4): 446–453.
Lüthi, M. P., and A. Vieli. 2016. “Multi-method observation and analysis of a tsunami caused by glacier calving.” Cryosphere 10 (3): 995–1002. https://doi.org/10.5194/tc-10-995-2016.
MacAyeal, D. R., D. S. Abbot, and O. V. Sergienko. 2010. “Iceberg-capsize tsunamigenesis.” Ann. Glaciol. 52 (58): 51–56. https://doi.org/10.3189/172756411797252103.
MacAyeal, D. R., E. A. Okal, R. C. Aster, and J. N. Bassis. 2009. “Seismic observations of glaciogenic ocean waves (micro-tsunamis) on icebergs and ice shelves.” J. Glaciol. 55 (190): 193–206. https://doi.org/10.3189/002214309788608679.
Marchenko, A. V., E. G. Morozov, and S. V. Muzylev. 2012. “A tsunami wave recorded near a glacier front.” Nat. Hazards Earth Syst. Sci. 12 (2): 415–419. https://doi.org/10.5194/nhess-12-415-2012.
Mashio, A. S., H. Obata, T. Shimazaki, H. Fukuda, and H. Ogawa. 2019. “Spatiotemporal variations of platinum in seawater in Otsuchi Bay, Japan after the 2011 tsunami.” Sci. Total Environ. 708 (1): 134659. https://doi.org/10.1016/j.scitotenv.2019.134659.
Minowa, M., E. A. Podolskiy, G. Jouvet, Y. Weidmann, and S. Sugiyama. 2019. “Calving flux estimation from tsunami waves.” Earth Planet. Sci. Lett. 515 (2019): 283–290. https://doi.org/10.1016/j.epsl.2019.03.023.
Minowa, M., E. A. Podolskiy, S. Sugiyama, D. Sakakibara, and P. Skvarca. 2018. “Glacier calving observed with time-lapse imagery and tsunami waves at Glacier Perito Moreno, Patagonia.” J. Glaciol. 64 (245): 362–376. https://doi.org/10.1017/jog.2018.28.
Mohammed, F., and H. M. Fritz. 2012. “Physical modeling of tsunamis generated by three-dimensional deformable granular landslides.” J. Geophys. Res. 117 (C11015): 1–20. https://doi.org/10.1029/2011JC007850.
Panizzo, A., P. D. Girolamo, and A. Petaccia. 2005. “Forecasting impulse waves generated by subaerial landslides.” J. Geophys. Res. 110 (C12): 1–23. https://doi.org/10.1029/2004JC002778.
Series, C. R., J. A. Bohlander, C. A. Shuman, and P. Skvarca. 2004. “Glacier acceleration and thinning after ice shelf collapse in the Larson B embayment, Antarctica.” Geophys. Res. Lett. 31 (18): L18402. http://doi:10.1029/2004GL020670.
Sun, J., D. Huo, and Z. Sun. 2001. “The study of remote sensing on monitoring ice velocities of the polar record glacier and the dark glacier.” [In Chinese.] Chin. J. Polar Res. 13 (2): 117–128.
Truffer, M., and R. J. Motyka. 2016. “Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings.” Rev. Geophys. 54 (1): 220–239. https://doi.org/10.1002/2015RG000494.
Trüssel, B. L., R. J. Motyka, M. Truffer, and C. F. Larsen. 2013. “Rapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA.” J. Glaciol. 59 (213): 149–161. https://doi.org/10.3189/2013J0G12J081.
Vaňková, I., and D. M. Holland. 2016. “Calving signature in ocean waves at Helheim Glacier and Sermilik Fjord, East Greenland.” J. Phys. Oceanogr. 46 (10): 2925–2941. https://doi.org/10.1175/JPO-D-15-0236.1.
Warren, C., D. Benn, V. Winchester, and S. Harrison. 2001. “Buoyancy-driven lacustrine calving, Glaciar Nef, Chilean Patagonia.” J. Glaciol. 47 (156): 135–146. https://doi.org/10.3189/172756501781832403.
Wei, Y., E. N. Bernard, L. Tang, R. Weiss, V. V. Titov, C. Moore, M. Spillane, M. Hopkins, and U. Kânoǧlu. 2008. “Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines.” Geophys. Res. Lett. 35 (4): 339–356. https://doi.org/10.1029/2007GL032250.
Wu, C., Y. Tian, X. Tong, and S. Liu. 2016. “Change analysis of three major Antarctic ice shelves based on multi-source remote sensing data.” Adv. Earth Sci. 31 (2): 206–212. https://doi.org/10.11867/j.issn.1001-8166.2016.02.0206.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 148Issue 1February 2022

History

Received: Jul 31, 2020
Accepted: Sep 3, 2021
Published online: Oct 21, 2021
Published in print: Feb 1, 2022
Discussion open until: Mar 21, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Lecturer, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China. Email: [email protected]
Professor, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China (corresponding author). ORCID: https://orcid.org/0000-0001-6677-3899. Email: [email protected]
Ph.D. Candidate, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China. Email: [email protected]
Chunxia Zhou [email protected]
Professor, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China. Email: [email protected]
Professor, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China. Email: [email protected]
Associate Professor, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China. ORCID: https://orcid.org/0000-0001-7689-9698. Email: [email protected]
Tingting Liu [email protected]
Associate Professor, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China. Email: [email protected]
Lecturer, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China. Email: [email protected]
Master Candidate, Chinese Antarctic Center of Surveying and Mapping, Wuhan Univ., 129 Luoyu Rd., Wuhan, Hubei 430079, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Combined Prediction Model for High-Speed Railway Bridge Pier Settlement Based on Robust Weighted Total Least-Squares Autoregression and Adaptive Dynamic Cubic Exponential Smoothing, Journal of Surveying Engineering, 10.1061/JSUED2.SUENG-1379, 149, 2, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share