Abstract

The vast majority of current structural design codes and standards do not separately consider the wind and turbulence profiles for different storm types. Based on the 356-m-high Shenzhen Meteorological Gradient Tower, which is the tallest of its kind in Asia, this paper investigates the characteristics and vertical profiles of mean wind and turbulence for different types of strong wind events, including typhoons, monsoons, and thunderstorms, from a comparative perspective. Commonalities and differences among the vertical profiles of mean wind speed, turbulence intensity, and turbulence integral length scale for these storm events are comprehensively investigated. It is observed that the wind and turbulence profiles in typhoons and monsoons can be reasonably described by design codes and standards, while those in thunderstorms substantially deviate from typhoons and monsoons as well as code stipulations. The outcome of this study is expected to facilitate the different forms of wind and turbulence profiles for typhoons, monsoons, and thunderstorms to be taken into consideration in design codes and standards and improve the wind-resistant design of high-rise structures in regions that are prone to these storm events.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The work described in this paper was fully supported by grants from the National Natural Science Foundation of China (Project No. 51978593) and from the Research Grants Council of Hong Kong (Project Nos. CityU 11207519 and CityU 11204020).

References

AIJ (Architecture Institute of Japan). 2015. Recommendations for loads on buildings. AIJ-RLB-2015. Tokyo: AIJ.
ASCE. 2016. Minimum design loads for buildings and other structures. ASCE7-16. Reston, VA: ASCE.
Burlando, M., D. Romanić, G. Solari, H. Hangan, and S. Zhang. 2017. “Field data analysis and weather scenario of a downburst event in Livorno, Italy, on 1 October 2012.” Mon. Weather Rev. 145 (9): 3507–3527. https://doi.org/10.1175/MWR-D-17-0018.1.
Canepa, F., M. Burlando, and G. Solari. 2020. “Vertical profile characteristics of thunderstorm outflows.” J. Wind Eng. Ind. Aerodyn. 206 (Nov): 104332. https://doi.org/10.1016/j.jweia.2020.104332.
CEN (European Committee for Standardization). 2005. Eurocode 1: Actions on structures—Part 1–4: General actions—Wind actions. EN 1991-1-4:2005. Brussels, Belgium: CEN.
Chan, P. W., J. Chi, W. Lee, and Q. S. Li. 2020. “Analysis of a waterspout at Zhuhai, China, on June 12, 2019.” Meteorol. Appl. 27 (Mar/Apr): e1904. https://doi.org/10.1002/met.1904.
Chen, G., and F. T. Lombardo. 2020. “An automated classification method of thunderstorm and non-thunderstorm wind data based on a convolutional neural network.” J. Wind Eng. Ind. Aerodyn. 207 (Dec): 104407. https://doi.org/10.1016/j.jweia.2020.104407.
Chen, L., and C. W. Letchford. 2005. “Proper orthogonal decomposition of two vertical profiles of full-scale nonstationary downburst wind speeds.” J. Wind Eng. Ind. Aerodyn. 93 (3): 187–216. https://doi.org/10.1016/j.jweia.2004.11.004.
Chen, L., and C. W. Letchford. 2006. “Multi-scale correlation analyses of two lateral profiles of full-scale downburst wind speeds.” J. Wind Eng. Ind. Aerodyn. 94 (9): 675–696. https://doi.org/10.1016/j.jweia.2006.01.021.
Chen, Y., Z. Duan, J. Yang, Y. Deng, T. Wu, and J. Ou. 2021. “Typhoons of western North Pacific basin under warming climate and implications for future wind hazard of East Asia.” J. Wind Eng. Ind. Aerodyn. 208 (Jan): 104415. https://doi.org/10.1016/j.jweia.2020.104415.
Choi, E. C. C. 1978. “Characteristics of typhoons over the South China Sea.” J. Wind Eng. Ind. Aerodyn. 3 (4): 353–365. https://doi.org/10.1016/0167-6105(78)90038-7.
Choi, E. C. C. 1983. “Gradient height and velocity profile during typhoons.” J. Wind Eng. Ind. Aerodyn. 13 (1–3): 31–41. https://doi.org/10.1016/0167-6105(83)90126-5.
Choi, E. C. C. 2000. “Wind characteristics of tropical thunderstorms.” J. Wind Eng. Ind. Aerodyn. 84 (2): 215–226. https://doi.org/10.1016/S0167-6105(99)00054-9.
Choi, E. C. C. 2004. “Field measurement and experimental study of wind speed profile during thunderstorms.” J. Wind Eng. Ind. Aerodyn. 92 (3–4): 275–290. https://doi.org/10.1016/j.jweia.2003.12.001.
Choi, E. C. C., and F. A. Hidayat. 2002. “Gust factors for thunderstorm and non-thunderstorm winds.” J. Wind Eng. Ind. Aerodyn. 90 (12–15): 1683–1696. https://doi.org/10.1016/S0167-6105(02)00279-9.
Deaves, D. M., and R. I. Harris. 1978. A mathematical model of the structure of strong winds. London: CIRIA.
De Gaetano, P., M. P. Repetto, T. Repetto, and G. Solari. 2014. “Separation and classification of extreme wind events from anemometric records.” J. Wind Eng. Ind. Aerodyn. 126 (Mar): 132–143. https://doi.org/10.1016/j.jweia.2014.01.006.
Dharmaraj, T., G. R. Chinthalu, and P. E. Raj. 2009. “Turbulence characteristics in the atmospheric surface layer during summer monsoon of 1997 over a semi-arid location in India.” Meteorol. Atmos. Phys. 104 (1): 113–123. https://doi.org/10.1007/s00703-009-0022-y.
Emanuel, K. A. 2005. Divine wind: The history and science of hurricanes. Oxford, UK: Oxford University Press.
ESDU (Engineering Sciences Data Unit). 2012. Strong winds in the atmospheric boundary layer. Part 2: Discrete gust speeds: Data item 83045. London: ESDU.
Fang, G., L. Zhao, S. Cao, Y. Ge, and K. Li. 2019. “Gust characteristics of near-ground typhoon winds.” J. Wind Eng. Ind. Aerodyn. 188 (May): 323–337. https://doi.org/10.1016/j.jweia.2019.03.008.
Fernández-Cabán, P. L., and F. J. Masters. 2017. “Near surface wind longitudinal velocity positively skews with increasing aerodynamic roughness length.” J. Wind Eng. Ind. Aerodyn. 169 (Oct): 94–105. https://doi.org/10.1016/j.jweia.2017.06.007.
Flay, R. G. J., and D. C. Stevenson. 1988. “Integral length scales in strong winds below 20 m.” J. Wind Eng. Ind. Aerodyn. 28 (1–3): 21–30. https://doi.org/10.1016/0167-6105(88)90098-0.
Foken, T. 2017. Micrometeorology. 2nd ed. Berlin: Springer.
Fujita, T. T. 1981. “Tornadoes and downbursts in the context of generalized planetary scales.” J. Atmos. Sci. 38 (8): 1511–1534. https://doi.org/10.1175/1520-0469(1981)038%3C1511:TADITC%3E2.0.CO;2.
Giammanco, I. M., J. L. Schroeder, and M. D. Powell. 2013. “GPS dropwindsonde and WSR-88D observations of tropical cyclone vertical wind profiles and their characteristics.” Weather Forecasting 28 (1): 77–99. https://doi.org/10.1175/WAF-D-11-00155.1.
Gomes, L., and B. J. Vickery. 1978. “Extreme wind speeds in mixed wind climates.” J. Wind Eng. Ind. Aerodyn. 2 (4): 331–344. https://doi.org/10.1016/0167-6105(78)90018-1.
Grant, A. L. M. 1986. “Observations of boundary layer structure made during the 1981 KONTUR experiment.” Q. J. R. Meteorol. Soc. 112 (473): 825–841. https://doi.org/10.1002/qj.49711247314.
Gryning, S. E., E. Batchvarova, B. Brümmer, H. Jørgensen, and S. Larsen. 2007. “On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer.” Boundary Layer Meteorol. 124 (2): 251–268. https://doi.org/10.1007/s10546-007-9166-9.
Gunter, W. S., and J. L. Schroeder. 2015. “High-resolution full-scale measurements of thunderstorm outflow winds.” J. Wind Eng. Ind. Aerodyn. 138 (Mar): 13–26. https://doi.org/10.1016/j.jweia.2014.12.005.
Gunter, W. S., J. L. Schroeder, C. C. Weiss, and E. C. Bruning. 2017. “Surface measurements of the 5 June 2013 damaging thunderstorm wind event near Pep, Texas.” Wind Struct. 24 (2): 185–204. https://doi.org/10.12989/was.2017.24.2.185.
Han, X. L., Q. S. Li, X. Li, and K. Zhou. 2021. “Multipoint synchronous monitoring of cladding pressures on a 600-m-high skyscraper during Super Typhoon Mangkhut 2018.” J. Struct. Eng. 147 (7): 04021080. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003040.
Harris, R. I., and D. M. Deaves. 1981. “The structure of strong winds.” In Proc., CIRIA Conf. on Wind Engineering in the Eighties. London: Construction Industry Research and Information Association.
He, J. Y., P. W. Chan, Q. S. Li, and C. W. Lee. 2020a. “Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong.” Energy 201 (Jun): 117622. https://doi.org/10.1016/j.energy.2020.117622.
He, J. Y., P. W. Chan, Q. S. Li, L. Li, C. Lu, L. Zhang, and H. L. Yang. 2020b. “Characteristics of wind structure and nowcasting of gust associated with subtropical squall lines over Hong Kong and Shenzhen, China.” Atmosphere 11 (3): 270. https://doi.org/10.3390/atmos11030270.
He, J. Y., Y. C. He, Q. S. Li, P. W. Chan, L. Zhang, H. L. Yang, and L. Li. 2020c. “Observational study of wind characteristics, wind speed and turbulence profiles during Super Typhoon Mangkhut.” J. Wind Eng. Ind. Aerodyn. 206 (Nov): 104362. https://doi.org/10.1016/j.jweia.2020.104362.
He, Y. C., P. W. Chan, and Q. S. Li. 2016. “Observations of vertical wind profiles of tropical cyclones at coastal areas.” J. Wind Eng. Ind. Aerodyn. 152 (May): 1–14. https://doi.org/10.1016/j.jweia.2016.01.009.
He, Y. C., P. W. Chan, and Q. S. Li. 2018. “Observational study on thermodynamic and kinematic structures of Typhoon Vicente (2012) at landfall.” J. Wind Eng. Ind. Aerodyn. 172 (Jan): 280–297. https://doi.org/10.1016/j.jweia.2017.11.008.
He, Y. C., J. Y. He, W. C. Chen, P. W. Chan, J. Y. Fu, and Q. S. Li. 2020d. “Insights from Super Typhoon Mangkhut (1822) for wind engineering practices.” J. Wind Eng. Ind. Aerodyn. 203 (Aug): 104238. https://doi.org/10.1016/j.jweia.2020.104238.
He, Y. C., Q. S. Li, P. W. Chan, J. R. Wu, and J. Y. Fu. 2019. “Toward modeling the spatial pressure field of tropical cyclones: Insights from Typhoon Hato (1713).” J. Wind Eng. Ind. Aerodyn. 184 (Jan): 378–390. https://doi.org/10.1016/j.jweia.2018.12.001.
Högström, U. 1996. “Review of some basic characteristics of the atmospheric surface layer.” Boundary Layer Meteorol. 78 (3): 215–246. https://doi.org/10.1007/BF00120937.
Højstrup, J. 1993. “A statistical data screening procedure.” Meas. Sci. Technol. 4 (2): 153–157. https://doi.org/10.1088/0957-0233/4/2/003.
Holmes, J. D. 2015. Wind loading of structures. 3rd ed. Boca Raton, FL: CRC Press.
Holmes, J. D., H. M. Hangan, J. L. Schroeder, C. W. Letchford, and K. D. Orwig. 2008. “A forensic study of the Lubbock-Reese downdraft of 2002.” Wind Struct. 11 (2): 137–152. https://doi.org/10.12989/was.2008.11.2.137.
Hong Kong Observatory. 2020. “Warnings & signals database.” Accessed July 27, 2021. https://www.hko.gov.hk/en/cis/warndb.htm.
Hon, K. K., S. M. Tse, P. W. Chan, and Q. S. Li. 2019. “Observation and real-time simulation of a tornado event in Hong Kong on 29 August 2018.” Adv. Meteorol. 2019: 8571430. https://doi.org/10.1155/2019/8571430.
Huang, G., Y. Jiang, L. Peng, G. Solari, H. Liao, and M. Li. 2019. “Characteristics of intense winds in mountain area based on field measurement: Focusing on thunderstorm winds.” J. Wind Eng. Ind. Aerodyn. 190 (Jul): 166–182. https://doi.org/10.1016/j.jweia.2019.04.020.
Huang, G., H. Zheng, Y. Xu, and Y. Li. 2015. “Spectrum models for nonstationary extreme winds.” J. Struct. Eng. 141 (10): 04015010. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001257.
Huang, M., Y. Wang, and W. Lou. 2020a. “Examination of typhoon-wind profiles reaching 1,000-m height over the Southeast China Sea based on reanalysis data set and mesoscale simulation.” J. Struct. Eng. 146 (9): 04020192. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002744.
Huang, P., W. Xie, and M. Gu. 2020b. “A comparative study of the wind characteristics of three typhoons based on stationary and nonstationary models.” Nat. Hazards 101 (3): 785–815. https://doi.org/10.1007/s11069-020-03894-0.
Huang, Z., and M. Gu. 2019. “Characterizing nonstationary wind speed using the ARMA-GARCH model.” J. Struct. Eng. 145 (1): 04018226. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002211.
Irwin, P. A. 2009. “Wind engineering challenges of the new generation of super-tall buildings.” J. Wind Eng. Ind. Aerodyn. 97 (7–8): 328–334. https://doi.org/10.1016/j.jweia.2009.05.001.
ISO. 2009. Wind actions on structures. ISO 4354:2009. Geneva: ISO.
Joint Standards Australia/Standards New Zealand Committee. 2011. Structural design actions. AS-NZS 1170.2:2011. Sydney, Australia: Joint Standards Australia/Standards New Zealand Committee.
Kaimal, J. C., and J. E. Gaynor. 1991. “Another look at sonic thermometry.” Boundary Layer Meteorol. 56 (4): 401–410. https://doi.org/10.1007/BF00119215.
Krishnan, P., and P. K. Kunhikrishnan. 2002. “Some characteristics of atmospheric surface layer over a tropical inland region during southwest monsoon period.” Atmos. Res. 62 (1–2): 111–124. https://doi.org/10.1016/S0169-8095(02)00004-2.
Kwon, D., and A. Kareem. 2009. “Gust-front factor: A new framework for wind load effects on structures.” J. Struct. Eng. 135 (6): 717–732. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:6(717).
Li, L., A. Kareem, Y. Xiao, L. Song, and C. Zhou. 2015. “A comparative study of field measurements of the turbulence characteristics of typhoon and hurricane winds.” J. Wind Eng. Ind. Aerodyn. 140 (May): 49–66. https://doi.org/10.1016/j.jweia.2014.12.008.
Li, Q. S., J. C. Li, and S. Y. Hu. 2019. “Monitoring of near-surface winds and wind pressures on an instrumented low-rise building during Super Typhoon Rammasun.” J. Struct. Eng. 145 (2): 04018255. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002260.
Li, Q. S., X. Li, and P. W. Chan. 2021. “Impact of a fifty-year-recurrence super typhoon on skyscrapers in Hong Kong: A large-scale field monitoring study.” J. Struct. Eng. 147 (3): 04021004. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002930.
Li, Q. S., X. Li, and Y. He. 2016. “Monitoring wind characteristics and structural performance of a supertall building during a landfall typhoon.” J. Struct. Eng. 142 (11): 04016097. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001564.
Li, X., and Q. S. Li. 2018. “Monitoring structural performance of a supertall building during 14 tropical cyclones.” J. Struct. Eng. 144 (10): 04018176. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002145.
Lin, L., K. Chen, D. Xia, H. Wang, H. Hu, and F. He. 2018. “Analysis on the wind characteristics under typhoon climate at the southeast coast of China.” J. Wind Eng. Ind. Aerodyn. 182 (Nov): 37–48. https://doi.org/10.1016/j.jweia.2018.09.003.
Lombardo, F. T., J. A. Main, and E. Simiu. 2009. “Automated extraction and classification of thunderstorm and non-thunderstorm wind data for extreme-value analysis.” J. Wind Eng. Ind. Aerodyn. 97 (3–4): 120–131. https://doi.org/10.1016/j.jweia.2009.03.001.
Lombardo, F. T., D. A. Smith, J. L. Schroeder, and K. C. Mehta. 2014. “Thunderstorm characteristics of importance to wind engineering.” J. Wind Eng. Ind. Aerodyn. 125 (Feb): 121–132. https://doi.org/10.1016/j.jweia.2013.12.004.
Masters, F. J., H. W. Tieleman, and J. A. Balderrama. 2010a. “Surface wind measurements in three Gulf Coast hurricanes of 2005.” J. Wind Eng. Ind. Aerodyn. 98 (10–11): 533–547. https://doi.org/10.1016/j.jweia.2010.04.003.
Masters, F. J., P. J. Vickery, P. Bacon, and E. N. Rappaport. 2010b. “Toward objective, standardized intensity estimates from surface wind speed observations.” Bull. Am. Meteorol. Soc. 91 (12): 1665–1682. https://doi.org/10.1175/2010BAMS2942.1.
Meteorological Bureau of Shenzhen Municipality. 2021. “Weather warnings and signals.” Accessed July 27, 2021. http://weather.sz.gov.cn/en/en_warmweather/index.html.
Mukabana, J. R., and R. A. Pielke. 1996. “Investigation the influence of synoptic-scale monsoonal winds and mesoscale circulations on diurnal weather patterns over Kenya using a mesoscale numerical model.” Mon. Weather Rev. 124 (2): 224–244. https://doi.org/10.1175/1520-0493(1996)124%3C0224:ITIOSS%3E2.0.CO;2.
National Research Council of Canada. 2015. National building code of Canada 2015. Ottawa: National Research Council of Canada.
National Standards Committee. 2012. Load code for the design of building structures. GB 50009-2012. Beijing: National Standards Committee.
Nishida, T., and T. Waseda. 2015. “The impact of the winter monsoon on marine surface-layer turbulence.” Boundary Layer Meteorol. 157 (1): 141–156. https://doi.org/10.1007/s10546-015-0053-5.
Obukhov, A. M. 1971. “Turbulence in an atmosphere with a non-uniform temperature.” Boundary Layer Meteorol. 2 (1): 7–29. https://doi.org/10.1007/BF00718085.
Orwig, K. D., and J. L. Schroeder. 2007. “Near-surface wind characteristics of extreme thunderstorm outflows.” J. Wind Eng. Ind. Aerodyn. 95 (7): 565–584. https://doi.org/10.1016/j.jweia.2006.12.002.
Peng, L., G. Huang, X. Chen, and Q. Yang. 2018. “Evolutionary spectra-based time-varying coherence function and application in structural response analysis to downburst winds.” J. Struct. Eng. 144 (7): 04018078. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002066.
Powell, M. D., P. J. Vickery, and T. A. Reinhold. 2003. “Reduced drag coefficient for high wind speeds in tropical cyclones.” Nature 422 (6929): 279–283. https://doi.org/10.1038/nature01481.
Sharma, R. N., and P. J. Richards. 1999. “A re-examination of the characteristics of tropical cyclone winds.” J. Wind Eng. Ind. Aerodyn. 83 (1–3): 21–33. https://doi.org/10.1016/S0167-6105(99)00058-6.
Shu, Z. R., Q. S. Li, Y. C. He, and P. W. Chan. 2015. “Gust factors for tropical cyclone, monsoon and thunderstorm winds.” J. Wind Eng. Ind. Aerodyn. 142 (Jul): 1–14. https://doi.org/10.1016/j.jweia.2015.02.003.
Shu, Z. R., Q. S. Li, Y. C. He, and P. W. Chan. 2017. “Vertical wind profiles for typhoon, monsoon and thunderstorm winds.” J. Wind Eng. Ind. Aerodyn. 168 (Sep): 190–199. https://doi.org/10.1016/j.jweia.2017.06.004.
Simiu, E., and R. H. Scanlan. 2011. Wind effects on structures: Fundamentals and applications to design. 3rd ed. New York: Wiley.
Snaiki, R., and T. Wu. 2018. “A semi-empirical model for mean wind velocity profile of landfalling hurricane boundary layers.” J. Wind Eng. Ind. Aerodyn. 180 (Sep): 249–261. https://doi.org/10.1016/j.jweia.2018.08.004.
Solari, G. 2020. “Thunderstorm downbursts and wind loading of structures: Progress and prospect.” Front. Built Environ. 6 (May): 63. https://doi.org/10.3389/fbuil.2020.00063.
Solari, G., M. Burlando, P. De Gaetano, and M. P. Repetto. 2015. “Characteristics of thunderstorms relevant to the wind loading of structures.” Wind Struct. 20 (6): 763–791. https://doi.org/10.12989/was.2015.20.6.763.
Solari, G., M. Burlando, and M. P. Repetto. 2020. “Detection, simulation, modelling and loading of thunderstorm outflows to design wind-safer and cost-efficient structures.” J. Wind Eng. Ind. Aerodyn. 200 (May): 104142. https://doi.org/10.1016/j.jweia.2020.104142.
Solari, G., and P. De Gaetano. 2018. “Dynamic response of structures to thunderstorm outflows: Response spectrum technique vs time-domain analysis.” Eng. Struct. 176 (Dec): 188–207. https://doi.org/10.1016/j.engstruct.2018.08.062.
Solari, G., and G. Piccardo. 2001. “Probabilistic 3-D turbulence modeling for gust buffeting of structures.” Probab. Eng. Mech. 16 (1): 73–86. https://doi.org/10.1016/S0266-8920(00)00010-2.
Solari, G., D. Rainisio, and P. De Gaetano. 2017. “Hybrid simulation of thunderstorm outflows and wind-excited response of structures.” Meccanica 52 (13): 3197–3220. https://doi.org/10.1007/s11012-017-0718-x.
Stull, R. B. 1988. An introduction to boundary layer meteorology. 1st ed. Berlin: Springer.
Stull, R. B. 2015. Practical meteorology: An algebra-based survey of atmospheric science. 1st ed. Madison, WI: Sundog Publishing LLC.
Tanner, C. B., and G. W. Thurtell. 1969. Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer. Adelphi, MD: US Army Atmospheric Sciences Laboratory.
Tao, T., H. Wang, and T. Wu. 2017. “Comparative study of the wind characteristics of a strong wind event based on stationary and nonstationary models.” J. Struct. Eng. 143 (5): 04016230. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001725.
Tsai, Y., J. Miau, C. Yu, and W. Chang. 2019. “Lidar observations of the typhoon boundary layer within the outer rainbands.” Boundary Layer Meteorol. 171 (2): 237–255. https://doi.org/10.1007/s10546-019-00427-6.
Tse, K. T., S. W. Li, P. W. Chan, H. Y. Mok, and A. U. Weerasuriya. 2013. “Wind profile observations in tropical cyclone events using wind-profilers and doppler SODARs.” J. Wind Eng. Ind. Aerodyn. 115 (Apr): 93–103. https://doi.org/10.1016/j.jweia.2013.01.003.
Turner, A. G., and H. Annamalai. 2012. “Climate change and the South Asian summer monsoon.” Nat. Clim. Change 2 (8): 587–595. https://doi.org/10.1038/nclimate1495.
Vickery, P. J., and P. F. Skerlj. 2005. “Hurricane gust factors revisited.” J. Struct. Eng. 131 (5): 825–832. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(825).
Vickery, P. J., D. Wadhera, L. A. Twisdale, and F. M. Lavelle. 2009. “U.S. hurricane wind speed risk and uncertainty.” J. Struct. Eng. 135 (3): 301–320. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(301).
Wang, H., T. Tao, Y. Gao, and F. Xu. 2018. “Measurement of wind effects on a kilometer-level cable-stayed bridge during Typhoon Haikui.” J. Struct. Eng. 144 (9): 04018142. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002138.
Wang, X. J., Q. S. Li, and B. W. Yan. 2020. “Full-scale measurements of wind pressures on a low-rise building during typhoons and comparison with wind tunnel test results and aerodynamic database.” J. Struct. Eng. 146 (10): 04020196. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002769.
Weber, R. O. 1999. “Remarks on the definition and estimation of friction velocity.” Boundary Layer Meteorol. 93 (2): 197–209. https://doi.org/10.1023/A:1002043826623.
Yu, B., and A. G. Chowdhury. 2009. “Gust factors and turbulence intensities for the tropical cyclone environment.” J. Appl. Meteorol. Climatol. 48 (3): 534–552. https://doi.org/10.1175/2008JAMC1906.1.
Yu, B., A. G. Chowdhury, and F. J. Masters. 2008. “Hurricane wind power spectra, cospectra, and integral length scales.” Boundary Layer Meteorol. 129 (3): 411–430. https://doi.org/10.1007/s10546-008-9316-8.
Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks. 2011. “On the characteristic height scales of the hurricane boundary layer.” Mon. Weather Rev. 139 (8): 2523–2535. https://doi.org/10.1175/MWR-D-10-05017.1.
Zhang, S., G. Solari, M. Burlando, and Q. Yang. 2019a. “Directional decomposition and properties of thunderstorm outflows.” J. Wind Eng. Ind. Aerodyn. 189 (Jun): 71–90. https://doi.org/10.1016/j.jweia.2019.03.014.
Zhang, S., G. Solari, P. De Gaetano, M. Burlando, and M. P. Repetto. 2018. “A refined analysis of thunderstorm outflow characteristics relevant to the wind loading of structures.” Probab. Eng. Mech. 54 (Oct): 9–24. https://doi.org/10.1016/j.probengmech.2017.06.003.
Zhang, S., Q. Yang, G. Solari, B. Li, and G. Huang. 2019b. “Characteristics of thunderstorm outflows in Beijing urban area.” J. Wind Eng. Ind. Aerodyn. 195 (Dec): 104011. https://doi.org/10.1016/j.jweia.2019.104011.
Zhou, Y., and A. Kareem. 2002. “Definition of wind profiles in ASCE 7.” J. Struct. Eng. 128 (8): 1082–1086. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1082).

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 147Issue 11November 2021

History

Received: Dec 8, 2020
Accepted: Jun 16, 2021
Published online: Sep 1, 2021
Published in print: Nov 1, 2021
Discussion open until: Feb 1, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Architecture and Civil Engineering, City Univ. of Hong Kong, Hong Kong. Email: [email protected]
Chair Professor, Dept. of Architecture and Civil Engineering, City Univ. of Hong Kong, Hong Kong (corresponding author). ORCID: https://orcid.org/0000-0002-4822-2863. Email: [email protected]
Assistant Director, Forecasting and Warning Services Branch, Hong Kong Observatory, Kowloon, Hong Kong. ORCID: https://orcid.org/0000-0003-2289-0609. Email: [email protected]
Professor, School of Atmospheric Sciences, Sun Yat-Sen Univ., Guangzhou 510275, China. Email: [email protected]
Engineer, Shenzhen National Climate Observatory, Meteorological Bureau of Shenzhen Municipality, Shenzhen 518040, China. Email: [email protected]
Senior Engineer, Shenzhen National Climate Observatory, Meteorological Bureau of Shenzhen Municipality, Shenzhen 518040, China. Email: [email protected]
Deputy Director, Shenzhen National Climate Observatory, Meteorological Bureau of Shenzhen Municipality, Shenzhen 518040, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • ASCE 7-22 Wind Speed Profiles and Velocity Pressure Exposure Coefficients for Structural Design, Journal of Structural Engineering, 10.1061/JSENDH.STENG-11370, 149, 5, (2023).
  • Correction of Field-Measured Wind Speed Affected by Deterministic Interference Factors, Applied Sciences, 10.3390/app12041868, 12, 4, (1868), (2022).
  • Characterizing coastal wind energy resources based on sodar and microwave radiometer observations, Renewable and Sustainable Energy Reviews, 10.1016/j.rser.2022.112498, 163, (112498), (2022).
  • Profiles of mean wind and turbulence intensity during strong typhoon landfall, Journal of Wind Engineering and Industrial Aerodynamics, 10.1016/j.jweia.2022.105106, 228, (105106), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share