Abstract

This work deals with experimental and numerical investigations on the rotation capacity of high-strength steel (HSS) I-girders. The investigation involved 20 three-point bending tests conducted on mainly homogeneous and hybrid high-strength steel girders. The experimental tests have successfully been recalculated numerically considering damage mechanics approaches to model ductile crack initiation. The test of the high-strength steel beams showed that they are able to withstand large rotations with maintaining the plastic-moment capacity. The rotation requirement of Eurocode (EC) 3, doubtful as it might seem, was achieved by 16 of 18 HSS girders.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The investigations presented have been carried out within the framework of the research project, Stronger Steels in the Building Environment (STROBE 2021). This project has received funding from the Research Fund for Coal and Steel under Grant Agreement No. 743504.

References

Barth, K. E., D. W. White, and B. M. Bobb. 2000. “Negative bending resistance of HPS70W girders.” J. Constr. Steel Res. 53 (1): 1–31. https://doi.org/10.1016/S0143-974X(99)00037-1.
Björk, T., T. Penttilä, and T. Nykänen. 2014. “Rotation capacity of fillet weld joints made of high-strength steel.” Welding World 58: 853–863. https://doi.org/10.1007/s40194-014-0164-5.
CEN (European Committee for Standardization). 1989. Design of steel structures, part 1—General rules and rules for buildings. Eurocode 3. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2005. Design of steel structures, part 1.1: General rules and rules for buildings. Eurocode 3. EN 1993-1-1. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2007. Design of steel structures, part 1.12: Additional rules for the extension of EN 1993 up to steel grades S700. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2010. Hot-rolled steel plates 3 mm thick or above—Tolerances on dimensions and shape. EN 10029. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2018. Execution of steel structures and aluminium structures, part 2: Technical requirements for steel structures. EN 1090-2. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2019. Hot rolled products of structural steels, part 6: Technical delivery conditions for flat products of high yield strength structural steels. EN 10025-6. Brussels, Belgium: CEN.
Chen, Y., X. Cheng, and D. A. Nethercit. 2013. “An overview study on cross-section classification of steel H-sections.” J. Constr. Steel Res. 80: 386–393. https://doi.org/10.1016/j.jcsr.2012.10.006.
Coelho, A. M. G., and F. S. K. Bijlaard. 2007. “Experimental behavior of high strength steel end-plate connections.” J. Constr. Steel Res. 63 (9): 1228–1240. https://doi.org/10.1016/j.jcsr.2006.11.010.
Coelho, A. M. G., and F. S. K. Bijlaard. 2007. “Experimental behaviour of high strength steel end-plate connections.” J. Constr. Steel Res. 63 (9): 1228–1240. https://doi.org/10.1016/j.jcsr.2006.11.010.
Coelho, A. M. G., and F. S. K. Bijlaard. 2010. “Finite element evaluation of the strength behavior of high strength steel column web in transverse compression.” Steel Compos. Struct. 10 (5): 385–414. https://doi.org/10.12989/scs.2010.10.5.385.
Coelho, A. M. G., and F. S. K. Bijlaard. 2016. “High strength steel in buildings and civil engineering structures: Design of connections.” Adv. Struct. Eng. 13 (3): 413–429. https://doi.org/10.1260/1369-4332.13.3.413.
Coelho, A. M. G., F. S. K. Bijlaard, N. Gresnigt, and L. S. Silva. 2004a. “Experimental assessment of the behavior of bolted T-stub connections made up of welded plates.” J. Constr. Steel Res. 60 (2): 269–311. https://doi.org/10.1016/j.jcsr.2003.08.008.
Coelho, A. M. G., F. S. K. Bijlaard, and H. Kolstein. 2009. “Experimental behavior of high-strength steel web shear panels.” Eng. Struct. 31 (7): 1543–1555. https://doi.org/10.1016/j.engstruct.2009.02.023.
Coelho, A. M. G., F. S. K. Bijlaard, and L. S. Silva. 2004b. “Experimental assessment of the ductility of extended end plate connections.” Eng. Struct. 26 (9): 1185–1206. https://doi.org/10.1016/j.engstruct.2000.09.001.
Earls, C. J. 1999. “On the inelastic failure of high strength steel I-shaped beams.” J. Constr. Steel Res. 49 (1): 1–24. https://doi.org/10.1016/S0143-974X(98)00204-1.
Earls, C. J. 2000. “Influence of material effects on structural ductility of compact I-shaped beams.” J. Struct. Eng. 126 (11): 1268–1278. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1268).
Earls, C. J. 2001. “Constant moment behavior of high performance steel I-shaped beams.” J. Constr. Steel Res. 57 (7): 711–728. https://doi.org/10.1016/S0143-974X(01)00012-8.
Earls, C. J., and B. J. Shah. 2002. “High performance steel bridge girder compactness.” J. Constr. Steel Res. 58 (5): 859–880. https://doi.org/10.1016/S0143-974X(01)00086-4.
Feldmann, M. 1994. “Zur Rotationskapazität von I-Profilen statisch und dynamisch belasteter Träge.” Dissertation, RWTH Aachen Univ., Institut für Stahlbau.
Greco, N., and C. J. Earls. 2003. “Structural ductility in hybrid high performance steel beams.” J. Struct. Eng. 129 (12): 1584–1595. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1584).
Green, P. S., R. Sause, and J. M. Ricles. 2002. “Strength and ductility of HPS flexural members.” J. Constr. Steel Res. 58 (5): 907–941. https://doi.org/10.1016/S0143-974X(01)00102-X.
Hensen, W. 1988. “Untersuchungen zur Bestimmung der erforderlichen Rotationen in Fließgelenken an verschiedenen Systemen.” Thesis, RWTH Aachen Univ., Institute of Steel Construction.
Hollomon, J. H. 1945. “Tensile deformation.” Trans. Metall. Soc. AIME 162: 268–290.
Ito, M., K. Nozaka, T. Shirosaki, and K. Yamasaki. 2005. “Experimental study on moment–plastic rotation capacity of hybrid beams.” J. Bridge Eng. 10 (4): 490–496. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:4(490).
Johnson, G. R., and W. H. Cook. 1983. “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures.” In Proc., 7th Int. Symp. on Ballistics. Arlington, VA: American Defense Preparedness Association.
Joo, H. S., J. Moon, B. H. Chio, and H. Lee. 2013. “Rotational capacity and optimum bracing point of high strength steel I-girders.” J. Constr. Steel Res. 88: 79–89. https://doi.org/10.1016/j.jcsr.2013.05.008.
Lee, C., K. Han, C. Uang, D. Kim, C. Park, and J. Kim. 2013. “Flexural strength and rotation capacity of I-shaped beams fabricated from 800-MPa steel.” J. Struct. Eng. 139 (6): 1043–1058. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000727.
Ludwik, P. 1909. Elemente der technologischen Mechanik. Berlin: Verlag von Julius Springer.
McDermott, J. F. 1969. “Plastic bending of A514 steel beams.” J. Struct. Div. 95 (9): 1851–1871. https://doi.org/10.1061/JSDEAG.0002351.
Ricles, J. M., R. Sause, and P. S. Green. 1998. “High strength steel: Implications of material and geometric.” Eng. Struct. 20 (4): 323–335. https://doi.org/10.1016/S0141-0296(97)00024-2.
Roik, K., and U. Kuhlmann. 1987a. “Experimentelle Ermittlung der Rotationskapazität biegebeanspruchter I—Profile.” Stahlbau 56 (12): 353–358.
Roik, K., and U. Kuhlmann. 1987b. “Rechnerische Ermittlung der Rotationskapazität biegebeanspruchter I—Profile.” Stahlbau 56 (11): 321–327.
RUOSTE (Rules on High Strength Steel). 2014. Rules on high strength steel—Final report. Brussels, Belgium: Research Fund for Coal and Steel.
Schaffrath, S. 2018. “Analyse des festigkeitsgesteuerten tragverhaltens ungeschweißter stahlbauteile mit hilfe der schädigungsmechanik.” Dissertation, RWTH Aachen Univ., Institute of Steel Construction.
Schaffrath, S., and M. Feldmann. 2018. “Application of damage theory to structures made from high-strength steels.” Steel Constr. 11 (4): 1–7. https://doi.org/10.1002/stco.201800016.
Schillo, N., and M. Feldmann. 2016. “The rotational capacity of beams made of high-strength steel.” Struct. Build. 170 (9): 641–652. https://doi.org/10.1680/jstbu.16.00119.
Spangemacher, R. 1992. “Zum rotationsnachweis von stahlkonstruktionen, die nach dem traglastverfahren berechnet werden.” Ph.D. thesis, Institute of Steel Construction, RWTH Aachen Univ.
STROBE (Stronger Steels in the Building Environment). 2021. Research fund for coal and steel. Berkshire, UK: Steel Construction Institute.
Thomas, S. J., and C. J. Earls. 2003. “Cross-sectional compactness and bracing requirements for HPS483W girders.” J. Struct. Eng. 129 (12): 1569–1583. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1569).

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 147Issue 6June 2021

History

Received: Jul 21, 2020
Accepted: Feb 4, 2021
Published online: Mar 30, 2021
Published in print: Jun 1, 2021
Discussion open until: Aug 30, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Institute of Steel Construction, RWTH Aachen Univ., Mies-van-der-Rohe-St. 1, Aachen 52074, Germany (corresponding author). ORCID: https://orcid.org/0000-0002-4308-0309. Email: [email protected]
Institute of Steel Construction, RWTH Aachen Univ., Mies-van-der-Rohe-St. 1, Aachen 52074, Germany. ORCID: https://orcid.org/0000-0001-6666-8060. Email: [email protected]
Institute of Steel Construction, RWTH Aachen Univ., Mies-van-der-Rohe-St. 1, Aachen 52074, Germany. Email: [email protected]
Simon Schaffrath [email protected]
Institute of Steel Construction, RWTH Aachen Univ., Mies-van-der-Rohe-St. 1, Aachen 52074, Germany. Email: [email protected]
Markus Feldmann [email protected]
Professor, Institute of Steel Construction, RWTH Aachen Univ., Mies-van-der-Rohe-St. 1, Aachen 52074, Germany. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share