Technical Papers
Nov 9, 2018

Fatigue Deformation Model of Plain and Fiber-Reinforced Concrete Based on Weibull Function

Publication: Journal of Structural Engineering
Volume 145, Issue 1

Abstract

A novel model based on the three-parameter Weibull function is proposed to describe the three-stage fatigue deformation behavior of plain and fiber-reinforced concrete. The fatigue strain at a particular stress between zero and the maximum fatigue stress can be modeled using the proposed model, and all the model parameters have clear physical meanings. This model is validated via comparison of its results with previously reported results of compressive, tensile, and flexural fatigue tests. Cases of application of the model to plain concrete and fiber-reinforced concrete with high ductility are examined in order to investigate the variation of the model parameters. Additionally, a deformation-based method for prediction of the fatigue life of concrete is presented, and the prediction results demonstrate that the proposed model can be successfully applied to the estimation of the fatigue life of concrete materials.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China under Grant Nos. 51378462, 51622811, and 51678522. The authors also thank Mr. Xiao-Hua Ji and Mr. Yu Peng at the College of Civil Engineering and Architecture of Zhejiang University for their support in the experiments. The authors appreciate the efforts of the anonymous reviewers to improve the quality of this study.

References

Al-Gadhib, A. H., M. H. Baluch, A. Shaalan, and A. R. Khan. 2000. “Damage model for monotonic and fatigue response of high strength concrete.” Int. J. Damage Mech. 9 (1): 57–78. https://doi.org/10.1106/HRAR-ENQW-1LW2-533R.
Bazant, Z. P. 1968. “On causes of excessive long-time deflections of prestressed concrete bridges: Creep under repeated live load.” [In Czech.] Inzenýrské Stavby 16: 317–320.
Bazant, Z. P., and M. H. Hubler. 2014. “Theory of cyclic creep of concrete based on Paris law for fatigue growth of subcritical microcracks.” J. Mech. Phys. Solids 63: 187–200. https://doi.org/10.1016/j.jmps.2013.09.010.
Bazant, Z. P., J. K. Kim, and L. Panula. 1992. “Improved prediction model for time-dependent deformations of concrete. Part 5: Cyclic load and cyclic humidity.” Mater. Struct. 25 (147): 163–169. https://doi.org/10.1007/BF02472209.
Bazant, Z. P., and L. Panula. 1979. “Practical prediction of time-dependent deformations of concrete. Part VI: Cyclic creep, nonlinearity and statistical scatter.” Mater. Struct. 12: 175–183.
Brooks, J. J., and P. Forsyth. 1986. “Influence of frequency of cyclic load on creep of concrete.” Mag. Concr. Res. 38 (136): 139–150. https://doi.org/10.1680/macr.1986.38.136.139.
Cachim, P. B., J. A. Figueiras, and P. A. Pereira. 2002. “Fatigue behavior of fiber-reinforced concrete in compression.” Cem. Concr. Compos. 24 (2): 211–217. https://doi.org/10.1016/S0958-9465(01)00019-1.
Chen, X., J. Bu, X. Fan, J. Lu, and L. Xu. 2017. “Effect of loading frequency and stress level on low cycle fatigue behavior of plain concrete in direct tension.” Constr. Build. Mater. 133: 367–375. https://doi.org/10.1016/j.conbuildmat.2016.12.085.
Cornelissen, H. A. W. 1984. Constant-amplitude tests on plain concrete in uniaxial tension and tension-compression. Delft, Netherlands: Delft Univ. of Technology.
Ding, Y., K. Q. Yu, J. T. Yu, and S. L. Xu. 2018. “Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study.” Constr. Build. Mater. 177: 102–115. https://doi.org/10.1016/j.conbuildmat.2018.05.122.
Gaede, K. 1962. “Versuche über die Festigkeit und die Verformungen von Beton bei Druck-Schwellbeansruchung.” In Deutscher Ausschußfür Stahlbeton: Heft 144. [In German.] Berlin: W. Ernst & Sohn.
Gao, L., and C. T. T. Hsu. 1998. “Fatigue of concrete under uniaxial compression cyclic loading.” ACI Mater. J. 95 (5): 575–581.
Garrett, G. G., H. M. Jennings, and R. B. Tait. 1979. “The fatigue hardening behaviour of cement-based materials.” J. Mat. Sci. 14 (2): 296–306. https://doi.org/10.1007/BF00589819.
Grzybowski, M., and C. Meyer. 1993. “Damage accumulation in concrete with and without fiber reinforcement.” ACI Mater. J. 90 (6): 594–604.
Hirst, G. A., and A. M. Neville. 1977. “Activation energy of creep of concrete under short-term static and cyclic stresses.” Mag. Concr. Res. 29 (98): 13–18. https://doi.org/10.1680/macr.1977.29.98.13.
Holmen, J. O. 1982. “Fatigue of concrete by constant and variable amplitude loading.” ACI Spec. Publ. 75: 71–110.
Huang, B. T. 2018. “Fatigue performance of strain-hardening fiber-reinforced cementitious composite and its functionally-graded structures.” Ph.D. thesis, Dept. of Civil Engineering, Zhejiang Univ.
Huang, B. T., Q. H. Li, S. L. Xu, and C. F. Li. 2017a. “Development of reinforced ultra-high toughness cementitious composite permanent formwork: Experimental study and digital image correlation analysis.” Compos. Struct. 180: 892–903. https://doi.org/10.1016/j.compstruct.2017.08.016.
Huang, B. T., Q. H. Li, S. L. Xu, and B. M. Zhou. 2017b. “Frequency effect on the compressive fatigue behavior of ultrahigh toughness cementitious composites: Experimental study and probabilistic analysis.” J. Struct. Eng. 143 (8): 04017073. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001799.
Huang, B. T., Q. H. Li, S. L. Xu, and B. M. Zhou. 2018. “Tensile fatigue behavior of fiber-reinforced cementitious material with high ductility: Experimental study and novel P-S-N model.” Constr. Build. Mater. 178: 349–359. https://doi.org/10.1016/j.conbuildmat.2018.05.166.
Isojeh, B., M. El-Zeghayar, and F. J. Vecchio. 2017a. “Concrete damage under fatigue loading in uniaxial compression.” ACI Mater. J. 114 (2): 225–235. https://doi.org/10.14359/51689477.
Isojeh, B., M. El-Zeghayar, and F. J. Vecchio. 2017b. “Fatigue behavior of steel fiber concrete in direct tension.” J. Mater. Civ. Eng. 29 (9): 04017130. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001949.
Isojeh, B., M. El-Zeghayar, and F. J. Vecchio. 2017c. “Simplified constitutive model for fatigue behavior of concrete in compression.” J. Mater. Civ. Eng. 29 (7): 04017028. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001863.
Jiang, C., X. Gu, Q. Huang, and W. Zhang. 2017. “Deformation of concrete under high-cycle fatigue loads in uniaxial and eccentric compression.” Constr. Build. Mater. 141: 379–392. https://doi.org/10.1016/j.conbuildmat.2017.03.023.
Jun, Z., and H. Stang. 1998. “Fatigue performance in flexure of fiber reinforced concrete.” ACI Mater. J. 95 (1): 58–67.
Lappa, E. 2007. “High strength fiber reinforced concrete: Static and fatigue in bending.” Ph.D. thesis, Faculty of Civil Engineering and Geosciences, Delft Univ. of Technology.
Lee, M. K., and B. I. G. Barr. 2004. “An overview of the fatigue behaviour of plain and fibre reinforced concrete.” Cem. Concr. Compos. 26 (4): 299–305. https://doi.org/10.1016/S0958-9465(02)00139-7.
Li, H., S. Xu, and C. K. Y. Leung. 2009. “Tensile and flexural properties of ultra high toughness cementitious composite.” J. Wuhan Univ. Technol. -Mater. Sci. Ed. 24 (4): 677–683. https://doi.org/10.1007/s11595-009-4677-5.
Li, Q. H., B. T. Huang, and S. L. Xu. 2016a. “Development of assembled permanent formwork using ultra high toughness cementitious composites.” Adv. Struct. Eng. 19 (7): 1142–1152. https://doi.org/10.1177/1369433216634495.
Li, Q. H., B. T. Huang, S. L. Xu, B. M. Zhou, and R. C. Yu. 2016b. “Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility.” Cem. Concr. Res. 90: 174–183. https://doi.org/10.1016/j.cemconres.2016.09.019.
Li, V. C. 1993. “From micromechanics to structural engineering-the design of cementitious composites for civil engineering applications.” J. Struct. Mech. Earthquake Eng. 10 (2): 37–48.
Li, V. C., and T. Hashida. 1993. “Engineering ductile fracture in brittle-matrix composites.” J. Mater. Sci. Lett. 12 (12): 898–901. https://doi.org/10.1007/BF00455611.
Li, V. C., and T. Kanda. 1998. “Innovations forum: Engineered cementitious composites for structural applications.” J. Mater. Civ. Eng. 10 (2): 66–69. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:2(66).
Li, V. C., and T. Matsumoto. 1998. “Fatigue crack growth analysis of fiber reinforced concrete with effect of interfacial bond degradation.” Cem. Concr. Compos. 20 (5): 339–351. https://doi.org/10.1016/S0958-9465(98)00010-9.
Lin, X., J. Yu, H. Li, J. Y. Lam, K. Shih, I. M. Sham, and C. K. Y. Leung. 2018. “Recycling polyethylene terephthalate wastes as short fibers in strain-hardening cementitious composites (SHCC).” J. Hazard. Mater. 357: 40–52. https://doi.org/10.1016/j.jhazmat.2018.05.046.
Liu, W., S. Xu, and H. Li. 2014. “Flexural fatigue damage model of ultra-high toughness cementitious composites on base of continuum damage mechanics.” Int. J. Damage Mech. 23 (7): 949–963. https://doi.org/10.1177/1056789514520795.
Matsumoto, T., P. Suthiwarapirak, and T. Kanda. 2003. “Mechanisms of multiple cracking and fracture of DFRCC under fatigue flexure.” J. Adv. Concr. Technol. 1 (3): 299–306. https://doi.org/10.3151/jact.1.299.
Medeiros, A., X. Zhang, G. Ruiz, R. C. Yu, and M. D. S. L. Velasco. 2015. “Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete.” Int. J. Fatigue 70: 342–350. https://doi.org/10.1016/j.ijfatigue.2014.08.005.
Müller, S., and V. Mechtcherine. 2017. “Fatigue behaviour of strain-hardening cement-based composites (SHCC).” Cem. Concr. Res. 92: 75–83. https://doi.org/10.1016/j.cemconres.2016.11.003.
Mun, J. S., K. H. Yang, and S. J. Kim. 2016. “Tests on the compressive fatigue performance of various concretes.” J. Mater. Civ. Eng. 28 (10): 04016099. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001612.
Naaman, A. E., and H. Hammoud. 1998. “Fatigue characteristics of high performance fiber-reinforced concrete.” Cem. Concr. Compos. 20 (5): 353–363. https://doi.org/10.1016/S0958-9465(98)00004-3.
Nordby, G. M. 1958. “Fatigue of concrete—A review of research.” ACI J. 55 (8): 191–219.
Otter, D. E., and A. E. Naaman. 1988. “Properties of steel fiber reinforced concrete under cyclic load.” ACI Mater. J. 85 (4): 254–261.
Pandolfi, A., and A. Taliercio. 1998. “Bounding surface models applied to fatigue of plain concrete.” J. Eng. Mech. 124 (5): 556–564. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:5(556).
Paskova, T., and C. Meyer. 1997. “Low-cycle fatigue of plain and fiber-reinforced concrete.” ACI Mater. J. 94 (4): 273–285.
Petryna, Y. S., D. Pfanner, F. Stangenberg, and W. B. Krätzig. 2002. “Reliability of reinforced concrete structures under fatigue.” Reliab. Eng. Syst. Saf. 77 (3): 253–261. https://doi.org/10.1016/S0951-8320(02)00058-3.
Poveda, E., G. Ruiz, H. Cifuentes, C. Y. Rena, and X. Zhang. 2017. “Influence of the fiber content on the compressive low-cycle fatigue behavior of self-compacting SFRC.” Int. J. Fatigue 101: 9–17. https://doi.org/10.1016/j.ijfatigue.2017.04.005.
Qiu, J., X. N. Lim, and E. H. Yang. 2016. “Fatigue-induced deterioration of the interface between micro-polyvinyl alcohol (PVA) fiber and cement matrix.” Cem. Concr. Res. 90: 127–136. https://doi.org/10.1016/j.cemconres.2016.08.021.
Qiu, J., X. N. Lim, and E. H. Yang. 2017. “Fatigue-induced in-situ strength deterioration of micro-polyvinyl alcohol (PVA) fiber in cement matrix.” Cem. Concr. Compos. 82: 128–136. https://doi.org/10.1016/j.cemconcomp.2017.06.002.
Qiu, J., and E. H. Yang. 2016. “A micromechanics-based fatigue dependent fiber-bridging constitutive model.” Cem. Concr. Res. 90: 117–126. https://doi.org/10.1016/j.cemconres.2016.09.017.
Qiu, J., and E. H. Yang. 2017. “Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC).” Cem. Concr. Res. 95: 65–74. https://doi.org/10.1016/j.cemconres.2017.02.029.
Saucedo, L., R. C. Yu, A. Medeiros, X. Zhang, and G. Ruiz. 2013. “A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete.” Int. J. Fatigue 48: 308–318. https://doi.org/10.1016/j.ijfatigue.2012.11.013.
Sparks, P. R., and J. B. Menzies. 1973. “The effect of rate of loading upon the static and fatigue strength of plain concrete in compression.” Mag. Concr. Res. 25 (83): 73–80. https://doi.org/10.1680/macr.1973.25.83.73.
Suthiwarapirak, P., T. Matsumoto, and T. Kanda. 2002. “Flexural fatigue failure characteristics of an engineered cementitious composites and polymer cement mortars.” J. Mater. Concr. Struct. Pavement-JSCE 57: 121–134. https://doi.org/10.2208/jscej.2002.718_121.
Whaley, C. P., and A. M. Neville. 1973. “Non-elastic deformation of concrete under cyclic compression.” Mag. Concr. Res. 25 (84): 145–154. https://doi.org/10.1680/macr.1973.25.84.145.
Wittmann, F. 1971. “Kriechverformung des Betons unter statischer und unter dynamischer Belastung.” [In German.] Rheol. Acta 10 (3): 422–428. https://doi.org/10.1007/BF01993721.
Yu, J., H. Li, C. K. Y. Leung, X. Lin, J. Y. Lam, I. M. Sham, and K. Shih. 2017. “Matrix design for waterproof engineered cementitious composites (ECCs).” Constr. Build. Mater. 139: 438–446. https://doi.org/10.1016/j.conbuildmat.2017.02.076.
Yu, J., J. Yao, X. Lin, H. Li, J. Y. Lam, C. K. Y. Leung, I. M. L. Sham, and K. Shih. 2018a. “Tensile performance of sustainable strain-hardening cementitious composites with hybrid PVA and recycled PET fibers.” Cem. Concr. Res. 107: 110–123. https://doi.org/10.1016/j.cemconres.2018.02.013.
Yu, K., L. Li, J. Yu, J. Xiao, J. Ye, and Y. Wang. 2018b. “Feasibility of using ultra-high ductility cementitious composites for concrete structures without steel rebar.” Eng. Struct. 170: 11–20. https://doi.org/10.1016/j.engstruct.2018.05.037.
Yu, K. Q., J. T. Yu, J. G. Dai, Z. D. Lu, and S. P. Shah. 2018c. “Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers.” Constr. Build. Mater. 158: 217–227. https://doi.org/10.1016/j.conbuildmat.2017.10.040.
Zhang, J., and V. C. Li. 2002. “Monotonic and fatigue performance in bending of fiber-reinforced engineered cementitious composite in overlay system.” Cem. Concr. Res. 32 (3): 415–423. https://doi.org/10.1016/S0008-8846(01)00695-0.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 145Issue 1January 2019

History

Received: Jan 4, 2018
Accepted: Jun 28, 2018
Published online: Nov 9, 2018
Published in print: Jan 1, 2019
Discussion open until: Apr 9, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Bo-Tao Huang [email protected]
Ph.D. Candidate, Institute of Advanced Engineering Structures and Materials, Zhejiang Univ., Hangzhou 310058, China. Email: [email protected]
Qing-Hua Li [email protected]
Professor, Institute of Advanced Engineering Structures and Materials, Zhejiang Univ., Hangzhou 310058, China (corresponding author). Email: [email protected]
Shi-Lang Xu, M.ASCE [email protected]
Professor and Director, Institute of Advanced Engineering Structures and Materials, Zhejiang Univ., Hangzhou 310058, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share