Technical Papers
Dec 12, 2013

Semiactive Friction Damper for Lightweight Pedestrian Bridges

Publication: Journal of Structural Engineering
Volume 140, Issue 4

Abstract

In many cases, structural damping of lightweight structures is quite low. Therefore, additional damping systems have to be applied. These systems are, in most instances, passive ones. Concerning lightweight structures, live loads become decisive with respect to the eigenfrequencies of the system affected. Resultant changes in dynamic behavior lead to a loss of the optimal adjustment of the passive systems, which is often followed by disturbing vibrations. This in turn leads directly to an impairment of serviceability. Semiactive damping systems can solve these problems by actively reacting to changes of the system. The following article focusses on the development of a semiactive friction damper using piezoelectric stack actuators in order to reduce the vibrations of a large-scale model of a pedestrian bridge.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The discussed semiactive friction damper was developed in cooperation with the company Gerb Vibration Control Systems. The company operates worldwide and is market-leading in the area of vibration systems.

References

Al-Wahab, M. (2004). “Neue aktorsysteme auf basis strukturierter piezokeramik.” Ph.D. thesis, Institute of Mobile Systems, Otto-von-Guericke Univ. Magdeburg, Magdeburg, Germany.
Albrecht, H. (2005). “Adaptive verbindungselemente im leichtbau.” Ph.D. thesis, Institute of Applied and Experimental Mechanics, Univ. of Stuttgart, Stuttgart, Germany.
Åström, K. J., and Canudas de Witt, C. (2008). “Revisiting the LuGre friction model.” IEEE Control Syst. Mag., 28(2), 101–114.
Becker, J. (2009). “Semi-active control of friction dampers and feedforward tracking control design for structural vibration reduction.” Ph.D. thesis, Institute of Applied and Experimental Mechanics (former Institute of Applied Mechanics), Univ. of Stuttgart, Stuttgart, Germany.
Bonefeld, R. (2002). “Einsatz elektro-hydraulischer antriebe zur aktiven dämpfung mechanischer strukturen.” Ph.D. thesis, Institute of Fluid Power, Technische Universität Dresden, Dresden, Germany.
Butz, A. (2006). “Nichtlineare formulierung piezoelektrischer 3D-stabstrukturen -theorie und finite-element-modellierung.” Ph.D. thesis, Institute of Mechanics, Universität Fridericiana Karlsruhe, Karlsruhe, Germany.
Caetano, E., Álvaro, C., Magalhães, F., and Moutinho, C. (2010a). “Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 1: Assessment of dynamic behaviour.” Eng. Struct., 32(4), 1069–1081.
Caetano, E., Álvaro, C., Moutinho, C., and Magalhães, F. (2010b). “Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 2: Implementation of tuned mass dampers.” Eng. Struct., 32(4), 1082–1091.
Canudas de Witt, C., Olsson, H., Åström, K. J., and Lischinsky, P. (1995). “A new model for control of systems with friction.” IEEE Transactions on Automatic Control, 40(3), 419–425.
Chen, G., and Chen, C. (2004). “Semiactive control of the 20-story benchmark building with piezoelectric friction dampers.” J. Eng. Mech., 393–400.
Den Hartog, J. P. (1936). Mechanische schwingungen, 1st Ed., Julius Springer Berlin, Berlin (in German).
Dupont, P., Kasturi, P., and Stokes, A. (1997). “Semi-active control of friction dampers.” J. Sound Vib., 202(2), 203–218.
Hegewald, T. (2008). “Modellierung des nichtlinearen verhaltens piezokeramischer aktoren.” Ph.D. thesis, Chair of Sensor Technology, Faculty of Engineering, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
Heimann, B., Gerth, W., and Popp, K. (2007). Mechatronik komponenten—methoden—beispiele, Carl Hanser, Munich, Germany (in German).
Kammerer, H. (1998). “Nichtglatte dynamik eines fremderregten elastischen Balkens mit reibglied.” Ph.D. thesis, Institute of Mechanics, Universität Fridericiana Karlsruhe, Karlsruhe, Germany.
Klamt, K. (1990). “Zur optimalen Schwingungsdämpfung durch trockene Reibung in lokalen und ausgedehnten Fügestellen.” Ph.D. thesis, Institute of Mechanics, Dept. of Mechanical Engineering, Universität Hannover, Hanover, Germany.
Lane, J. S., and Ferri, A. A. (1992). “Optimal control of a semi-active, frictionally damped joint.” Proc., 1992 American Control Conf., American Control Conference, IEEE Service Center, Chicago, IL, Piscataway, NJ, 754–759.
Lane, J. S., Ferri, A. A., and Heck, B. S. (1992). “Vibration control using semi-active friction damping.” Symp. on Concurrent Engineering -Winter Annual Meeting of the American Society of Mechanical Engineers (Friction-Induces Vibration, Chatter, Squeal, and Chaos), American Society of Mechanical Engineers (ASME), Anaheim, CA, 165–171.
Locatelli, G. (2001). “Piezo-actuated adaptive structures for vibration damping and shape control—modeling and testing.” Ph.D. thesis, Institute of Lightweight Structures, Faculty of Mechanical Engineering, Technische Universität München, Munich, Germany.
Natke, H. G. (1992). Einführung in theorie und praxis der zeitreihen- und modalanalyse, 3rd Ed., Vieweg, Braunschweig, Germany (in German).
Nitsche, R. (2001). “Semi-active control of friction damped systems.” Ph.D. thesis, Institute A of Mechanics, Univ. of Stuttgart, Stuttgart, Germany.
Olsson, H. (1996). Control systems with friction, 1st Ed., Dept. of Automatic Control, Lund Institute of Technology, Lund.
Petersen, C. (2001). Schwingungsdämpfer im ingenieurbau, 1st Ed., Maurer Söhne—forces in motion, Munich, Germany (in German).
Preumont, A. (2001). Vibration control of active structures—an introduction, 2nd Ed., Kluwer Academic Publishers, Dordrecht.
Preumont, A., and Seto, K. (2008). Active control of structures, 1st Ed., Wiley, Chichester, U.K.
Roffel, A. J., Lourenco, R., Narasimhan, S., and Yarusevych, S. (2011). “Adaptive compensation for detuning in pendulum tuned mass dampers.” J. Struct. Eng., 242–251.
Weber, F. (2008). “Geregelte dämpfung von schrägseilbrücken.” Innovative materialien und tragwerke: 11. dresdner baustatik-seminar, Institut für Statik und Dynamik der Tragwerke Dresden, Dresden, 145–164.
Weber, F., Distl, H., and Nützel, O. (2005). “Versuchsweiser Einbau eines adaptiven Seildämpfers in eine Schrägseilbrücke.” Beton- und stahlbetonbau, 100, 582–589.
Weber, F., and Maślanka, M. (2012). “Frequency and damping adaption of a TMD with controlled MR damper.” Smart Mater. Stuct., 21 Article No. 055011.
Wieczorek, N. (2006). “Untersuchung des dynamischen verhaltens einer fußgängerbrücke aus GFK.”, VDI, ed., Verein Deutscher Ingenieure (VDI), Düsseldorf, Germany, 597–610.
Wieczorek, N. (2011). “Semiaktive Schwingungsdämpfung leichter Fußgängerbrückenkonstruktionen.” Ph.D. thesis, Institute of Structural Analysis, Dept. of Civil Engineering and Geodetic Science, Leibniz Universität Hannover.
Willford, M. (2008). “Solving the vibration problems of the London Millennium footbridge.” Schwingungen in der Baupraxis: 12. Dresdner Baustatik-Seminar, Institut für Statik und Dynamik der Tragwerke Dresden, Germany, 157–179.
Wirnitzer, J. (2004). “Schwingungsreduktion flexibler raumfahrtstrukturen durch semi-aktive reibverbindungen.” Ph.D. thesis, Institute of Applied and Experimental Mechanics, Univ. of Stuttgart, Stuttgart, Germany.
Wissbrock, H. (1985). “Untersuchungen zur fugendämpfung zusammengesetzter bauteile.” Ph.D. thesis, Institute of Mechanics, Dept. of Mechanical Engineering, Universität Hannover, Hanover, Germany.
Xu, Y., Qu, W., and Chen, Z. (2001). “Control Of wind-excited truss tower using semiactive friction damper.” J. Struct. Eng., 861–868.

Information & Authors

Information

Published In

Go to Journal of Structural Engineering
Journal of Structural Engineering
Volume 140Issue 4April 2014

History

Received: Jun 24, 2012
Accepted: May 24, 2013
Published online: Dec 12, 2013
Published in print: Apr 1, 2014
Discussion open until: May 12, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Nina Wieczorek [email protected]
TÜV NORD EnSys GmbH & Co., KG, 30519 Hanover, Germany (corresponding author). E-mail: [email protected]; [email protected]
Wolf-Jürgen Gerasch [email protected]
Institute of Structural Analysis, Leibniz Universität Hannover, 30167 Hanover, Germany. E-mail: [email protected]
Raimund Rolfes [email protected]
Institute of Structural Analysis, Leibniz Universität Hannover, 30167 Hanover, Germany. E-mail: [email protected]
Harald Kammerer [email protected]
Gerb Vibration Control Systems, 13407 Berlin, Germany. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share