Technical Papers
Apr 28, 2022

Design Criteria for Roughness Values under Real Sewer System Operating Conditions

Publication: Journal of Pipeline Systems Engineering and Practice
Volume 13, Issue 3

Abstract

The methodology commonly adopted for sewer design employs Manning’s equation for hydraulic calculations considering constant surface roughness values, thus neglecting the presence of biofilms, sediments, and obstacles under real operating situations. This paper analyzes the experimental results from several sewers and sewer design criteria and standards adopted around the world to mathematically model 3,964 representative sewage operation data points from the literature and 312 new pieces of data obtained in experiments carried out on a pilot scale and in actual sewer systems in Rio de Janeiro State (Brazil), encompassing different diameters, slopes, and materials. After statistical analysis and model validation, new design criteria are proposed for roughness values under real operating conditions of gravity sewers expressed using two novel roughness equations. These results lead to the recommendation to adopt Manning’s roughness equal to 0.013 (which amounts to a 1-mm roughness height) for early operation, 0.015 (or 3 mm) for long-term operation, and 0.024 (or 36 mm) for both internally corrugated pipes and sewers retaining deposited sediments or containing obstacles.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author on reasonable request.

Acknowledgments

The authors thank Professor Isaac Volschan Jr. and Adriana Brasil for their technical support in the pilot scale tests at the Urban Water Simulator (SAU/CESA), which were carried out during the first author’s doctoral research at Universidade Federal do Rio de Janeiro, Brazil.

References

Ab. Ghani, A. 1993. “Sediment transport in sewers.” Ph.D. thesis, Dept. of Civil Engineering of the Univ. of Newcastle upon Tyne.
Ab. Ghani, A., and H. M. Azamathulla. 2011. “Gene-expression programming for sediment transport in sewer pipe systems.” J. Pipeline Syst. Eng. Pract. 2 (3): 102–106. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000076.
ABNT (Associação Brasileira de Normas Técnicas). 1986. Projeto de redes coletoras de esgoto sanitário—Procedimento [Design of collector sewers—Procedure]. [In Portuguese.] NBR 9649. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2000. Sistemas enterrados para condução de esgoto sanitário—Projeto de redes coletoras com tubos de PVC [Buried systems for conduction of sanitary sewage—Design of collector sewers with PVC pipes]. [In Portuguese.] NBR 14486. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2016. Projeto de interceptores de esgoto sanitário [Design of interceptor sewers]. [In Portuguese.] NBR 12207. Rio de Janeiro, Brazil: ABNT.
Ackers, P., C. F. Colebrook, and C. M. White. 1961. “The hydraulic resistance of drainage conduits.” Proc. Inst. Civ. Eng. 19 (3): 307–336. https://doi.org/10.1680/iicep.1961.11334.
Ackers, P., M. J. Crickmore, and D. W. Holmes. 1964. “Effects of use on the hydraulic resistance of drainage conduits.” Proc. Inst. Civ. Eng. 28 (3): 339–360. https://doi.org/10.1680/iicep.1964.10088.
Ackers, P., M. J. Crickmore, D. W. Holmes, J. B. White, L. B. Escritt, W. V. Clay, D. H. Cassidy, D. I. H. Barr, A. A. Smith, and E. W. Flaxman. 1966. “Effects of use on the hydraulic resistance of drainage conduits.” Proc. Inst. Civ. Eng. 34 (2): 219–230. https://doi.org/10.1680/iicep.1964.10088.
Albuquerque, I. F. 2017. “Investigação sobre o uso da formulação transformada de Colebrook-White em canais circulares e naturais em escoamento uniforme.” [In Portuguese.] M.S. thesis, Centro de Tecnologia, Federal Univ. of Paraiba.
Alexander, C. W. L. 1905. “Students’ paper. The resistance offered to the flow of water in pipes by bends and elbows.” Minutes Proc. Inst. Civ. Eng. 159 (1905): 341–364. https://doi.org/10.1680/imotp.1905.16457.
Arup, O. 2001. Comprehensive feasibility study for the revised scheme for South East Kowloon Development—Agreement no. CE32/99. Hong Kong: Kowloon Development Office, Territory Development Dept.
ASCE. 1996. “Determining rehabilitated sewer flow capacity.” J. Transp. Eng. 122 (3): 258–261. https://doi.org/10.1061/(ASCE)0733-947X(1996)122:3(258).
ASCE and WEF (Water Environment Federation). 2007. “Gravity sanitary sewer—Design and construction.” In ASCE manuals and reports on engineering practice no. 60 and WEF manual of practice no. FD-5, edited by P. Bizier, 2nd ed. Reston, VA: ASCE.
Azamathulla, H. M., Z. Ahmad, and A. Ab Ghani. 2013. “An expert system for predicting Manning’s roughness coefficient in open channels by using gene expression programming.” Neural Comput. Appl. 23 (5): 1343–1349. https://doi.org/10.1007/s00521-012-1078-z.
Azevedo Netto, J. M., and M. F. Fernandez. 2015. Manual de Hidráulica [Hydraulics manual]. 9th ed. [In Portuguese.] São Paulo, Brazil: Edgard Blücher Ltda.
Bailey, A. 1948. “Engineering research. Committee on velocity formulae for open channels and pipes. Panel on a basic formula for flow in pipes and channels. First interim report: March 1947.” J. Inst. Civ. Eng. 31 (2): 173–182. https://doi.org/10.1680/IJOTI.1948.13373.
Banasiak, R., and R. Verhoeven. 2008. “Transport of sand and partly cohesive sediments in a circular pipe run partially full.” J. Hydraul. Eng. 134 (2): 216–224. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:2(216).
Barnes, A. A. 1916. Hydraulic flow reviewed: A book of reference of standard experiments on pipes, channels, notches, weirs, and circular orifices, together with new formulae relating thereto. London: E. & F. N. Spon.
Bishop, R. R. 1978. Hydraulic characteristics of PVC pipe in sanitary sewers (a report of field measurements). Logan, UT: Utah Water Research Laboratory, Utah State Univ.
Bloodgood, D. E., and J. M. Bell. 1961. “Manning’s coefficient calculated from test data.” J. Water Pollut. Control Fed. 33 (2): 176–183.
Bombardelli, F. A., and M. H. García. 2003. “Hydraulic design of large-diameter pipes.” J. Hydraul. Eng. 129 (11): 839–846. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:11(839).
BSI (British Standards Institution). 2013. Drain and sewer systems outside buildings. BS EN 752:2008. London: BSI.
Butler, D., R. W. P. May, and J. C. Ackers. 1996. “Sediment transport in sewers part 1: Background.” Proc. Inst. Civ. Eng. Water Marit. Energy 118 (2): 103–112. https://doi.org/10.1680/iwtme.1996.28431.
Camp, T. R. 1946. “Design of sewers to facilitate flow.” Sewage Works J. 18 (1): 3–16.
Campisano, A., E. Creaco, and C. Modica. 2013. “Numerical modelling of sediment bed aggradation in open rectangular drainage channels.” Urban Water J. 10 (6): 365–376. https://doi.org/10.1080/1573062X.2012.739627.
Candia, M. F. G. 2005. La aireación en sistemas de alcantarillado: Efecto sobre la capacidad hidráulica de las tuberías [Aeration in sewer systems: Effect on the hydraulic capacity of pipelines]. [In Spanish.] Bogota, Colombia: Univ. of the Andes.
Carrera, C., and E. J. La Motta. 2020. “Graphical design tools to determine the minimum self-cleansing slope in small diameter sanitary sewers.” Ing. Agua 24 (1): 49–63. https://doi.org/10.4995/ia.2020.12260.
Chow, V. T. 1959. Open-channel hydraulics. New York: McGraw-Hill.
Christensen, B. A. 1993. “Dimensionally homogeneous Manning’s formula.” J. Hydraul. Eng. 119 (12): 1442–1443. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:12(1442).
City of London. 2015. Design specifications & requirements manual. London: The Corporation of the City of London.
Colebrook, C. F., and C. M. White. 1937a. “Experiments with fluid friction in roughened pipes.” Proc. R. Soc. London, Ser. A 161 (906): 367–381. https://doi.org/10.1098/rspa.1937.0150.
Colebrook, C. F., and C. M. White. 1937b. “The reduction of carrying capacity of pipes with age.” J. Inst. Civ. Eng. 7 (1): 99–118. https://doi.org/10.1680/ijoti.1937.14682.
Colebrook, C. F., C. M. White, M. R. Barnett, F. V. A. Engel, and E. H. Essex. 1938. “The reduction of carrying capacity of pipes with age.” J. Inst. Civ. Eng. 9 (8): 381–399. https://doi.org/10.1680/ijoti.1938.14589.
Cosens, K. W. 1954. “Sewer pipe roughness coefficients.” Sewage Ind. Wastes 26 (1): 42–50.
CPHEEO (Central Public Health and Environmental Engineering Organization) of the Ministry of Urban Development. 2013. Manual on sewerage and sewage treatment systems, part A: Engineering. 3rd ed. New Delhi, India: Japan International Cooperation Agency.
Devkota, J. P. 2012. “Variation of manning’s roughness coefficient with diameter, discharge, slope and depth in partially filled HDPE culverts.” M.S. thesis, Dept. of Civil/Environmental and Chemical Engineering, Youngstown State Univ.
DSD (Drainage Services Department). 2013. “Sewerage manual (with Eurocodes incorporated).” In Key planning issues and gravity collection system. 3rd ed. Hong Kong: Hong Kong Government.
Dupuit, J. 1854. Traité Théorique et Pratique de la Conduite et de la Distribuition des Eaux [Theoretical and practical treatise on the conduction and distribution of water]. [In French.] Paris: Carilian-Goeury et V Dalmont.
Dupuit, J. 1863. Études Théoriques et Pratiques sur le Mouvement des Eaux [Theoretical and practical studies on the movement of waters]. [In French.] 2nd ed. Paris: Dunod (Carilian-Goeury et V Dalmont).
Ead, S. A., N. Rajaratnam, C. Katopodis, and F. Ade. 2000. “Turbulent open-channel flow in circular corrugated culverts.” J. Hydraul. Eng. 126 (10): 750–757. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(750).
Flamant, A. A. 1891. Mécanique Appliquée—Hydraulique [Applied mechanics—Hydraulics. [In French.] Paris: Encyclopédie des Travaux Publics, Baudry et Cie Libraires-Éditeur.
Gemici, Z., A. Koca, and K. Kaya. 2017. “Predicting the numerical and experimental open-channel flow resistance of corrugated steep circular drainage pipes.” J. Pipeline Syst. Eng. Pract. 8 (3): 04017004. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000265.
Gerard, R., P. Bouthillier, and J. Besmehn. 1989. “Field measurements of the hydraulic resistance of sanitary sewers.” Can. J. Civ. Eng. 16 (6): 936–944. https://doi.org/10.1139/l89-137.
Guensch, G. R., M. C. Richmond, H. Tritico, and W. H. Pearson. 2004. “Characterization of turbulent open channel flow in a full scale spiral corrugated culvert.” In Proc., World Water and Environmental Resources Congress. Reston, VA: ASCE. https://doi.org/10.1061/40737(2004)183.
Guzmán, K., E. La Motta, J. Mccorquodale, S. Rojas, and M. Ermogenous. 2007. “Effect of biofilm formation on roughness coefficient and solids deposition in small-diameter PVC sewer pipes.” J. Environ. Eng. 133 (4): 364–371. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:4(364).
Hager, W. H. 1989. “Noncircular sewer design.” J. Environ. Eng. 115 (1): 274–276. https://doi.org/10.1061/(ASCE)0733-9372(1989)115:1(274).
Hager, W. H. 2010. “Cedric Masey White and his solution to the pipe flow problem.” Proc. Inst. Civ. Eng. Water Manage. 163 (10): 529–537. https://doi.org/10.1680/wama.2010.163.10.529.
Hager, W. H. 2015. “Albert Strickler: His life and work.” J. Hydraul. Eng. 141 (7): 02515002. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001000.
Henderson, R. J. 1984. “The hydraulic roughness of used sewers.” In Proc., Int. Conf. on the Planning, Construction, Maintenance and Operation of Sewerage Systems, 337–354. Reading, UK: Reading Univ.
Horoshenkov, K. V., Y. A. Yin, A. Schellart, R. M. Ashley, and J. R. Blanksby. 2004. “The acoustic attenuation and hydraulic roughness in a large section sewer pipe with periodical obstacles.” Water Sci. Technol. 50 (11): 97–104. https://doi.org/10.2166/wst.2004.0676.
Huisman, J. L., N. Weber, and W. Gujer. 2004. “Reaeration in sewers.” Water Res. 38 (5): 1089–1100. https://doi.org/10.1016/j.watres.2003.11.025.
IPS (Iranian Petroleum Standards). 2013. Engineering standard for drain and sewer systems outside buildings. Tehran, Iran: Standards and Research Department-Iranian Min. Petroleum.
Jirka, G. H., and C. Lang. 2009. Gerinnehydraulik [Channel hydraulics]. [In German.] Karlsruhe, Germany: Institut für Hydromechanik, Universität Karlsruhe.
Knight, D. W., and M. Sterling. 2000. “Boundary shear in circular pipes running partially full.” J. Hydraul. Eng. 126 (4): 263–275. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:4(263).
Koutsoyiannis, D. 2008. “A power-law approximation of the turbulent flow friction factor useful for the design and simulation of urban water networks.” Urban Water J. 5 (2): 107–115. https://doi.org/10.1080/15730620701712325.
Koutsoyiannis, D. 2016. Design of urban sewerage systems. 5th ed. [In Greek.] Athens, Greece: Kallipos-Heallink and National Technical Univ. of Athens.
Kutter, W. R. 1897. Bewegung des Wassers in Canälen und Flüssen: Tabellen und Beiträge zur Erleichterung des Gebrauchs der neuen allgemeinen Geschwindigkeits-Formel von Ganguillet & Kutter [Movement of water in canals and rivers: Tables and contributions to facilitate the use of Ganguillet & Kutter’s new general formula of velocity]. 2nd ed. [In German.] Berlin: Paul Parey.
Mangin, S. F. 2010. “Development of an equation independent of Manning’s coefficient n for depth prediction in partially-filled circular culverts.” M.S. thesis, Dept. of Civil/Environmental and Chemical Engineering, Youngstown State Univ.
Manning, R. 1891. On the flow of water in open channels and pipes. Dublin, Ireland: Institution of Civil Engineers of Ireland.
Manning, R. 1895. “On the flow of water in open channels and pipes—Supplement to a paper read on the 4th December 1889.” In Vol. XXIV of Proc., Transactions of the ICEI, 179–207. Dublin, Ireland: Institution of Civil Engineers of Ireland.
May, R. W. P. 1993. Sediment transport in pipes and sewers with deposited beds. Oxfordshire, UK: HR Wallingford Limited.
Meile, T. 2007. “Influence of macro-roughness of walls on steady and unsteady flow in a channel.” Ph.D. thesis, Faculté de L'environnement Naturel, Architectural et Construit, École Polytechnique Fédérale de Lausanne.
Meky, M. S. A., S. M. Ghoraba, and I. M. H. Rashwan. 2015. “Effect of water depth change on Manning coefficient for partially-filled circular culverts.” Mansoura Eng. J. 40 (2): 38–52. https://doi.org/10.21608/bfemu.2020.101243.
Mera, M., and R. Robi. 2013. Determination of Manning roughness coefficient for PVC gutters. Bandung, Indonesia: Jurnal Teknik Sipil—Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil, Institut Teknologi Bandung.
Meyer-Peter, E., and R. Müller. 1948. “Formulas for bed-load transport.” In Proc., IAHSR 2nd Meeting, Stockholm, Appendix 2. Stockholm, Sweden: International Association for Hydraulic Structures Research.
Montes, C., L. Berardi, Z. Kapelan, and J. Saldarriaga. 2020. “Predicting bedload sediment transport of non-cohesive material in sewer pipes using evolutionary polynomial regression—Multi-objective genetic algorithm strategy.” Urban Water J. 17 (2): 154–162. https://doi.org/10.1080/1573062X.2020.1748210.
Neale, L. C., and R. E. Price. 1964. “Flow characteristics of PVC sewer pipe.” J. Sanitary Eng. Div. 90 (3): 109–132. https://doi.org/10.1061/JSEDAI.0000489.
Neville, J. 1875. Hydraulic tables, coefficients, and formulae, for finding the discharge of water from orifices, notches, weirs, pipes, and rivers. London: Lockwood.
Ota, J. J. 1999. “Effect of particle size and gradation on sediment transport in storm sewers.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Newcastle upon Tyne.
Perkins, J. A., and I. M. Gardiner. 1982. Measurements of the hydraulic roughness of slimed sewer pipes. Wallingford, UK: Hydraulics Research Station.
Perkins, J. A., and I. M. Gardiner. 1985. “The hydraulic roughness of slimed sewers.” Proc. Inst. Civ. Eng. 79 (1): 87–104. https://doi.org/10.1680/iicep.1985.1081.
Perrusquia, G., S. Lyngfelt, and A. Sjöbeg. 1986. Flödeskapacitet hos avloppsledningar delvis fyllda med sediment-en inledande experimentell och teoretisk studie [Flow capacity of sewers partially filled with sediment—An initial experimental and theoretical study]. [In Swedish.] Gothenburg, Sweden: Chalmers Univ. of Technology.
Pianese, D., and R. Della Morte. 2004. “Discussion of ‘Urban storm sewer design: Approach in consideration of sediments,’ by Jose J. Ota and C. Nalluri.” J. Hydraul. Eng. 130 (7): 718–719. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(718).
Pomeroy, R. D. 1967. “Flow velocities in small sewers.” J. Water Pollut. Control Fed. 39 (9): 1525–1548.
Rahim, A. A. 2017. “Laboratory studies of physical transformation processes in sewers by wastewater-grown biofilms.” Ph.D. thesis, Dept. of Chemical and Biological Engineering, Univ. of Sheffield.
Rouse, H. 1983. Highlights in the history of hydraulics. Iowa City, IA: Univ. of Iowa.
Safari, M. J. S., and H. Aksoy. 2021. “Experimental analysis for self-cleansing open channel design.” J. Hydraul. Res. 59 (3): 500–511. https://doi.org/10.1080/00221686.2020.1780501.
Safari, M. J. S., H. Aksoy, N. E. Unal, and M. Mohammadi. 2017a. “Experimental analysis of sediment incipient motion in rigid boundary open channels.” Environ. Fluid Mech. 17 (6): 1281–1298. https://doi.org/10.1007/s10652-017-9550-z.
Safari, M. J. S., H. Aksoy, N. E. Unal, and M. Mohammadi. 2017b. “Non-deposition self-cleansing design criteria for drainage systems.” J. Hydro-Environ. Res. 14 (1): 76–84. https://doi.org/10.1016/j.jher.2016.11.002.
Safari, M. J. S., M. Mohammadi, and A. Ab. Ghani. 2018. “Experimental studies of self-cleansing drainage system design: A review.” J. Pipeline Syst. Eng. Pract. 9 (4): 04018017. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000335.
Safari, M. J. S., M. Mohammadi, G. Gilanizadehdizaj, and H. Seyyedi. 2017c. “A general self-cleansing model for drainage system design.” In Proc., Pipelines 2017 Conf. Reston, VA: ASCE. https://doi.org/10.1061/9780784480878.002.
Safari, M. J. S., and A. Shirzad. 2019. “Self-cleansing design of sewers: Definition of the optimum deposited bed thickness.” Water Environ. Res. 91 (5): 407–416. https://doi.org/10.1002/wer.1037.
Santos, D. C., M. B. Lobato, M. M. Aisse, and C. S. Gomes. 2005. “Estudos da rugosidade de tubulações de PVC, para esgotos sanitários, em condições críticas de funcionamento hidráulico, com a verificação da tensão trativa.” [In Portuguese.] In Proc., 23° Congresso Brasileiro de Engenharia Sanitária e Ambiental. Rio de Janeiro, Brazil: Brazilian Association of Water, Sanitation and Environmental Engineering.
Schmidt, O. J. 1959. “Measurement of Manning’s roughness coefficient.” Sewage Ind. Wastes 31 (9): 995–1003.
Scobey, F. C. 1939. Flow of water in irrigation and similar canals. Washington, DC: United States Dept. of Agriculture.
Seal, R., C. Paola, G. Parker, J. B. Southard, and P. R. Wilcock. 1997. “Experiments on downstream fining of gravel: I. Narrow channel runs.” J. Hydraul. Eng. 123 (10): 874–884. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:10(874).
Stanic, N., F. H. L. R. Clemens, and J. G. Langeveld. 2016. “Estimation of hydraulic roughness of concrete sewer pipes by laser scanning.” J. Hydraul. Eng. 143 (2): 04016079. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001223.
Straub, L. G., and H. M. Morris. 1951a. Hydraulic data comparison of concrete and corrugated Metal culvert pipes. Minneapolis: St. Anthony Fall Hydraulic Laboratory, Univ. of Minnesota.
Straub, L. G., and H. M. Morris. 1951b. Hydraulic tests on concrete culvert pipes. Minneapolis: Univ. of Minnesota.
Straub, L. G., and H. M. Morris. 1951c. Hydraulic tests on corrugated metal culvert pipes. Minneapolis: Univ. of Minnesota.
Strickler, A. 1923. Beiträge zur frage der geschwindigkeitsformel und der rauhigkeitszahlen für ströme, kanäle und geschlossene leitungen [Contributions to velocity formula and roughness for rivers, channels and closed lines]. [In German.]. Bern, Switzerland: Sekretariat des Bern Eidgenössischen Amtes für Wasserwirtschaft.
Toro-Escobar, C. M., C. Paola, G. Parker, P. R. Wilcock, and J. B. Southard. 2000. “Experiments on downstream fining of gravel. II: Wide and sandy runs.” J. Hydraul. Eng. 126 (3): 198–208. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:3(198).
Vongvisessomjai, N., T. Tingsanchali, and M. S. Babel. 2010. “Non-deposition design criteria for sewers with part-full flow.” Urban Water J. 7 (1): 61–77. https://doi.org/10.1080/15730620903242824.
Weisbach, J. 1850. Lehrbuch der Ingenieur- und Maschinen-mechanik [Engineering and machine mechanics textbook]. [In German.] Braunschweig, Germany: Friedrich Vieweg und Sohn.
Williams, G. S., and A. Hazen. 1911. Hydraulics Tables. 2nd ed. New York: Wiley.
Yarnell, D. L., and S. M. Woodward. 1920. The flow of water in drain tile. Washington, DC: United States Dept. of Agriculture.
Yen, B. C. 1993. “Dimensionally homogeneous manning’s formula.” J. Hydraul. Eng. 119 (12): 1443–1445. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:12(1443).

Information & Authors

Information

Published In

Go to Journal of Pipeline Systems Engineering and Practice
Journal of Pipeline Systems Engineering and Practice
Volume 13Issue 3August 2022

History

Received: Aug 24, 2021
Accepted: Feb 17, 2022
Published online: Apr 28, 2022
Published in print: Aug 1, 2022
Discussion open until: Sep 28, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Scientific Researcher, Instituto Alberto Luiz Coimbra (COPPE), Laboratório de Hidráulica Computacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21945-970, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-1315-8996. Email: [email protected]
José Paulo Soares de Azevedo, Ph.D. https://orcid.org/0000-0002-9337-9640 [email protected]
Associate Professor, Instituto Alberto Luiz Coimbra (COPPE), Laboratório de Hidráulica Computacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21945-970, Brazil. ORCID: https://orcid.org/0000-0002-9337-9640. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share