Technical Papers
Oct 31, 2018

Fracture Mechanics Lifetime Prediction of Polyethylene Pipes

Publication: Journal of Pipeline Systems Engineering and Practice
Volume 10, Issue 1

Abstract

Polyethylene pressure pipes are designed for service lives of at least 50 years. While so far lifetimes have been assessed by pipe pressure tests, due to improved slow crack growth (SCG) resistance and increased testing times such tests are not suitable anymore for modern pipe grades. The paper presents an alternative methodology for lifetime prediction, combining practical advantages of the cyclic cracked round bar (CRB) test and linear elastic fracture mechanics. A major advantage of this procedure is that material characterization is done at ambient temperatures. The key challenge in this context is to measure SCG rates in CRB specimens. After determination of crack kinetics at different dynamic loading ratios, material laws for SCG at static loading are extrapolated. Based on the stress intensity factor concept and realistic considerations of initial defect size and changing crack front geometry, pipe lifetimes of four different PE pipe grades are predicted. The results show that for all materials the required minimum lifetime of 50 years will be reached and under practical assumptions even 100 years will be exceeded.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The research study described in this paper was performed at the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET-program of the Federal Ministry for Transport, Innovation, and Technology, and the Federal Ministry for Economy, Family, and Youth with contributions by the Department of Polymer Engineering and Science, University of Leoben (Austria). The PCCL is funded by the Austrian government and the state governments of Styria and Upper Austria.

References

Anderson, T. L. 2005. Fracture mechanics: Fundamentals and applications. Boca Raton, FL: Taylor & Francis.
ASTM. 2011. Test method for notch tensile test to measure the resistance to slow crack growth of polyethylene pipes and resins. ASTM F1473. West Conshohocken, PA: ASTM.
ASTM. 2013. Test method for obtaining hydrostatic design basis for thermoplastic pipe materials or pressure design basis for thermoplastic pipe products. ASTM D2837. West Conshohocken, PA: ASTM.
Balika, W., G. Pinter, and R. W. Lang. 2007. “Systematic investigations of fatigue crack growth behavior of a PE-HD pipe grade in through-thickness direction.” J. Appl. Polym. Sci. 103 (3): 1745–1758. https://doi.org/10.1002/app.25073.
Barenblatt, G. I. 1962. “The mathematical theory of equilibrium cracks in brittle fracture.” In Vol. 7 of Advances in applied mechanics, 55–129. New York: Elsevier.
Barker, M. B., J. Bowman, and M. Bevis. 1983. “The performance and causes of failure of polyethylene pipes subjected to constant and fluctuating internal pressure loadings.” J. Mater. Sci. Lett. 18 (4): 1095–1118. https://doi.org/10.1007/BF00551979.
Beech, S. H., and E. Q. Clutton. 2013. “Interpretation of the results of the full notch creep test and a comparison with notched pipe test.” Plast. Rub. Compos. 34 (7): 294–300. https://doi.org/10.1179/174328905X59791.
Beech, S. H., and J. N. Mallinson. 1988. “Slow crack growth performance of today’s plastics pipeline materials.” Plast. Rub. Compos. Pro. 9 (27): 418–423. https://doi.org/10.1007/978-94-017-2260-5_3.
Benthem, J. P., and W. T. Koiter. 1973. “Asymptotic approximations to crack problems.” In Methods of analysis and solutions of crack problems, edited by G. C. Sih, 131–178. Dordrecht, Netherlands: Springer.
Böhm, L. L. 2003. “Die ethylenpolymerisation mit ziegler-katalysatoren 50 jahre nach der entdeckung.” Angew. Chem. 115 (41): 5162–5183. https://doi.org/10.1002/ange.200300580.
Brescia, G. 2008. “The changing world of the chemical industry and its impact on the pipe industry.” In Proc., Plastics Pipes 14th Conf. Budapest, Hungary: Plastic Pipes Conference Association.
Broek, D. 1982. Elementary engineering fracture mechanics. Boston: Nijhoff.
Broek, D. 1989. The practical use of fracture mechanics. Dordrecht, Netherlands: Springer.
Brömstrup, H., ed. 2009. PE 100 pipe systems. Essen, Germany: Vulkan-Verl.
Brown, N., I. P. Harrison, and N. Ishikawa. 1992. “The fundamental material parameters that govern slow crack growth in linear polyethylenes.” Plast. Rub. Proc. Appl. 17 (4): 255–258.
Cawood, M. J., A. D. Channell, and G. Capaccio. 1993. “Crack initiation and fibre creep in polyethylene.” Polymer 34 (2): 423–425. https://doi.org/10.1016/0032-3861(93)90100-O.
Choi, B. H., Z. Zhou, A. Chudnovsky, S. S. Stivala, K. Sehanobish, and C. P. Bosnyak. 2005. “Fracture initiation associated with chemical degradation: Observation and modeling.” Int. J. Solids Struct. 42 (2): 681–695. https://doi.org/10.1016/j.ijsolstr.2004.06.028.
Choi, S., and L. J. Broutman. 1997. “Residual stresses in plastic pipes and fittings. III: Effect on stable crack growth behavior.” Polym.-Korea 21 (1): 83–92.
Chudnovsky, A., A. Moet, R. J. Bankert, and M. T. Takemori. 1983. “Effect of damage dissemination on crack propagation in polypropylene.” J. Appl. Phys. 54 (10): 5562–5567. https://doi.org/10.1063/1.331838.
Chudnovsky, A., Z. Zhou, H. Zhang, and K. Sehanobish. 2012. “Lifetime assessment of engineering thermoplastics.” Int. J. Eng. Sci. 59 (10): 108–139. https://doi.org/10.1016/j.ijengsci.2012.03.016.
Deblieck, R. A., D. van Beek, K. Remerie, and I. M. Ward. 2011. “Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network.” Polymer 52 (14): 2979–2990. https://doi.org/10.1016/j.polymer.2011.03.055.
Dieter, G. E. 1986. Mechanical metallurgy. New York: McGraw-Hill.
Domininghaus, H., P. Elsner, P. Eyerer, and T. Hirth. 2012. Kunststoffe: Eigenschaften und Anwendungen; mit 275 Tabellen. Heidelberg, Germany: Springer.
Dörner, G. F., and R. W. Lang. 1998. “Influence of various stabilizer systems on the ageing behavior of PE–MD—I: Hot-water ageing of compression molded plaques.” Polym. Degrad. Stabil. 62 (3): 421–430. https://doi.org/10.1016/S0141-3910(98)00048-2.
Dugdale, D. S. 1960. “Yielding of steel sheets containing slits.” J. Mech. Phys. Solids 8 (2): 100–104. https://doi.org/10.1016/0022-5096(60)90013-2.
Egan, B. J., and O. Delatycki. 1995. “The morphology, chain structure and fracture behaviour of high-density polyethylene. Part II: Fracture at a constant rate of deflection.” J. Mater. Sci. 30 (13): 3307–3318. https://doi.org/10.1007/BF00349874.
Fiedler, P., M. Rätzsch, D. Braun, and G. H. Michler. 1987. “Einfluß des Knäueldurchmessers auf die Morphologie und die mechanischen Eigenschaften von Polyethylen.” Acta Polym. 38 (3): 189–195. https://doi.org/10.1002/actp.1987.010380308.
Fleissner, M. 1987. “Langsames Rißwachstum und Zeitstandfestigkeit von Rohren aus Polyethylene.” Kunststoffe 77 (1): 45–50.
Fleissner, M. 1998. “Experience with a full notch creep test in determining the stress crack performance of polyethylenes.” Polym. Eng. Sci. 38 (2): 330–340. https://doi.org/10.1002/pen.10194.
Frank, A. 2010. “Fracture mechanics based lifetime assessment and long-term failure behavior of polyethylene pressure pipes.” Ph.D. dissertation, Chair of Material Science and Testing of Polymers, Univ. of Leoben.
Frank, A., I. J. Berger, F. Arbeiter, P. Hutař, and G. Pinter. 2016. “Lifetime prediction of PE100 and PE100-RC pipes based on slow crack growth resistance.” In Proc., Plastic Pipes 18th Conf. Berlin: Plastic Pipes Conference Association.
Frank, A., K. Bruckmoser, A. Redhead, D. P. Gruber, and G. Pinter. 2012a. “Investigation of the slow crack growth behavior of static and cyclic loaded specimens of polyethylene by 2D and 3D optical fracture surface analysis.” Macromol. Symp. 311 (1): 103–111. https://doi.org/10.1002/masy.201000097.
Frank, A., W. Freimann, G. Pinter, and R. W. Lang. 2009. “A fracture mechanics concept for the accelerated characterization of creep crack growth in PE-HD pipe grades.” Eng. Fract. Mech. 76 (18): 2780–2787. https://doi.org/10.1016/j.engfracmech.2009.06.009.
Frank, A., A. M. Hartl, R. W. Lang, and G. Pinter. 2010. “Validation of an accelerated fracture mechanics extrapolation tool for lifetime prediction of PE pressure pipes.” In Proc., Annual Technical Conf.—ANTEC, 1638–1643. Bethel, CT: Society of Plastics Engineers.
Frank, A., and G. Pinter. 2014. “Evaluation of the applicability of the cracked round bar test as standardized PE-pipe ranking tool.” Polym. Test 33 (2): 161–171. https://doi.org/10.1016/j.polymertesting.2013.11.013.
Frank, A., A. Redhead, M. Kapur, D. Chang, D. Schramm, S. Bensason, and G. Pinter. 2011. “Characterization of crack initiation and slow crack growth in polyethylene with cyclic cracked round bar tests.” Proc., Annual Technical Conf.—ANTEC, 2214–2219. Bethel, CT: Society of Plastics Engineers.
Frank, A., A. Redhead, and G. Pinter. 2012b. “The influence of test frequency and eccentric crack growth on cyclic CRB tests.” In Proc., Annual Technical Conf.—ANTEC. Bethel, CT: Society of Plastics Engineers.
Friedrich, K. 1983. “Crazes and shear bands in semi-crystalline thermoplastics.” In Crazing in polymers, edited by H. H. Kausch, 225–274. Berlin: Springer.
Gaube, E., H. Gebler, W. Müller, and C. Gondro. 1985. “Creep rupture strength and aging of HDPE pipes: 30 years experience in testing of pipes.” Kunststoffe 75 (7): 412–415.
Gray, A., J. N. Mallinson, and J. B. Price. 1981. “Fracture behavior of polyethylene pipes.” Plast. Rub. Proc. Appl. 1: 51–53.
Griffith, A. A. 1921. “The phenomena of rupture and flow in solids.” Philos. T. Roy. Soc. A 221 (582–593): 163–198. https://doi.org/10.1098/rsta.1921.0006.
Hertzberg, R. W. 1996. Deformation and fracture mechanics of engineering materials. New York: Wiley.
Hertzberg, R. W., and J. A. Manson. 1980. Fatigue of engineering plastics. New York: Academic Press.
Hutař, P., M. Ševčík, A. Frank, L. Náhlík, J. Kučera, and G. Pinter. 2013a. “The effect of residual stress on polymer pipe lifetime.” Eng. Fract. Mech. 108: 98–108. https://doi.org/10.1016/j.engfracmech.2013.04.014.
Hutař, P., M. Ševčík, L. Náhlík, A. Frank, J. Kučera, and G. Pinter. 2013b. “Numerical lifetime prediction of polymer pipes taking into account residual stress.” Key Eng. Mat. 577 (8): 169–172. https://doi.org/10.4028/www.scientific.net/KEM.577-578.169.
Hutař, P., M. Ševčík, L. Náhlík, G. Pinter, A. Frank, and I. Mitev. 2011. “A numerical methodology for lifetime estimation of HDPE pressure pipes.” Eng. Fract. Mech. 78 (17): 3049–3058. https://doi.org/10.1016/j.engfracmech.2011.09.001.
Ifwarson, M. O. 1989. “Gebrauchsdauer von Polyethylenrohren unter Temperatur und Druckbelastung.” Kunststoffe 79 (6): 525–529.
Irwin, G. R. 1957. “Analysis of stresses and strains near the end of a crack traversing a plate.” J. Appl. Mech. 24: 361–364.
ISO. 2004. Plastics: Determination of environmental stress cracking (ESC) of polyethylene—Full-notch creep test (FNCT). ISO 16770. Geneva: ISO.
ISO. 2005. Notch tensile test to measure the resistance to slow crack growth of polyethylene materials for pipe and fitting products (PENT). ISO 16241. Geneva: ISO.
ISO. 2009. Polyolefin pipes for the conveyance of fluids—Determination of resistance to crack propagation: Test method for slow crack growth on notched pipes. ISO 13479. Geneva: ISO.
ISO. 2011. Plastics—Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics. Part 1: Standard method. ISO 1133-1. Geneva: ISO.
ISO. 2012a. Plastics piping and ducting systems: Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation. ISO 9080. Geneva: ISO.
ISO. 2012b. Plastics—Determination of tensile properties. Part 2: Test conditions for moulding and extrusion plastics. ISO 527-2. Geneva: ISO.
ISO. 2012c. Plastics—Methods for determining the density of non-cellular plastics. Part 1: Immersion method, liquid pyknometer method and titration method. ISO 1183-1. Geneva: ISO.
ISO. 2015a. Polyethylene (PE) materials for piping systems—Determination of resistance to slow crack growth under cyclic loading: Cracked round bar test method. ISO 18489. Geneva: ISO.
ISO. 2015b. Polyethylene (PE) materials for piping systems—Determination of strain hardening modulus in relation to slow crack growth: Test method. ISO 18488. Geneva: ISO.
Janson, L. E. 2003. Plastics pipes for water supply and sewage disposal. Stockholm, Sweden: Borealis.
Janssen, M., J. Zuidema, and R. J. H. Wanhill. 2002. Fracture mechanics. Delft, Netherlands: DUP Blue Print.
Kausch, H. H., ed. 1983. Crazing in polymers. Berlin: Springer.
Kausch, H. H. 1987. Polymer fracture. Berlin: Springer.
Kausch, H. H., R. Gensler, C. Grein, C. J. G. Plummer, and P. Scaramuzzino. 2006. “Crazing in semicrystalline thermoplastics.” J. Macromol. Sci. B 38 (5–6): 803–815. https://doi.org/10.1080/00222349908248140.
Kratochvilla, T. R., A. Frank, and G. Pinter. 2014. “Determination of slow crack growth behaviour of polyethylene pressure pipes with cracked round bar test.” Polym. Test 40 (12): 299–303. https://doi.org/10.1016/j.polymertesting.2014.10.002.
Krishnamachari, S. I. 1993. Applied stress analysis of plastics: A mechanical engineering approach. New York: Springer Science+Business Media.
Krishnaswamy, R. K. 2005. “Analysis of ductile and brittle failures from creep rupture testing of high-density polyethylene (HDPE) pipes.” Polymer 46 (25): 11664–11672. https://doi.org/10.1016/j.polymer.2005.09.084.
Krishnaswamy, R. K., and Q. Yang. 2005. “Influence of branching distribution on the physical properties of high density polyethylene.” In Proc., Annual Technical Conf.-ANTEC, 2141–2145. Bethel, CT: Society of Plastics Engineers.
Kuhlman, C. J., L. K. Tweedy, and M. F. Kanninen. 1992. “Forcasting the long-term service performance of polyethylene gas distribution pipes.” In Proc., Plastics Pipes 18th Conf. Eindhoven, Netherlands: Plastic Pipes Conference Association.
Kurelec, L., M. Teeuwen, H. Schoffeleers, and R. A. Deblieck. 2005. “Strain hardening modulus as a measure of environmental stress crack resistance of high density polyethylene.” Polymer 46 (17): 6369–6379. https://doi.org/10.1016/j.polymer.2005.05.061.
Lang, R. W. 1984. “Applicability of linear elastic fracture mechanics to fatigue in polymers and short-fiber composites.” Ph.D. dissertation, Dept. of Materials Science and Engineering, Lehigh Univ.
Lang, R. W. 1997. “Polymerphysikalische Ansätze zur Beschreibung des Deformations und Versagensverhaltens von PE-Rohren.” 3R Int. 36 (1): 40–44.
Lang, R. W., W. Balika, and G. Pinter. 2004. “Applicability of linear elastic fracture mechanics to fatigue in amorphous and semi-crystalline polymers.” In The application of fracture mechanics to polymers, adhesives and composites, edited by D. R. Moore and D. Moore, 83–92. Oxford, UK: Elsevier.
Lang, R. W., G. Pinter, and W. Balika. 2005. “Qualification concept for lifetime assessment of PE pressure pipes for arbitrary installation conditions. [Konzept zur Nachweisführung für Nutzungsdauer und Sicherheit von PE-Druckrohren bei beliebiger Einbausituation]” 3R Int. 44 (1–2): 33–41.
Lang, R. W., A. Stern, and G. F. Dörner. 1997. “Applicability and limitations of current lifetime prediction models for thermoplastics pipes under internal pressure.” Angew Makromol Chemie 247 (1): 131–145. https://doi.org/10.1002/apmc.1997.052470109.
Lu, X., and N. Brown. 1987. “Effect of thermal history on the initiation of slow crack growth in linear polyethylene.” Polymer 28 (9): 1505–1511. https://doi.org/10.1016/0032-3861(87)90350-8.
Lu, X., and N. Brown. 1992. “A test for slow crack growth failure in polyethylene under a constant load.” Polym. Test 11 (4): 309–319. https://doi.org/10.1016/0142-9418(92)90025-7.
Lustiger, A. 1986. “Environmental stress cracking. The phenomenon and its utility.” In Failure of plastics, edited by W. Brostow and R. D. Corneliussen, 305–329. Munich, Germany: Hanser Pub.
Lustiger, A., and N. Ishikawa. 1991. “An analytical technique for measuring relative tie-molecule concentration in polyethylene.” J. Polym. Sci. Polym. Phys. 29 (9): 1047–1055. https://doi.org/10.1002/polb.1991.090290902.
Majer, Z., P. Hutař, A. Frank, M. Ševčík, M. Zouhar, G. Pinter, and L. Náhlík. 2015. “Point load effect on the buried polyolefin pipes lifetime.” Polym. Eng. Sci. 56 (1): 79–86. https://doi.org/10.1002/pen.24194.
Majer, Z., M. Ševčík, L. Náhlík, and P. Hutař. 2014. “Point load effect determination for different pressure pipe SDR series.” Key Eng. Mat. 627: 373–376. https://doi.org/10.4028/www.scientific.net/KEM.627.373.
Murakami, Y. 1987. Stress intensity factors handbook. Oxford, NY: Pergamon.
Nezbedová, E., P. Hutař, M. Zouhar, Z. Knesl, J. Sadilek, and L. Náhlík. 2013. “The applicability of the Pennsylvania notch test for a new generation of PE pipe grades.” Polym. Test 32 (1): 106–114. https://doi.org/10.1016/j.polymertesting.2012.09.009.
Paris, P. C., and F. Erdogan. 1963. “A critical analysis of crack propagation laws.” J. Basic Eng. 85 (4): 528–533. https://doi.org/10.1115/1.3656900.
Parsons, M. S., E. V. Stepanov, A. Hiltner, and E. Baer. 1999. “Correlation of stepwise fatigue and creep slow crack growth in high density polyethylene.” J. Mater. Sci. 34 (14): 3315–3326. https://doi.org/10.1023/A:1004616728535.
Parsons, M. S., E. V. Stepanov, A. Hiltner, and E. Baer. 2000a. “Correlation of fatigue and creep slow crack growth in a medium density polyethylene pipe material.” J. Mater. Sci. 35 (11): 2659–2674. https://doi.org/10.1023/A:1004789522642.
Parsons, M. S., E. V. Stepanov, A. Hiltner, and E. Baer. 2000b. “Effect of strain rate on stepwise fatigue and creep slow crack growth in high density polyethylene.” J. Mater. Sci. Lett. 35 (8): 1857–1866. https://doi.org/10.1023/A:1004741713514.
Parsons, M. S., E. V. Stepanov, A. Hiltner, and E. Baer. 2001. “The damage zone ahead of arrested crack in polyethylene resins.” J. Mater. Sci. 36 (24): 5747–5755. https://doi.org/10.1023/A:1012935517866.
Pascual, F. J., C. Przybilla, L. Gracia-Villa, J. A. Puértolas, and A. Fernández-Canteli. 2012. “Probabilistic assessment of fatigue initiation data on highly crosslinked ultrahigh molecular weight polyethylenes.” J. Mech. Behav. Biomed. Mater. 15 (11): 190–198. https://doi.org/10.1016/j.jmbbm.2012.06.004.
PAS (Public Available Specification). 2009. Rohre aus Polyethylen für alternative Verlegetechniken. Berlin: PAS.
Pati, P. K., S. K. Shrivastava, and S. Basu. 2007. “Numerical analysis of crack initiation and growth in cylindrical geometries with an axial flaw.” Int. J. Fract. 148 (4): 291–301. https://doi.org/10.1007/s10704-008-9202-x.
Pinter, G. 1999. “Rißwachstumsverhalten von PE-HD unter statischer Belastung.” Ph.D. dissertation, Institute of Material Science and Testing of Polymers, Univ. of Leoben.
Pinter, G., A. Frank, A. Redhead, and R. W. Lang. 2010. “Cyclic CRB tests: A quick and reliable tool for ranking of PE pipe grades.” In Proc., Plastics Pipes 15th Conf. Vancouver, Canada: Plastic Pipes Conference Association.
Pinter, G., M. Haager, W. Balika, and R. W. Lang. 2007a. “Cyclic crack growth tests with CRB specimens for the evaluation of the long-term performance of PE pipe grades.” Polym. Test 26 (2): 180–188. https://doi.org/10.1016/j.polymertesting.2006.09.010.
Pinter, G., M. Haager, and R. W. Lang. 2007b. “Influence of nonylphenol–polyglycol–ether environments on the results of the full notch creep test.” Polym. Test 26 (6): 700–710. https://doi.org/10.1016/j.polymertesting.2007.01.010.
Pinter, G., and R. W. Lang. 2003. “Effect of stabilization on creep crack growth in high-density polyethylene.” J. Appl. Polym. Sci. 90 (12): 3191–3207. https://doi.org/10.1002/app.12944.
Pinter, G., and R. W. Lang. 2004. “Creep crack growth in high density polyethylene.” In The application of fracture mechanics to polymers, adhesives and composites, edited by D. R. Moore and D. Moore, 47–54. Oxford, UK: Elsevier.
Pinter, G., R. W. Lang, and M. Haager. 2007d. “A test concept for lifetime prediction of polyethylene pressure pipes.” Chem. Monthly 138 (4): 347–355. https://doi.org/10.1007/s00706-007-0618-1.
Poduška, J., P. Hutař, J. Kučera, A. Frank, J. Sadílek, G. Pinter, and L. Náhlík. 2016. “Residual stress in polyethylene pipes.” Polym. Test 54 (9): 288–295. https://doi.org/10.1016/j.polymertesting.2016.07.017.
Redhead, A., A. Frank, and G. Pinter. 2013. “Investigation of slow crack growth initiation in polyethylene pipe grades with accelerated cyclic tests.” Eng. Fract. Mech. 101 (3): 2–9. https://doi.org/10.1016/j.engfracmech.2012.09.022.
Redhead, A., G. Pinter, and A. Frank. 2012. “Analysis of molecular and morphological effects on slow crack growth in modern PE pipe grades by cyclic fracture mechanics tests.” In Vol. 311 of Macromolecular Symposia, 41–48. Weinheim, Germany: Wiley-VCH.
Richard, K., E. Gaube, and G. Diedrich. 1959. “Trinkwasserrohre aus Niederdruckpolyäthylen.” Kunststoffe 49 (10): 516–525.
Rink, M., R. Frassine, P. Mariani, and G. Carianni. 2003. “Effects of detergent on crack initiation and propagation in polyethylenes.” J. Appl. Mech. 32: 103–114. https://doi.org/10.1016/S1566-1369(03)80087-0.
Salazar, A., J. Rodríguez, F. Arbeiter, G. Pinter, and A. B. Martínez. 2015. “Fracture toughness of high density polyethylene. Fatigue pre-cracking versus femtolaser, razor sharpening and broaching.” Eng. Fract. Mech. 149 (11): 199–213. https://doi.org/10.1016/j.engfracmech.2015.07.016.
Salazar, A., J. Rodríguez, A. Segovia, and A. B. Martínez. 2010. “Influence of the notch sharpening technique on the fracture toughness of bulk ethylene–propylene block copolymers.” Polym. Test 29 (1): 49–59. https://doi.org/10.1016/j.polymertesting.2009.09.004.
Saxena, A., and S. J. Hudak. 1978. “Review and extension of compliance information for common crack growth specimens.” Int. J. Fract. 14 (5): 453–468. https://doi.org/10.1007/BF01390468.
Shah, A., E. V. Stepanov, G. Capaccio, A. Hiltner, and E. Baer. 1998a. “Stepwise fatigue crack propagation in polyethylene resins of different molecular structure.” J. Polym. Sci. Polym. Phys. 36 (13): 2355–2369. https://doi.org/10.1002/(SICI)1099-0488(19980930)36:13%3C2355::AID-POLB11%3E3.0.CO;2-2.
Shah, A., E. V. Stepanov, A. Hiltner, E. Baer, and M. Klein. 1997. “Correlation of fatigue crack propagation in polyethylene pipe specimens of different geometries.” Int. J. Fract. 84 (2): 159–173. https://doi.org/10.1023/A:1007354600584.
Shah, A., E. V. Stepanov, M. Klein, A. Hiltner, and E. Baer. 1998e. “Study of polyethylene pipe resins by a fatigue test that simulates crack propagation in a real pipe.” J. Mater. Sci. 33 (13): 3313–3319. https://doi.org/10.1023/A:1013229128686.
Stephenne, V., D. Daoust, G. Debras, M. Dupire, R. Legras, and J. Michel. 2001. “Influence of the molecular structure on slow crack growth resistance and impact fracture toughness in Cr-catalyzed ethylene-hexene copolymers for pipe applications.” J. Appl. Polym. Sci. 82 (4): 916–928. https://doi.org/10.1002/app.1923.
Stern, A. 1995. “Fracture mechanical characterization of the long-term behavior of polymers under static loads.” Ph.D. dissertation, Institute of Material Science and Testing of Polymers, Univ. of Leoben.
Stern, A., F. Asanger, and R. W. Lang. 1998a. “Creep crack growth testing of plastics—II: Data acquisition, data reduction and experimental results.” Polym. Test 17 (6): 423–441. https://doi.org/10.1016/S0142-9418(97)00068-8.
Stern, A., M. Novotny, and R. W. Lang. 1998b. “Creep crack growth testing of plastics—I: Test configurations and test system design.” Polym. Test 17 (6): 403–422. https://doi.org/10.1016/S0142-9418(97)00067-6.
Tian, Z., K. R. Chen, B.-P. Liu, N. Luo, W. L. Du, and F. Qian. 2015. “Short-chain branching distribution oriented model development for Borstar bimodal polyethylene process and its correlation with product performance of slow crack growth.” Chem. Eng. Sci. 130 (7): 41–55. https://doi.org/10.1016/j.ces.2015.03.001.
Williams, J. G. 1984. Fracture mechanics of polymers. Edited by E. Horwood. New York: Halsted Press.
Zhou, W., A. Chudnovsky, and B.-H. Choi. 2006. “Crack initiation in pipe grade polyethylene.” In Proc., Annual Technical Conf.-ANTEC, 2485–2489. Bethel, CT: Society of Plastics Engineers.
Zouhar, M., P. Hutař, M. Ševčík, and L. Náhlík. 2012. “Pressure pipe damage: Numerical estimation of point load effect.” Key Eng. Mater. 525: 177–180. https://doi.org/10.4028/www.scientific.net/KEM.525-526.177.

Information & Authors

Information

Published In

Go to Journal of Pipeline Systems Engineering and Practice
Journal of Pipeline Systems Engineering and Practice
Volume 10Issue 1February 2019

History

Received: Aug 24, 2017
Accepted: Jul 10, 2018
Published online: Oct 31, 2018
Published in print: Feb 1, 2019
Discussion open until: Mar 31, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Senior Researcher, Head of Pipe Research Group, Polymer Competence Center Leoben GmbH, Roseggerstr. 12, 8700 Leoben, Austria (corresponding author). ORCID: https://orcid.org/0000-0002-5580-727X. Email: [email protected]
Florian J. Arbeiter
Postdoctoral Research Fellow, Chair of Materials Science and Testing of Polymers, Dept. of Polymer Engineering and Science, Montanuniversitaet Leoben, 8700 Leoben, Austria.
Isabelle J. Berger
Researcher, Polymer Competence Center Leoben GmbH, Roseggerstr. 12, 8700 Leoben, Austria.
Pavel Hutař
Professor, Head of High Cycle Fatigue Group, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 616 62 Brno, Czech Republic.
Luboš Náhlík
Director of OU CEITEC IPM, CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 616 62 Brno, Czech Republic.
Gerald Pinter
Professor, Head of Chair Materials Science and Testing of Polymers, Dept. of Polymer Engineering and Science, Montanuniversitaet Leoben, 8700 Leoben, Austria.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share