Technical Papers
Jul 3, 2018

Experimental Studies of Self-Cleansing Drainage System Design: A Review

Publication: Journal of Pipeline Systems Engineering and Practice
Volume 9, Issue 4

Abstract

Self-cleansing is a design criterion for drainage systems that mitigates the continuous deposition of sediments at the channel bottom. In recent decades, in order to improve the knowledge for determination of self-cleansing conditions applicable for drainage system design, laboratory experimental studies on sediment transport in rigid-boundary channels have been conducted. In this study, according to the definition of self-cleansing, the main studies in the literature are classified and projections for future studies are drawn. This review is limited to laboratory experimental studies that used noncohesive sediments. A brief comparison of existing equations are presented and discussed. It is found that a major discrepancy exists among performances and applicability of existing self-cleansing models from a variety of data sources. This fact can be attributed to the subjective definition of different sediment-transport conditions, channel cross-sectional shape, range of experimental data, and parameters used for the model development. It is expected that this review will be helpful for researchers looking for an integrated and classified literature review on sediment-transport studies in rigid-boundary channels and drainage systems.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The first author would like to thank the International Affairs of Iran’s National Elites Foundation (BMN) for financial supporting of this study, which was carried out during his stay as postdoctoral research fellow at University of Tabriz and Urmia University, Iran.

References

Ab Ghani, A. 1993. “Sediment transport in sewers.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Newcastle upon Tyne.
Ab Ghani, A., A. M. Salem, R. Abdullah, A. S. Yahaya, and N. A. Zakaria. 1999. “Incipient motion of sediment particles over loose deposited beds in a rigid rectangular channel.” In Vol. 1 of Proc., 8th Int. Conf. on Urban Storm Drainage, 157–163. Sydney, Australia.
Ackers, J., D. Butler, D. Leggett, and R. May. 2001. “Designing sewers to control sediment problems.” Urban Drain. Model. 818–823. https://doi.org/10.1061/40583(275)77.
Ackers, J. C., D. Butler, and R. W. P. May. 1996. Design of sewers to control sediment problems, 1–181. London: Construction Industry Research and Information Association.
Ackers, P. 1984. “Sediment transport in sewers and the design implications.” In Proc., Int. Conf. on Planning, Construction, Maintenance, and Operation of Sewerage Systems, 215–230. Reading, UK: BHRA/WRc.
Ackers, P. 1990. Sediment transport: The Ackers and White theory revised. Wallingford, Oxfordshire, UK: HR Wallingford.
Ackers, P. 1991. “Sediment aspects of drainage and outfall design.” In Proc., Int. Symp. on Environmental Hydraulics, Rotterdam, Netherlands: A.A. Balkema.
Ackers, P., and W. R. White. 1973. “Sediment transport: New approach and analysis.” J. Hydr. Eng. Div. 99 (11): 2041–2060.
Aksoy, H., and M. J. S. Safari. 2014. Incipient deposition of sediment particles in rigid boundary channels. Istanbul, Turkey: TÜBİTAK, the Scientific and Technological Research Council of Turkey.
Aksoy, H., M. J. S. Safari, N. E. Unal, and M. Mohammadi. 2017. “Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.” Water Sci. Technol. 76 (9): 2535–2543. https://doi.org/10.2166/wst.2017.429.
Almedeij, J., and N. Almohsen. 2010. “Remarks on Camp’s criterion for self-cleansing storm sewers.” J. Irrig. Drain. Eng. 136 (2): 145–148. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000129.
Alvarez, E. M. 1990. “The influence cohesion on sediment movement in channels of circular cross-section.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Newcastle Upon Tyne.
Ambrose, H. H. 1953. “The transportation of sand in pipes free surface flow.” In Proc., 5th Hydraulic Conf., Bulletin 34, State University of Iowa Studies in Engineering. Ames, IA: Iowa State Univ.
Arora, A. K. 1983. “Velocity distribution and sediment transport in rigid bed open channels.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Roorkee.
Arora, A. K., K. G. Ranga Raju, and R. J. Garde. 1984. “Criterion for deposition of sediment transported in rigid boundary channels.” Channels and channel control structures, 413–424. Berlin: Springer.
ASCE Task Force on Sediment Transportation Mechanics. 1966. “Incipient of motion.” J. Hydr. Eng. Div. 92 (HY2): 291–314.
ASCE Water Pollution Control Federation. 1970. Design and construction of sanitary and storm sewers. New York: ASCE.
Ashley, R. M., S. J. Tait, E. Styan, A. Cashman, B. Luck, J. Blanksby, A. Saul, and L. Sandlands. 2007. “Sewer system design moving into the 21st century—A UK perspective.” Water Sci. Technol. 55 (4): 273–281. https://doi.org/10.2166/wst.2007.118.
Banasiak, R., R. Verhoeven, R. De Sutter, and S. Tait. 2005. “The erosion behaviour of biologically active sewer sediment deposits: Observations from a laboratory study.” Water Res. 39 (20): 5221–5231. https://doi.org/10.1016/j.watres.2005.10.011.
Bertrand-Krajewski, J. L., J. P. Bardin, and C. Gibello. 2006. “Long term monitoring of sewer sediment accumulation and flushing experiments in a man-entry sewer.” Water Sci. Technol. 54 (6–7): 109–117. https://doi.org/10.2166/wst.2006.619.
Bertrand-Krajewski, J. L., P. Briat, and O. Scrivener. 1993. “Sewer sediment production and transport modelling: A literature review.” J. Hydraul. Res. 31 (4): 435–460. https://doi.org/10.1080/00221689309498869.
Bertrand-Krajewski, J. L., A. Campisano, E. Creaco, and C. Modica. 2005. “Experimental analysis of the Hydrass flushing gate and field validation of flush propagation modelling.” Water Sci. Technol. 51 (2): 129–137. https://doi.org/10.2166/wst.2005.0040.
Bertrand-Krajewski, J. L., H. Madiec, and O. Moine. 1996. “Two experimental sediment traps: Operation and solids characteristics.” Water Sci. Technol. 33 (9): 155–162. https://doi.org/10.2166/wst.1996.0200.
Bizier, P. 2007. Gravity sanitary sewer design and construction. Reston, VA: ASCE.
Bong, C. H. J., T. L. Lau, and A. Ab Ghani. 2013. “Verification of equations for incipient motion studies for a rigid rectangular channel.” Water Sci. Technol. 67 (2): 395–403. https://doi.org/10.2166/wst.2012.580.
Bong, C. H. J., T. L. Lau, A. Ab Ghani, and N. W. Chan. 2016. “Sediment deposit thickness and its effect on critical velocity for incipient motion.” Water Sci. Technol. 74 (8): 1876–1884. https://doi.org/10.2166/wst.2016.376.
Butler, D., and J. Davies. 2004. Urban drainage. Boca Raton, FL: CRC Press.
Butler, D., R. May, and J. Ackers. 2003. “Self-cleansing sewer design based on sediment transport principles.” J Hydraul. Eng. 129 (4): 276–282. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(276).
Butler, D., R. W. P. May, and J. C. Ackers. 1996a. “Sediment transport in sewers. Part 1: Background.” Proc. Int. Civ. Eng.-Marit. Energy 118 (2): 103–112. https://doi.org/10.1680/iwtme.1996.28431.
Butler, D., R. W. P. May, and J. C. Ackers. 1996b. “Sediment transport in sewers. Part 2: Design.” Proc. Int. Civ. Eng.-Marit. Energy 118 (2): 113–120. https://doi.org/10.1680/iwtme.1996.28432.
Camp, T. R. 1946. “Design of sewers to facilitate flow.” Sewage Work J. 18 (1): 3–16.
Campisano, A., J. Cabot Ple, D. Muschalla, M. Pleau, and P. A. Vanrolleghem. 2013a. “Potential and limitations of modern equipment for real time control of urban wastewater systems.” Urban Water J. 10 (5): 300–311. https://doi.org/10.1080/1573062X.2013.763996.
Campisano, A., E. Creaco, and C. Modica. 2004. “Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits.” J. Hydrol. 299 (3): 324–334. https://doi.org/10.1016/S0022-1694(04)00371-3.
Campisano, A., E. Creaco, and C. Modica. 2007. “Dimensionless approach for the design of flushing gates in sewer channels.” J. Hydraul. Eng. 133 (8): 964–972. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(964).
Campisano, A., E. Creaco, and C. Modica. 2008. “Laboratory investigation on the effects of flushes on cohesive sediment beds.” Urban Water J. 5 (1): 3–14. https://doi.org/10.1080/15730620701726259.
Campisano, A., E. Creaco, and C. Modica. 2009. “P controller calibration for the real time control of moveable weirs in (proportional) sewer channels.” Water Sci. Technol. 59 (11): 2237–2244. https://doi.org/10.2166/wst.2009.272.
Campisano, A., E. Creaco, and C. Modica. 2013b. “Numerical modelling of sediment bed aggradation in open rectangular drainage channels.” Urban Water J. 10 (6): 365–376. https://doi.org/10.1080/1573062X.2012.739627.
Campisano, A., and C. Modica. 2003. “Flow velocities and shear stresses during flushing operations in sewer collectors.” Water Sci. Technol. 47 (4): 123–128. https://doi.org/10.2166/wst.2003.0236.
Carnacina, I., and F. Larrarte. 2014. “Coupling acoustic devices for monitoring combined sewer network sediment deposits.” Water Sci. Technol. 69 (8): 1653–1660. https://doi.org/10.2166/wst.2014.064.
Chan, H. H. L. 1994. “An appraisal study of sediment transport over fixed bed deposits in sewers.” M.Phil. thesis, Dept. of Civil Engineering, Univ. of Newcastle upon Tyne.
CIRIA (Construction Industry Research and Information Association). 1986. Sediment movement in combined sewerage and storm-water drainage systems. London: CIRIA.
Craven, J. P. 1953. “The transportation of sand in pipes—Full pipe flow.” In Proc., 5th Hydraulics Conf. Ames, IA: Iowa State Univ.
Delleur, J. W. 2001. “New results and research needs on sediment movement in urban drainage.” J. Water Resour. Plan. Manage. 127 (3): 186–193. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:3(186).
De Sutter, R., P. Rushforth, S. Tait, M. Huygens, R. Verhoeven, and A. Saul. 2003. “Validation of existing bed load transport formulas using in-sewer sediment.” J Hydraul. Eng. 129 (4): 325–333. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(325).
Durand, R. 1953. “Basic relationships of the transportation of solids in pipes.” In Proc., Experimental Research, Int. Association for Hydraulic Research 5th Congress, Minneapolis.
Durand, R., and E. I. Condolois. 1956. “Donnees techniques sur le refoulement hydraulique des materiaux solides en conduite.” [In French.] Rev. L’Industrie Mineral, Special Number F.
El-Zaemey, A. K. S. 1991. “Sediment transport over deposited beds in sewers.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Newcastle upon Tyne.
Graf, W. H., and E. R. Acaroglu. 1968. “Sediment transport in conveyance systems. Part 1: A physical model for sediment transport in conveyance systems.” Hydrological Sci. J. 13 (2): 20–39. https://doi.org/10.1080/02626666809493581.
Gupta, K., and A. J. Saul. 1996a. “Specific relationships for the first flush load in combined sewer flows.” Water Res. 30 (5): 1244–1252. https://doi.org/10.1016/0043-1354(95)00282-0.
Gupta, K., and A. J. Saul. 1996b. “Suspended solids in combined sewer flows.” Water Sci. Technol. 33 (9): 93–99. https://doi.org/10.2166/wst.1996.0185.
Ippen, A. T., and R. P. Verma. 1953. “The motion of discrete particles along the bed of a turbulent stream.” In Proc., Minnesota Int. Convention, Minneapolis, MN.
Kithsiri, M. M. A. U. 1990. “Sediment transport in rectangular channels with rough rigid beds.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Newcastle upon Tyne.
Larrarte, F. 2008. “Suspended solids within sewers: An experimental study.” Environ. Fluid Mech. 8 (3): 249–261. https://doi.org/10.1007/s10652-008-9073-8.
Larrarte, F., E. Szturycz, L. Lebouc, and B. Riochet. 2016. “New technique for continuous monitoring of sediment height.” Flow Meas. Instrum. 49: 40–45. https://doi.org/10.1016/j.flowmeasinst.2016.04.005.
Laursen, E. M. 1956. The hydraulics of a storm-drain system for sediment-transporting flow. Bulletin No. 5. Ames, IA: Iowa Highway Research Board.
Lepot, M., T. Pouzol, X. Aldea Borruel, D. Suner, and J. L. Bertrand-Krajewski. 2017. “Measurement of sewer sediments with acoustic technology: From laboratory to field experiments.” Urban Water J. 14 (4): 369–377. https://doi.org/10.1080/1573062X.2016.1148181.
Loveless, J. H. 1992. “Sediment transport in rigid boundary channels with particular reference to the condition of incipient deposition.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of London.
Macke, E. 1982. “About sedimentation at low concentrations in partly filled pipes.” Ph.D. thesis, Mitteilungen, Leichtweiss–Institut fur Wasserbau der Technischen Univerisitat Braunscheweig.
Mark, O., U. Cerar, and G. Perrusquía. 1996. “Prediction of locations with sediment deposits in sewers.” Water Sci. Technol. 33 (9): 147–154. https://doi.org/10.2166/wst.1996.0198.
May, R. W., J. C. Ackers, D. Butler, and S. John. 1996. “Development of design methodology for self-cleansing sewers.” Water Sci. Technol. 33 (9): 195–205. https://doi.org/10.2166/wst.1996.0210.
May, R. W. P. 1975. Deposition of grit in pipes. Literature survey. Wallingford, UK: Hydraulic Research Station.
May, R. W. P. 1982. Sediment transport in sewers. Wallingford, UK: Hydraulic Research Station.
May, R. W. P. 1993. Sediment transport in pipes and sewers with deposited beds. Wallingford, Oxfordshire, UK: Hydraulic Research Station.
May, R. W. P., P. M. Brown, G. R. Hare, and K. D. Jones. 1989. Self-cleansing conditions for sewers carrying sediment. Wallingford, Oxfordshire, UK: Hydraulics Research Ltd.
Mayerle, R. 1988. “Sediment transport in rigid boundary channels.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Newcastle upon Tyne.
Mayerle, R., C. Nalluri, and P. Novak. 1991. “Sediment transport in rigid bed conveyances.” J. Hydraul. Res. 29 (4): 475–495. https://doi.org/10.1080/00221689109498969.
Mays, L. W. 2001. Stormwater collection systems design handbook. New York: McGraw-Hill.
Merritt, L. B. 2009. “Tractive force design for sanitary sewer self-cleansing.” J. Environ. Eng. 135 (12): 1338–1347. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000105.
Mohammadi, M. 1998. “Resistance to flow and the influence of boundary shear stress on sediment transport in rigid boundary channels.” Ph.D. thesis, School of Civil Engineering, Birmingham Univ.
Mohammadi, M. 2005. “The initiation of sediment motion in fixed bed channels.” Iran J. Sci. Technol. B 29 (B3): 365–372.
Mohammadi, M., and D. W. Knight. 1999. “Threshold for sediment motion in V-shaped channel.” In Proc., 28th IAHR Congress, 22–27. Graz, Austria.
Nalluri, C. 1985. “Sediment transport in rigid boundary channels.” In Proc., Euromech 192: Transport of Suspended Solids in Open Channels, 101–104. Neubiberg, Germany.
Nalluri, C., and A. Ab Ghani. 1996. “Design options for self-cleansing storm sewers.” Water Sci. Technol. 33 (9): 215–220. https://doi.org/10.2166/wst.1996.0214.
Nalluri, C., A. Ab Ghani, and A. K. S. El-Zaemey. 1994. “Sediment transport over deposited beds in sewers.” Water Sci. Technol. 29 (1–2): 125–133. https://doi.org/10.2166/wst.1994.0658.
Nalluri, C., A. K. El-Zaemey, and H. L. Chan. 1997. “Sediment transport over fixed deposited beds in sewers—An appraisal of existing models.” Water Sci. Technol. 36 (8): 123–128. https://doi.org/10.2166/wst.1997.0654.
Nalluri, C., and M. M. A. U. Kithsiri. 1992. “Extended data on sediment transport in rigid bed rectangular channels.” J Hydraul. Res. 30 (6): 851–856. https://doi.org/10.1080/00221689209498914.
Nalluri, C., and F. Spaliviero. 1998. “Suspended sediment transport in rigid boundary channels at limit deposition.” Water Sci. Technol. 37 (1): 147–154. https://doi.org/10.2166/wst.1998.0036.
Novak, P., and C. Nalluri. 1975. “Sediment transport in smooth fixed bed channels.” J. Hydr. Eng. Div. 101 (HY9): 1139–1154.
Novak, P., and C. Nalluri. 1978. “Sewer design for no sediment deposition.” Proc. Int. Civ. Eng. 65 (3): 669–674. https://doi.org/10.1680/iicep.1978.2813.
Novak, P., and C. Nalluri. 1984. “Incipient motion of sediment particles over fixed beds.” J. Hydraul. Res. 22 (3): 181–197. https://doi.org/10.1080/00221688409499405.
Ojo, S. I. A. 1978. “Study of incipient motions and sediment transport over fixed beds.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Newcastle upon Tyne.
Ojo, S. I. A. 1980. “Predictive formula for sediment discharge in a rectangular flume.” In Proc., Symp. on River Engineering and Its Interaction with Hydrological and Hydraulic Research, Belgrade, Serbia: IAHR.
Omid, M. H., R. Narayanan, and C. Nalluri. 2002. “Erosion of a sediment deposit from a rigid rectangular channel by clear water.” Proc. Inst. Civ. Eng. Waters Marit. Eng. 154 (1): 63–73. https://doi.org/10.1680/wame.2002.154.1.63.
Oms, C., M. C. Gromaire, M. Saad, V. Milisic, and G. Chebbo. 2008. “Bed shear stress evaluation in combined sewers.” Urban Water J. 5 (3): 219–229. https://doi.org/10.1080/15730620801924010.
Ota, J. J. 1999. “Effect of particle size and gradation on sediment transport in storm sewers.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Newcastle upon Tyne.
Ota, J. J., and C. Nalluri. 2003. “Urban storm sewer design: Approach in consideration of sediments.” J. Hydraul. Eng. 129 (4): 291–297. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(291).
Ota, J. J., and G. S. Perrusquia. 2013. “Particle velocity and sediment transport at the limit of deposition in sewers.” Water Sci. Technol. 67 (5): 959–967. https://doi.org/10.2166/wst.2013.646.
Paphitis, D. 2001. “Sediment movement under unidirectional flows: An assessment of empirical threshold curves.” Coast. Eng. 43 (3): 227–245. https://doi.org/10.1016/S0378-3839(01)00015-1.
Pedroli, R. 1963. “Bed load transportation in channels with fixed and smooth inverts.” Ph.D. thesis, Scuola Politecnica Federale.
Perrusquia, G., and C. Nalluri. 1995. “Modelling of bed-load transport in pipe channels.” In Proc., Int. Conf. on the Transport and Sedimentation of Solid Particles, Prague, Czechia.
Perrusquia, G. S. 1991. “Bed load transport in storm sewers: Steam traction in pipe channels.” Ph.D. thesis, Dept. of Civil Engineering, Chalmers Univ. of Technology.
Perrusquia, G. S. 1992a. “An experimental study on the transport of sediment in sewer pipes with a permanent deposit.” Water Sci. Technol. 25 (8): 115–122. https://doi.org/10.2166/wst.1992.0185.
Perrusquia, G. S. 1992b. Sediment transport in pipe channels. Göteborg Sweden: Chalmers Univ. of Technology.
Perrusquia, G. S. 1993. An experimental study from flume to stream traction in pipe channels. Göteborg Sweden: Chalmers Univ. of Technology.
Pianese, D., and R. Della Morte. 2004. “Discussion of ‘Urban storm sewer design: Approach in consideration of sediments’ by Jose J. Ota and Chandra Nalluri.” J. Hydraul. Eng. 130 (7): 718–719. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(718).
Pulliah, V. 1978. “Transport of fine suspended sediment in smooth rigid bed channels.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Roorkee.
Robinson, M. P., and W. H. Graf. 1972. “Pipelining of low concentration sand-water mixtures.” J. Hydr. Eng. Div. 98 (HY7): 1221–1240.
Rushforth, P. J., S. J. Tait, and A. J. Saul. 2003. “Modeling the erosion of mixtures of organic and granular in-sewer sediments.” J. Hydraul. Eng. 129 (4): 308–315. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(308).
Safari, M. J. S. 2011. “Sediment transport in rigid boundary channels.” M.Sc. thesis, Urmia Univ.
Safari, M. J. S. 2016. “Self-cleansing drainage system design by incipient motion and incipient deposition-based models.” Ph.D. thesis, Dept. of Civil Engineering, Istanbul Technical Univ.
Safari, M. J. S., H. Aksoy, and M. Mohammadi. 2015. “Incipient deposition of sediment in rigid boundary open channels.” Environ. Fluid Mech. 15 (5): 1053–1068. https://doi.org/10.1007/s10652-015-9401-8.
Safari, M. J. S., H. Aksoy, and M. Mohammadi. 2016. “Artificial neural network and regression models for flow velocity at sediment incipient deposition.” J Hydrol. 541: 1420–1429. https://doi.org/10.1016/j.jhydrol.2016.08.045.
Safari, M. J. S., H. Aksoy, N. E. Unal, and M. Mohammadi. 2017a. “Experimental analysis of sediment incipient motion in rigid boundary open channels.” Environ. Fluid Mech. 17 (6): 1281–1298. https://doi.org/10.1007/s10652-017-9550-z.
Safari, M. J. S., H. Aksoy, N. E. Unal, and M. Mohammadi. 2017b. “Non-deposition self-cleansing design criteria for drainage systems.” J. Hydro-Environ. Res. 14: 76–84. https://doi.org/10.1016/j.jher.2016.11.002.
Safari, M. J. S., M. Mohammadi, and G. Gilanizadehdizaj. 2013. “Investigation on incipient deposition and incipient motion of sediment particles in rigid boundary channels.” Water Soil Sci. 23 (3): 13–25.
Safari, M. J. S., M. Mohammadi, and G. Gilanizadehdizaj. 2014. “On the effect of cross-sectional shape on incipient motion and deposition of sediments in fixed bed channels.” J. Hydrol. Hydromech. 62 (1): 75–81. https://doi.org/10.2478/johh-2014-0003.
Safari, M. J. S., M. Mohammadi, G. Gilanizadehdizaj, and H. Seyyedi. 2017c. “A general self-cleansing model for drainage system design.” In Proc., Pipelines 2017, 14–24. Phoenix.
Safari, M. J. S., M. Mohammadi, and M. Manafpour. 2011. “Incipient motion and deposition of sediment in rigid boundary channels.” In Proc., 15th Int. Conf. on Transport and Sedimentation of Solid Particles, 63–75. Wroclaw, Poland.
Safari, M. J. S., A. Shirzad, and M. Mohammadi. 2017d. “Sediment transport in deposited bed sewers: Unified form of May’s equations using the particle swarm optimization algorithm.” Water Sci. Technol. 76 (4): 992–1000. https://doi.org/10.2166/wst.2017.267.
Salem, A. M. 1998. “Incipient motion over loose deposited beds in a rigid rectangular channel.” M.Sc. thesis, Dept. of Civil Engineering, Univ. Sains Malaysia.
Saul, A. J., P. J. Skipworth, S. J. Tait, and P. J. Rushforth. 2003. “Movement of total suspended solids in combined sewers.” J. Hydraul. Eng. 129 (4): 298–307. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(298).
Schellart, A., R. Veldkamp, M. Klootwijk, F. H. L. R. Clemens, S. J. Tait, R. Ashley, and C. Howes. 2005. “Detailed observation and measurement of sewer sediment erosion under aerobic and anaerobic conditions.” Water Sci. Technol. 52 (3): 137–146. https://doi.org/10.2166/wst.2005.0070.
Schellart, A. N. A., S. J. Tait, and R. M. Ashley. 2010. “Estimation of uncertainty in long-term sewer sediment predictions using a response database.” J. Hydraul. Eng. 136 (7): 403–411. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000193.
Schütze, M., A. Campisano, H. Colas, W. Schilling, and P. A. Vanrolleghem. 2004. “Real time control of urban wastewater systems: Where do we stand today?” J. Hydrol. 299 (3): 335–348. https://doi.org/10.1016/j.jhydrol.2004.08.010.
Shields, A. 1936. Vol. 26 of Application of similarity principles and turbulence research to bed-load movement. Berlin: Preussiischen Research Institute of Hydraulic Engineering.
Shirazi, R. H. S. M., A. Campisano, C. Modica, and P. Willems. 2014. “Modelling the erosive effects of sewer flushing using different sediment transport formulae.” Water Sci. Technol. 69 (6): 1198–1204. https://doi.org/10.2166/wst.2013.810.
Skipworth, P. J., S. J. Tait, and A. J. Saul. 1999. “Erosion of sediment beds in sewers: Model development.” J. Environ. Eng. 125 (6): 566–573. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:6(566).
Skipworth, P. J., S. J. Tait, and A. J. Saul. 2000. “The first foul flush in combined sewers: An investigation of the causes.” Urban Water 2 (4): 317–325. https://doi.org/10.1016/S1462-0758(01)00009-7.
Tait, S. J., G. Chebbo, P. J. Skipworth, M. Ahyerre, and A. J. Saul. 2003a. “Modeling in-sewer deposit erosion to predict sewer flow quality.” J. Hydraul. Eng. 129 (4): 316–324. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:4(316).
Tait, S. J., A. Marion, and G. Camuffo. 2003b. “Effect of environmental conditions on the erosional resistance of cohesive sediment deposits in sewers.” Water Sci. Technol. 47 (4): 27–34. https://doi.org/10.2166/wst.2003.0213.
Tait, S. J., P. J. Rushforth, and A. J. Saul. 1998. “A laboratory study of the erosion and transport of cohesive-like sediment mixtures in sewers.” Water Sci. Technol. 37 (1): 163–170. https://doi.org/10.2166/wst.1998.0040.
Vongvisessomjai, N., T. Tingsanchali, and M. S. Babel. 2010. “Non-deposition design criteria for sewers with part-full flow.” Urban Water J. 7 (1): 61–77. https://doi.org/10.1080/15730620903242824.
Yang, C. T. 1973. “Incipient motion and sediment transport.” J. Hydraul. Div. 99 (10): 1679–1704.

Information & Authors

Information

Published In

Go to Journal of Pipeline Systems Engineering and Practice
Journal of Pipeline Systems Engineering and Practice
Volume 9Issue 4November 2018

History

Received: Mar 28, 2017
Accepted: Mar 20, 2018
Published online: Jul 3, 2018
Published in print: Nov 1, 2018
Discussion open until: Dec 3, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Mir Jafar Sadegh Safari [email protected]
Postdoctoral Research Fellow, Dept. of Civil Engineering, Univ. of Tabriz, 5166616471 Tabriz, Iran (corresponding author). Email: [email protected]
Mirali Mohammadi [email protected]
Associate Professor, Dept. of Civil Engineering, Urmia Univ., 5756151818 Urmia, Iran. Email: [email protected]
Aminuddin Ab Ghani [email protected]
Professor, Deputy Director, River Engineering and Urban Drainage Research Centre, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share