Technical Papers
Aug 9, 2021

Quantifying the Impacts of Storm Surge, Sea Level Rise, and Potential Reduction and Changes in Wetlands in Coastal Areas of the Chesapeake Bay Region

Publication: Natural Hazards Review
Volume 22, Issue 4

Abstract

Along the North Atlantic coasts of the United States, sea levels are rising at higher rates than the global average. Additionally, sea level rise (SLR) can cause reduction and redistribution of wetlands across the low-lying coastal landscape. This study applied a coupled storm surge and waves model to the Chesapeake Bay regions that are prone to SLR. Two historical storms of low and high wind intensity were simulated for current and potential future sea-level and land cover conditions. The future scenarios incorporated projections of local SLR and land use due to potential reduction and changes in coastal wetlands. Simulated flood depths were used in depth–damage functions to estimate prospective property damages, and were combined with population density information to estimate potential number of people at risk. The results showed that, depending on storm intensity, the total flooded area can increase from the baseline by 1.3–2.3 times in the minimum SLR scenario, and by 2.1–4.7 times in the maximum SLR scenario. The maximum SLR was estimated to cause approximately $5.8 billion to $8.6 billion in additional damages and potentially to affect 1–1.2 million people more than the number affected in current conditions. Results also suggest that the low-intensity storm was projected to have greater impacts in the future than the high-intensity storm today, indicating that even relatively weak storms may cause considerable damage to coastal communities in a future with SLR. Finally, flooding, property damage, and the number of people affected in the future scenarios were exacerbated by wetlands reduction and change—in other words, the protective services currently provided by natural lands in coastal areas can be diminished in the future with SLR.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The coastal model ADCIRC, property, and population data are publicly available, and their sources are cited in the manuscript. ADCIRC model input, output, and processing scripts are available upon written request from the corresponding author.

Acknowledgments

The authors are sincerely grateful to Virginia Sea Grant (VASG Project: R/721555) for the financial support to carry out the multidisciplinary study. Additionally, the National Science Foundation grant (SES-1331399) provided necessary research support to develop this study, and the Texas Advanced Computing Center (TACC) at The University of Texas at Austin provided computing resources to carry out all numerical simulations. The authors also acknowledge the generous assistance from the Maryland Department of Planning and NOAA Office for Coastal Management for making their data public to scientific communities.

References

Alizad, K., S. C. Hagen, S. C. Medeiros, M. V. Bilskie, J. T. Morris, L. Balthis, and C. A. Buckel. 2018. “Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise.” PLoS One 13 (10): 1–27. https://doi.org/10.1371/journal.pone.0205176.
Alizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel. 2016. “Coastal wetland response to sea-level rise in a fluvial estuarine system.” Earth’s Future 4 (11): 483–497. https://doi.org/10.1002/2016EF000385.
Arcadis. 2013. “ADCIRC based storm surge analysis of sea level rise in the Corpus Christi Bay area in Texas.” https://cbbep.org/publications/publication1306.pdf.
Atkinson, J. H., H. J. Roberts, S. C. Hagen, S. Zou, P. Bacopoulos, S. C. Medeiros, J. F. Weishampel, and Z. Cobell. 2011. “Deriving frictional parameters and performing historical validation for an ADCIRC storm surge model of the Florida Gulf Coast.” Florida Watershed J. 4 (2): 22–27.
Barbier, E. B. 2014. “A global strategy for protecting vulnerable coastal populations.” AAAS 345 (6202): 125–1251. https://doi.org/10.1126/science.1254629.
Barbier, E. B., R. Lozano, C. M. Rodríguez, and S. Troëng. 2020. “Adopt a carbon tax to protect tropical forests.” Nature 578 (7794): 213–216. https://doi.org/10.1038/d41586-020-00324-w.
Bigalbal, A., A. M. Rezaie, J. L. Garzon, and C. M. Ferreira. 2018. “Potential impacts of sea level rise and coarse scale marsh migration on storm surge hydrodynamics and waves on coastal protected areas in the Chesapeake Bay.” J. Mar. Sci. Eng. 6 (3): 86. https://doi.org/10.3390/jmse6030086.
Bilskie, M. V., S. C. Hagen, K. Alizad, S. C. Medeiros, D. L. Passeri, H. F. Needham, and A. Cox. 2016. “Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico.” Earth’s Future 4 (5): 177–193. https://doi.org/10.1002/2015EF000347.
Bilskie, M. V., S. C. Hagen, S. C. Medeiros, and D. L. Passeri. 2014. “Dynamics of sea level rise and coastal flooding on a changing landscape.” Geophys. Res. Lett. 41 (3): 927–934. https://doi.org/10.1002/2013GL058759.
Blanton, B., L. Stillwell, H. Roberts, J. Atkinson, S. Zou, M. Forte, J. Hanson, and R. Luettich. 2011. Coastal storm surge analysis: Computational system. Washington, DC: FEMA, USACE.
Boesch, D. F., et al. 2018. Sea-level rise: Projections for Maryland 2018. Cambridge, MD: Univ. of Maryland Center for Environmental Science.
Booij, N., R. C. Ris, and L. H. Holthuijsen. 1999. “A third-generation wave model for coastal regions: 1. Model description and validation.” J. Geophys. Res. 104 (4): 7649–7666. https://doi.org/10.1029/98JC02622.
Boon, J. D. 2012. “Evidence of sea level acceleration at U.S. and Canadian tide stations, Atlantic Coast, North America.” J. Coastal Res. 285 (6): 1437–1445. https://doi.org/10.2112/JCOASTRES-D-12-00102.1.
Boon, J. D., J. M. Brubaker, and D. R. Forrest. 2010. Chesapeake Bay land subsidence and sea level change an evaluation of past and present trends and future outlook. Norfolk District, VA: USACE.
Boon, J. D., and M. Mitchell. 2015. “Nonlinear change in sea level observed at North American tide stations.” J. Coastal Res. 316 (6): 1295–1305. https://doi.org/10.2112/JCOASTRES-D-15-00041.1.
Cahoon, D. R., P. F. Hensel, T. Spencer, D. J. Reed, K. L. McKee, and N. Saintilan. 2006. “Coastal wetland vulnerability to relative sea-level rise: Wetland elevation trends and process controls.” In Vol. 190 of Wetlands and natural resource management, 271–292. Berlin: Springer.
Cardone, V. J., A. T. Cox, J. A. Greenwood, and E. F. Thompson. 1994. Upgrade of tropical cyclone surface wind field model. Washington, DC: USACE.
Cazenave, A., and G. Le Cozannet. 2013. “Sea level rise and its coastal impacts.” Earth’s Future 2 (2): 15–34. https://doi.org/10.1002/2013EF000188.
Cazenave, A., and W. Llovel. 2010. “Contemporary sea level rise.” Ann. Rev. Mar. Sci. 2 (Jan): 145–173. https://doi.org/10.1146/annurev-marine-120308-081105.
C-CAP (Coastal Change Analysis Program). 2001. National oceanic and atmospheric administration (NOAA). Charleston, SC: Coastal Services Center.
C-CAP (Coastal Change Analysis Program). 2013. “C-CAP Land Cover Atlas.” Accessed May 24, 2017. https://coast.noaa.gov/digitalcoast/tools/lca.html.
Chesapeake Bay Program. 2019. “Wetlands.” Accessed June 29, 2021. https://www.chesapeakebay.net/issues/wetlands.
Church, J. A., and N. J. White. 2006. “A 20th century acceleration in global sea-level rise.” Geophys. Res. Lett. 33 (1): 94–97. https://doi.org/10.1029/2005GL024826.
Church, J. A., and N. J. White. 2011. “Sea-level rise from the late 19th to the early 21st century.” Surv. Geophys. 32 (4–5): 585–602. https://doi.org/10.1007/s10712-011-9119-1.
CIESIN (Center for International Earth Science Information Network)—Columbia University. 2018. Gridded population of the world, version 4 (GPWv4): Population density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center.
Clearwater, D., P. Turgeon, C. Noble, and J. LaBranche. 2000. An overview of wetlands and water resources of Maryland. Baltimore: Maryland Wetland Conservation Plan Work Group, Maryland Department of the Environment.
Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. 2nd ed. Washington, DC: US Dept. of the Interior Fish and Wildlife Service Office of Biological Services.
Craft, C., J. Clough, J. Ehman, S. Jove, R. Park, S. Pennings, H. Guo, and M. Machmuller. 2009. “Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services.” Front. Ecol. Environ. 7 (2): 73–78. https://doi.org/10.1890/070219.
Dasgupta, P. 2021. The economics of biodiversity: The Dasgupta review (abridged version). London: HM Treasury. https://doi.org/10.1142/9789812706546_0029.
Dasgupta, S., B. Laplante, C. Meisner, D. Wheeler, and J. Yan. 2009. “The impact of sea level rise on developing countries: A comparative analysis.” Clim. Change 93 (3–4): 379–388. https://doi.org/10.1007/s10584-008-9499-5.
Dasgupta, S., B. Laplante, C. Meisner, D. Wheeler, and J. Yan. 2009. “The impact of sea level rise on developing countries: A comparative analysis.” Clim. Change 93 (3–4): 379–388. https://doi.org/10.1007/s10584-008-9499-5.
Devlin, A. T., J. Pan, and H. Lin. 2019. “Extended spectral analysis of tidal variability in the North Atlantic Ocean.” J. Geophys. Res. Oceans 124 (1): 506–526. https://doi.org/10.1029/2018JC014694.
Dietrich, J. C., S. Tanaka, J. J. Westerink, C. N. Dawson, R. A. Luettich, M. Zijlema, L. H. Holthuijsen, J. M. Smith, L. G. Westerink, and H. J. Westerink. 2012. “Performance of the unstructured-mesh, SWAN+ ADCIRC model in computing hurricane waves and surge.” J. Sci. Comput. 52 (2): 468–497. https://doi.org/10.1007/s10915-011-9555-6.
Dietrich, J. C., M. Zijlema, J. J. Westerink, L. H. Holthuijsen, C. Dawson, R. A. Luettich, R. E. Jensen, J. M. Smith, G. S. Stelling, and G. W. Stone. 2011. “Modeling hurricane waves and storm surge using integrally-coupled, scalable computations.” Coastal Eng. 58 (1): 45–65. https://doi.org/10.1016/j.coastaleng.2010.08.001.
Doxsey-Whitfield, E., K. MacManus, S. B. Adamo, L. Pistolesi, J. Squires, O. Borkovska, and S. R. Baptista. 2015. “Taking advantage of the improved availability of census data: A first look at the gridded population of the world, version 4.” Appl. Geogr. 1 (3): 226–234. https://doi.org/10.1080/23754931.2015.1014272.
Emanuel, K. 2021. “Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models.” J. Clim. 34 (1): 57–70. https://doi.org/10.1175/JCLI-D-20-0367.1.
Epanchin-Niell, R., C. Kousky, A. Thompson, and M. Walls. 2017. “Threatened protection: Sea level rise and coastal protected lands of the eastern United States.” Ocean Coastal Manage. 137 (Mar): 118–130. https://doi.org/10.1016/j.ocecoaman.2016.12.014.
Ferreira, C. M., J. L. Irish, and F. Olivera. 2014a. “Quantifying the potential impact of land cover changes due to sea-level rise on storm surge on lower Texas coast bays.” Coastal Eng. 94 (Dec): 102–111. https://doi.org/10.1016/j.coastaleng.2014.08.011.
Ferreira, C. M., F. Olivera, and J. L. Irish. 2014b. “Arc StormSurge: Integrating hurricane storm surge modeling and GIS.” J. Am. Water Resour. Assoc. 50 (1): 219–233. https://doi.org/10.1111/jawr.12127.
Forte, M., J. Hanson, L. Stillwell, M. Blanchard-Montgomery, B. Blanton, R. Luettich, H. Roberts, J. Atkinson, and J. Miller. 2011. Coastal storm surge analysis system: Digital elevation model. Washington, DC: FEMA, USACE.
Garzon, J., and C. Ferreira. 2016. “Storm surge modeling in large estuaries: Sensitivity analyses to parameters and physical processes in the Chesapeake Bay.” J. Mar. Sci. Eng. 4 (3): 45. https://doi.org/10.3390/jmse4030045.
Gesch, D. B., G. A. Evans, M. J. Oimoen, S. Arundel. 2018. “The National elevation dataset.” Accessed June 14, 2019. https://pubs.er.usgs.gov/publication/70201572.
Hallegatte, S. 2012. “The rising costs of hurricanes.” Nat. Clim. Change 2 (3): 148–149. https://doi.org/10.1038/nclimate1427.
Hallegatte, S., N. Ranger, O. Mestre, P. Dumas, J. Corfee-Morlot, C. Herweijer, and R. M. Wood. 2011. “Assessing climate change impacts, sea level rise and storm surge risk in port cities: A case study on Copenhagen.” Clim. Change 104 (1): 113–137. https://doi.org/10.1007/s10584-010-9978-3.
Hanson, J. L., H. M. Wadman, B. Blanton, and H. Roberts. 2013. “Coastal storm surge analysis: Modeling system validation.” Accessed April 14, 2018. https://apps.dtic.mil/sti/pdfs/ADA583150.pdf.
Kirwan, M. L., S. Temmerman, E. E. Skeehan, G. R. Guntenspergen, and S.  Fagherazzi. 2016. “Overestimation of marsh vulnerability to sea level rise.” Nat. Clim. Change 6 (3): 253–260. https://doi.org/10.1038/nclimate2909.
Kirwan, M. L., and J. P. Megonigal. 2013. “Tidal wetland stability in the face of human impacts and sea-level rise.” Nature 504 (7478): 53–60. https://doi.org/10.1038/nature12856.
Kopp, R. E., R. M. DeConto, D. A. Bader, C. C. Hay, R. M. Horton, S. Kulp, M. Oppenheimer, D. Pollard, and B. H. Strauss. 2017. “Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections.” Earth’s Future 5 (12): 1217–1233. https://doi.org/10.1002/2017EF000663.
Kopp, R. E., R. M. Horton, C. M. Little, J. X. Mitrovica, M. Oppenheimer, D. J. Rasmussen, B. H. Strauss, and C. Tebaldi. 2014. “Probabilistic 21st and 22nd century sea-level projections at global network of tide-gauge sites.” Earth’s Future 2 (8): 383–406. https://doi.org/10.1002/2014EF000239.
Kousky, C., and S. E. Light. 2019. “Insuring nature.” Duke Law J. 69 (2): 323–376.
Kousky, C., and M. Walls. 2014. “Floodplain conservation as a flood mitigation strategy : Examining costs and benefits.” Ecol. Econ. 104 (Aug): 119–128. https://doi.org/10.1016/j.ecolecon.2014.05.001.
Langston, A. K., C. R. Alexander, M. Alber, and M. L. Kirwan. 2021. “Beyond 2100: Elevation capital disguises salt marsh vulnerability to sea-level rise in Georgia, USA.” Estuarine Coastal Shelf Sci. 249 (Feb): 107093. https://doi.org/10.1016/j.ecss.2020.107093.
Langston, A. K., O. Durán Vinent, E. R. Herbert, and M. L. Kirwan. 2020. “Modeling long-term salt marsh response to sea level rise in the sediment-deficient Plum Island Estuary.” Limnol. Oceanogr. 65 (9): 2142–2157. https://doi.org/10.1002/lno.11444.
Le Provost, C., M. L. Genco, F. Lyard, P. Vincent, and P. Canceil. 1994. “Spectroscopy of the world ocean tides from a finite element hydro dynamic model.” J. Geophys. Res. 99 (C12): 24777–24797. https://doi.org/10.1029/94JC01381.
Li, H., L. Lin, and K. A. Burks-Copes. 2013. “Modeling of coastal inundation, storm surge, and relative sea-level rise at Naval Station Norfolk, Norfolk, Virginia, U.S.A.” J. Coastal Res. 286 (1): 18–30. https://doi.org/10.2112/JCOASTRES-D-12-00056.1.
Li, M., F. Zhang, S. Barnes, and X. Wang. 2020. “Assessing storm surge impacts on coastal inundation due to climate change: Case studies of Baltimore and Dorchester County in Maryland.” Nat. Hazards 103 (Sep): 2561–2588. https://doi.org/10.1007/s11069-020-04096-4.
Lin, N., K. Emanuel, M. Oppenheimer, and E. Vanmarcke. 2012. “Physically based assessment of hurricane surge threat under climate change.” Nat. Clim. Change 2 (6): 462–467. https://doi.org/10.1038/nclimate1389.
Lin, N., R. Marsooli, and B. A. Colle. 2019. “Storm surge return levels induced by mid-to-late-twenty-first-century extratropical cyclones in the Northeastern United States.” Clim. Change 154 (1–2): 143–158. https://doi.org/10.1007/s10584-019-02431-8.
Lin, N., J. A. Smith, G. Villarini, T. P. Marchok, and M. L. Baeck. 2010. “Modeling Extreme Rainfall, Winds, and Surge from Hurricane Isabel (2003).” Weather Forecasting 25 (5): 1342–1361. https://doi.org/10.1175/2010WAF2222349.1.
Luettich, R. A., Jr., J. J. Westerink, and N. W. Scheffner. 1992. ADCIRC: An advanced three-dimensional circulation model for shelves coasts and estuaries, report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Vicksburg, MS: USACE.
Marcy, D., et al. 2011. “New mapping tool and techniques for visualizing sea level rise and coastal flood impacts.” In Proc., Solutions to Coastal Disasters Conf. 2011, 474–490. Reston, VA: ASCE.
Marsooli, R., and N. Lin. 2020. “Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York.” Clim. Change 163 (4): 2153–2171. https://doi.org/10.1007/s10584-020-02932-x.
Marsooli, R., N. Lin, K. Emanuel, and K. Feng. 2019. “Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns.” Nat. Commun. 10 (1): 1–9. https://doi.org/10.1038/s41467-019-11755-z.
Maryland Department of Natural Resources. 2019 “Maryland’s coastal zone.” Accessed August 14, 2017. https://dnr.maryland.gov/ccs/Pages/md-coastal-zone.aspx.
Maryland Department of Planning. 2016. MdProperty view/FINDER quantum/FINDER online user’s guide. Baltimore: Maryland Department of Planning, Planning Services Divsion.
McFadden, L., T. Spencer, and R. J. Nicholls. 2007. “Broad-scale modelling of coastal wetlands: What is required?” Hydrobiologia 577 (1): 5–15. https://doi.org/10.1007/s10750-006-0413-8.
Meehl, G. A., et al. 2007. “Global climate projections.” In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller. Cambridge, UK: Cambridge University Press.
Mendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen. 2012. “The impact of climate change on global tropical cyclone damage.” Nat. Clim. Change 2 (3): 205–209. https://doi.org/10.1038/nclimate1357.
Michael, J. A., D. A. Sides, and T. E. Sullivan. 2003. “The economic cost of sea level rise to three Chesapeake bay communities.” Accessed April 21, 2018. https://dnr.maryland.gov/ccs/Publication/2003ec_SeaLevelRise.pdf.
Mitchell, M., C. Hershner, H. Julie, D. Schatt, P. Mason, and E. Eggington. 2013. Recurrent flooding study for Tidewater Virginia. Gloucester Point, VA: Virginia Institute of Marine Science.
Moftakhari, H., J. E. Schubert, A. AghaKouchak, R. A. Matthew, and B. F. Sanders. 2019. “Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries.” Adv. Water Resour. 128 (Jun): 28–38. https://doi.org/10.1016/j.advwatres.2019.04.009.
Moftakhari, H. R., A. AghaKouchak, B. F. Sanders, and R. A. Matthew. 2017. “Cumulative hazard: The case of nuisance flooding.” Earth’s Future 5 (2): 214–223. https://doi.org/10.1002/2016EF000494.
Molino, G. D., M. A. Kenney, and A. E. Sutton-Grier. 2020. “Stakeholder-defined scientific needs for coastal resilience decisions in the Northeast US.” Mar. Policy 118 (Aug): 103987. https://doi.org/10.1016/j.marpol.2020.103987.
Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve, and D. R. Cahoon. 2002. “Responses of coastal wetlands to rising sea level.” Ecology 83 (10): 2869–2877. https://doi.org/10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2.
Moser, S. C., M. A. Davidson, P. Kirshen, P. Mulvaney, J. F. Murley, J. E. Neumann, L. Petes, and D. Reed, 2014. “Coastal zone development and ecosystems.” In Chap. 25 in Climate change impacts in the United States: The third national climate assessment, edited by J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, 579–618. Washington, DC: US Global Change Research Program. https://doi.org/10.7930/J0MS3QNW.
Neumann, J. E., K. Emanuel, S. Ravela, L. Ludwig, P. Kirshen, K. Bosma, and J. Martinich. 2015. “Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy.” Clim. Change 129 (1–2): 337–349. https://doi.org/10.1007/s10584-014-1304-z.
Nicholls, R. J. 2004. “Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios.” Global Environ. Change 14 (1): 69–86. https://doi.org/10.1016/j.gloenvcha.2003.10.007.
Nicholls, R. J., and A. Cazenave. 2010. “Sea level rise and its impact on coastal zones.” Science 328 (5985): 1517–1520. https://doi.org/10.1126/science.1185782.
Nicholls, R. J., F. M. J. Hoozemans, and M. Marchand. 1999. “Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses.” Supplement, Global Environ. Change 9 (S1): S69–S87. https://doi.org/10.1016/S0959-3780(99)00019-9.
Nicholls, R. J., P. P. Wong, V. R. Burkett, J. O. Codignotto, J. E. Hay, R. F. McLean, S. Ragoonaden, and C. D. Woodroffe. 2007. “Coastal systems and low-lying areas.” In Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, edited by M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, 315–356. Cambridge, UK: Cambridge University Press.
NOAA (National Oceanic and Atmospheric Administration). 2004. Service assessment Hurricane Isabel September 18–19, 2003. Silver Spring, MD: National Weather Service.
NOAA (National Oceanic and Atmospheric Administration). 2013. “National coastal population report: Population trends from 1970 to 2010.” Accessed June 29, 2021. https://coast.noaa.gov/digitalcoast/training/population-report.html.
NOAA (National Oceanic and Atmospheric Administration). 2017. “Detailed method for mapping sea level rise marsh migration.” Accessed May 20, 2018. https://coast.noaa.gov/data/digitalcoast/pdf/slr-marsh-migration-methods.pdf.
NOAA (National Oceanic and Atmospheric Administration). 2020. “Hurricane costs.” Accessed May 26, 2020. https://coast.noaa.gov/states/fast-facts/hurricane-costs.html.
Parris, A., et al. 2012. Global Sea Level Rise Scenarios for the US National Climate Assessment. Silver Spring, MD: National Oceanic and Atmospheric Administration.
Passeri, D. L., S. C. Hagen, N. G. Plant, M. V. Bilskie, S. C. Medeiros, and K. Alizad 2016. “Tidal hydrodynamics under future sea level rise and coastal morphology in the Northern Gulf of Mexico.” Earth’s Future 4: 159–176. https://doi.org/10.1002/2015EF000332.
Passeri, D. L., S. C. Hagen, M. V. Bilskie, and S. C. Medeiros. 2015. “On the significance of incorporating shoreline changes for evaluating coastal hydrodynamics under sea level rise scenarios.” Nat. Hazards 75 (2): 1599–1617. https://doi.org/10.1007/s11069-014-1386-y.
Rezaie, A. M., C. M. Ferreira, M. Walls, and Z. Chu. 2017. “Quantifying the future flood impact and damages in the Chesapeake Bay regions due to storm surge, sea level rise and marsh migration.” In Proc., Student Paper in the 2017 Association of State Floodplain Management Conf. Madison, WI: Association of State Floodplain Management.
Rezaie, A. M., J. Loerzel, and C. M. Ferreira. 2020. “Valuing natural habitats for enhancing coastal resilience: Wetlands reduce property damage from storm surge and sea level rise.” PLoS One 15 (1): e0226275. https://doi.org/10.1371/journal.pone.0226275.
Sallenger, A. H., Jr., K. S. Doran, and P. A. Howd. 2012. “Hotspot of accelerated sea-level rise on the Atlantic coast of North America.” Nat. Clim. Change 2 (12): 884–888. https://doi.org/10.1038/nclimate1597.
Scawthorn, C., N. Blais, H. Seligson, E. Tate, E. Mifflin, W. Thomas, J. Murphy, and C. Jones. 2006a. “HAZUS-MH flood loss estimation methodology. I: Overview and flood hazard characterization.” Nat. Hazards Rev. 7 (2): 60–71. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(60).
Scawthorn, C., N. Blais, H. Seligson, E. Tate, E. Mifflin, W. Thomas, J. Murphy, and C. Jones. 2006b. “HAZUS-MH flood loss estimation methodology II. Damage and Loss Assessment.” Nat. Hazards Rev. 7 (2): 72–81. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(72).
Schile, L. M., J. C. Callaway, J. T. Morris, D. Stralberg, V. T. Parker, and M. Kelly. 2014. “Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.” PLoS One 9 (2): e88760. https://doi.org/10.1371/journal.pone.0088760.
Schuerch, M., et al. 2018. “Future response of global coastal wetlands to sea-level rise.” Nature 561 (7722): 231–234. https://doi.org/10.1038/s41586-018-0476-5.
Smith, A. B., and R. W. Katz. 2013. “US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases.” Nat. Hazards 67 (2): 387–410. https://doi.org/10.1007/s11069-013-0566-5.
Strauss, B., C. Tebaldi, S. Kulp, S. Cutter, C. Emrich, D. Rizza, and D. Yawitz. 2014a. “Maryland and the surging sea: A vulnerability assessment with projections for sea level rise and coastal flood risk.” Accessed May 24 2018. https://sealevel.climatecentral.org/research/reports/maryland-and-the-surging-sea.
Strauss, B., C. Tebaldi, S. Kulp, S. Cutter, C. Emrich, D. Rizza, and D. Yawitz. 2014b. “Virginia and the surging sea: A vulnerability assessment with projections for sea level rise and coastal flood risk.” Accessed March 25, 2019. https://sealevel.climatecentral.org/research/reports/virginia-and-the-surging-sea.
Sweet, W. V., R. E. Kopp, C. P. Weaver, J. Obeysekera, R. M. Horton, E. R. Thieler, and C. Zervas. 2017. “Global and regional sea level rise scenarios for the United States.” Accessed March 25, 2019. https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf.
Tebaldi, C., B. H. Strauss, and C. E. Zervas. 2012. “Modelling sea level rise impacts on storm surges along US coasts.” Environ. Res. Lett. 7 (1): 014032. https://doi.org/10.1088/1748-9326/7/1/014032.
Thompson, E., and V. Cardone. 1996. “Practical modeling of hurricane surface wind fields.” J. Waterway, Port, Coastal, Ocean Eng. 122 (4): 195–205. https://doi.org/10.1061/(ASCE)0733-950X(1996)122:4(195).
Thorne, K., et al. 2018. “U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise.” Sci. Adv. 4 (2): 1–11. https://doi.org/10.1126/sciadv.aao3270.
TNC and NOAA (Nature Conservancy and National Oceanic and Atmospheric Administration). 2011. “Marshes on the move: A manager’s guide to understanding and using model results depicting potential impacts of sea level rise on coastal wetlands.” Accessed June 11, 2018. https://coast.noaa.gov/data/digitalcoast/pdf/marshes-on-the-move.pdf.
Valle-Levinson, A., A. Dutton, and J. B. Martin. 2017. “Spatial and temporal variability of sea level rise hot spots over the eastern United States.” Geophys. Res. Lett. 44 (15): 7876–7882. https://doi.org/10.1002/2017GL073926.
Van Coppenolle, R., and S. Temmerman. 2020. “Identifying global hotspots where coastal wetland conservation can contribute to nature-based mitigation of coastal flood risks.” Global Planet Change 187 (Mar): 103125. https://doi.org/10.1016/j.gloplacha.2020.103125.
Virginia DEQ (Department of Environmental Quality). 2021." Coastal zone management Accessed July 1, 2021. https://www.deq.virginia.gov/get-involved/coastal-zone-management.
Wainger, L. A., A. McMurray, H. R. Griscom, E. O. Murray, J. A. Cushing, C. H. Theiling, and S. Komlos. 2020. A proposed ecosystem services analysis framework for the US Army Corps of Engineers, 39180–36199. Vicksburg, MS: US Army Engineer Research and Development Center. https://doi.org/10.21079/11681/37741.
Wamsley, T. V., M. A. Cialone, J. M. Smith, B. A. Ebersole, and A. S. Grzegorzewski. 2009. “Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana.” Nat. Hazards 51 (1): 207–224. https://doi.org/10.1007/s11069-009-9378-z.
Westerink, J. J., R. A. Luettich, J. C. Feyen, J. H. Atkinson, C. Dawson, H. J. Roberts, M. D. Powell, J. P. Dunion, E. J. Kubatko, and H. Pourtaheri. 2008. “A basin- to channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana.” Mon. Weather Rev. 136 (3): 833–864. https://doi.org/10.1175/2007MWR1946.1.
Wong, P. P., I. J. Losada, J.-P. Gattuso, J. Hinkel, A. Khattabi, K. L. McInnes, Y. Saito, and A. Sallenger. 2014. “Coastal systems and low-lying areas.” In Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, edited by C. B. Field, et al., 361–409. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781107415379.010.
Yin, J., S. M. Griffies, and R. J. Stouffer. 2010. “Spatial variability of sea level rise in twenty-first century projections.” J. Clim. 23 (17): 4585–4607. https://doi.org/10.1175/2010JCLI3533.1.

Information & Authors

Information

Published In

Go to Natural Hazards Review
Natural Hazards Review
Volume 22Issue 4November 2021

History

Received: Aug 29, 2020
Accepted: Apr 29, 2021
Published online: Aug 9, 2021
Published in print: Nov 1, 2021
Discussion open until: Jan 9, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Fellow, Dept. of Civil, Environmental, and Infrastructure Engineering, George Mason Univ., 4400 University Dr., MS 6C1, Fairfax, VA 22030 (corresponding author). ORCID: https://orcid.org/0000-0001-5583-6268. Email: [email protected]; [email protected]
Celso M. Ferreira, A.M.ASCE [email protected]
Associate Professor, Dept. of Civil, Environmental, and Infrastructure Engineering, George Mason Univ., 4400 University Dr., MS 6C1, Fairfax, VA 22030. Email: [email protected]
Margaret Walls [email protected]
Senior Fellow, Resources for the Future, 1616 P St. NW, Washington, DC 20036. Email: [email protected]
Lead GIS Programmer, First Street Foundation, 215 Plymouth St., Floor 3, Brooklyn, NY 11201. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Exploring diverse perspectives of coastal resilience: The state of resilience model, Shore & Beach, 10.34237/1009043, (18-27), (2022).
  • ArcWaT: a model-based cell-by-cell GIS toolbox for estimating wave transformation during storm surge events, Geocarto International, 10.1080/10106049.2022.2037731, 37, 25, (10532-10555), (2022).
  • Quantitative Stress Test of Compound Coastal‐Fluvial Floods in China's Pearl River Delta, Earth's Future, 10.1029/2021EF002638, 10, 5, (2022).
  • Toward Collaborative Adaptation: Assessing Impacts of Coastal Flooding at the Watershed Scale, Environmental Management, 10.1007/s00267-022-01759-9, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share