Technical Papers
Nov 28, 2022

Cyclic and Postcyclic Interface Characteristics of Geotextile-Embedded Sand-Rubber Composites

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 2

Abstract

A set of 48 cyclic and 12 monotonic large-scale direct shear tests was performed to assess the interface properties of sand–rubber composite along a nonwoven geotextile layer. Rubber content, semiamplitude of the shear displacement, and applied normal stress all were varied to determine the cyclic, postcyclic, and monotonic interface response of the composite system under shear loading. The test results show that adding 40% granulated rubber to pure sand caused approximately 50% reduction in the maximum mobilized interface shear stress as the loading cycles progressed. The addition of granulated rubber to the sand decreased both the damping and the shear stiffness of the interface for all values of displacement amplitude and normal stress; in particular, for the energy dissipation, the observations were associated with the higher linearity of the stress–strain relationship when adding rubber, thereby reversing the typical trend of higher damping at smaller strains or displacements. In addition, an increase in the displacement amplitude value yielded a reduction in the secant shear stiffness, but contrarily increased the damping ratio of the geotextile–composite soil interface. An increasing trend of the hardening factor was observed through the initial cycles of loading for the samples containing 40% granulated rubber, which was ascribed to the increased densification capability of the sand–rubber mixture with the progression of the loading cycles; however, this response was not captured for the pure sand–geotextile interface.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Afzali-Nejad, A., A. Lashkari, and P. T. Shourijeh. 2017. “Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces.” Geotext. Geomembr. 45 (1): 54–66. https://doi.org/10.1016/j.geotexmem.2016.07.005.
Aghili, E., I. Hosseinpour, R. Jamshidi Chenari, and H. Ahmadi. 2021. “Behavior of granular column-improved clay under cyclic shear loading.” Transp. Geotech. 31 (Nov): 100654. https://doi.org/10.1016/j.trgeo.2021.100654.
Alaie, R., and R. Jamshidi Chenari. 2018. “Cyclic and post-cyclic shear behaviour of interface between geogrid and EPS beads-sand backfill.” KSCE J. Civ. Eng. 22 (9): 3340–3357. https://doi.org/10.1007/s12205-018-0945-2.
Alikarami, R., E. Ando, M. Gkiousas-Kapnisis, A. Totabi, and G. Viggiani. 2015. “Strain localisation and grain breakage in sand under shearing at high mean stress: Insights from in situ X-ray tomography.” Acta Geotech. 10 (1): 15–30. https://doi.org/10.1007/s11440-014-0364-6.
Almeida, M. S. S., M. Riccio, I. Hosseinpour, and D. Alexiew. 2018. Geosynthetic-encased column for soft soil improvement. London: Taylor & Francis.
Anastasiadis, A., K. Senetakis, and K. Pitilakis. 2012. “Small-strain shear modulus and damping ratio of sand-rubber and gravel-rubber mixtures.” Geotech. Geol. Eng. 30 (2): 363–382. https://doi.org/10.1007/s10706-011-9473-2.
Anbazhagan, P., and D. R. Manohar. 2015. “Energy absorption capacity and shear strength characteristics of waste tire crumbs and sand mixtures.” Int. J. Geotech. Earthquake Eng. 6 (1): 28–49. https://doi.org/10.4018/IJGEE.2015010103.
ASTM. 1996. Standard test method for grab breaking load and elongation of geotextiles. ASTM D4632. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard test method for trapezoid tearing strength of geotextiles. ASTM D4533. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for static puncture strength of geotextiles and geotextile-related products using a 50-mm probe. ASTM D6241. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test method for determining the shear strength of soil-geosynthetic and geosynthetic-geosynthetic interfaces by direct shear. ASTM D5321. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for tensile properties of geotextiles by the wide-width strip method. ASTM-D4595. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard test method for deterioration of geotextiles by exposure to light, moisture, and heat in a xenon arc-type apparatus. ASTM D4355. West Conshohocken, PA: ASTM.
Athanasopoulos, G. A. 1996. “Results of direct shear tests on geotextile reinforced cohesive soil.” Geotext. Geomembr. 14 (11): 619–644. https://doi.org/10.1016/S0266-1144(97)00002-2.
Bahadori, H., and S. Manafi. 2015. “Effect of tyre chips on dynamic properties of saturated sands.” Int. J. Phys. Modell. Geotech. 15 (3): 116–128. https://doi.org/10.1680/jphmg.13.00014.
Balunaini, U., V. K. D. Mohan, M. Prezzi, and R. Salgado. 2014. “Shear strength of tyre chip–sand and tyre shred–sand mixtures.” Proc. Inst. Civ. Eng. Geotech. Eng. 167 (6): 585–595. https://doi.org/10.1680/geng.13.00097.
Banzibaganye, G., A. Becker, and C. Vrettos. 2019. “Static and cyclic triaxial tests on medium sand and tire chips mixtures.” In Proc., 17th African Regional Conf. on Soil Mechanics and Geotechnical Engineering, 163–168. Cape Town, South Africa: South African Institution of Civil Engineering.
Basti, T. H., R. Jamshidi Chenari, M. Payan, and K. Senetakis. 2021. “Monotonic, cyclic and post-cyclic shearing behavior of sand-EPS geofoam interface.” Geosynth. Int. 28 (3): 259–278. https://doi.org/10.1680/jgein.20.00041.
Belabdelouhab, F., and N. Kebaïli. 2015. “Large scale experimentation slope stability of «soil tyre» in Mostaganem (Algeria).” Energy Procedia 74 (Aug): 699–706. https://doi.org/10.1016/j.egypro.2015.07.805.
Bernal, A., R. Salgado, R. H. Swan, and C. W. Lovell. 1997. “Interaction between tire shreds, rubber-sand and geosynthetics.” Geosynth. Int. 4 (6): 623–643. https://doi.org/10.1680/gein.4.0108.
Cen, W. J., H. Wang, Y. J. Sun, and L. S. Wen. 2018. “Monotonic and cyclic shear behaviour of geomembrane-sand interface.” Geosynth. Int. 25 (4): 369–377. https://doi.org/10.1680/jgein.18.00017.
Chegenizadeh, A., M. Keramatikerman, G. Dalla Santa, and H. Nikraz. 2018. “Influence of recycled tyre amendment on the mechanical behaviour of soil-bentonite cut-off walls.” J. Cleaner Prod. 177 (Mar): 507–515. https://doi.org/10.1016/j.jclepro.2017.12.268.
Clayton, C. R. I. 2011. “Stiffness at small strain: Research and practice.” Géotechnique 61 (1): 5–37. https://doi.org/10.1680/geot.2011.61.1.5.
Edeskär, T. 2006. “Use of tyre shreds in civil engineering applications: Technical and environmental properties.” Doctoral dissertation, Dept. of Civil and Environmental Engineering, Lulea Univ. of Technology.
Edil, T. B., and P. J. Bosscher. 1994. “Engineering properties of tire chips and soil mixtures.” Geotech. Test. J. 17 (4): 453–464. https://doi.org/10.1520/GTJ10306J.
Edinçliler, A., G. Baykal, and A. Saygılı. 2010. “Influence of different processing techniques on the mechanical properties of used tires in embankment construction.” Waste Manage. (Oxford) 30 (6): 1073–1080. https://doi.org/10.1016/j.wasman.2009.09.031.
Enquan, Z., and W. Qiong. 2019. “Experimental investigation on shear strength and liquefaction potential of rubber-sand mixtures.” Adv. Civ. Eng. 2019 (6): 1–11. https://doi.org/10.1155/2019/5934961.
Feng, Z. Y., and K. G. Sutter. 2000. “Dynamic properties of granulated rubber/sand mixtures.” Geotech. Test. J. 23 (3): 338–344. https://doi.org/10.1520/GTJ11055J.
Ferreira, F. B., C. S. Vieira, and M. Lopes. 2015. “Direct shear behaviour of residual soil–geosynthetic interfaces–influence of soil moisture content, soil density and geosynthetic type.” Geosynth. Int. 22 (3): 257–272. https://doi.org/10.1680/gein.15.00011.
Fu, R., M. R. Coop, and X. Q. Li. 2014. “The mechanics of a compressive sand mixed with tyre rubber.” Géotech. Lett. 4 (3): 238–243. https://doi.org/10.1680/geolett.14.00027.
Ghazavi, M., and M. A. Sakhi. 2005. “Influence of optimized tire shreds on shear strength parameters of sand.” Int. J. Geomech. 5 (1): 58–65. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:1(58).
Haeri, S. M., R. Noorzad, and A. M. Oskoorouchi. 2000. “Effect of geotextile reinforcement on the mechanical behavior of sand.” Geotext. Geomembr. 18 (6): 385–402. https://doi.org/10.1016/S0266-1144(00)00005-4.
Hazarika, H., E. Kohama, and T. Sugano. 2008. “Underwater shake table tests on waterfront structures protected with tire chips cushion.” J. Geotech. Geoenviron. Eng. 134 (12): 1706–1719. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1706).
Hazarika, H., S. M. K. Pasha, I. Ishibashi, N. Yoshimoto, T. Kinoshita, S. Endo, A. K. Karmokar, and T. Hitosugi. 2020. “Tire-chip reinforced foundation as liquefaction countermeasure for residential buildings.” Soils Found. 60 (2): 315–326. https://doi.org/10.1016/j.sandf.2019.12.013.
He, H., W. Chen, Z. Y. Yin, K. Senetakis, and J. H. Yin. 2021. “A micromechanical-based study on the tribological and creep-relaxation behavior of sand-FRP composite interfaces.” Compos. Struct. 275 (Nov): 114423. https://doi.org/10.1016/j.compstruct.2021.114423.
Henry, K. S., and R. D. Holtz. 1997. “Capillary rise of water in geotextiles and their performance as capillary barriers.” In Proc., Int. Symp. on Ground Freezing and Frost Action in Soils, edited by S. Knutsson, 227–233. Lulea, Sweden: A. A. Balkema.
Hosseinpour, I., S. H. Mirmoradi, A. Barari, and M. Omidvar. 2010. “Numerical evaluation of sample size effect on the stress-strain behavior of geotextile-reinforced sand.” J. Zhejiang Univ. Sci. A 11 (8): 555–562. https://doi.org/10.1631/jzus.A0900535.
Ishihara, K. 1996. Soil behaviour in earthquake geotechnics. Oxford: Oxford Science.
Jamshidi Chenari, R., R. E. Khonachah, I. Hosseinpour, and A. Khajeh. 2020. “An experimental study for the cyclic interface properties of the EPS–sand mixtures reinforced with geogrid.” Int. J. Civ. Eng. 18 (2): 151–159. https://doi.org/10.1007/s40999-019-00424-3.
Kim, H. K., and J. C. Santamarina. 2008. “Sand–rubber mixtures (large rubber chips).” Can. Geotech. J. 45 (10): 1457–1466. https://doi.org/10.1139/T08-070.
Kowalska, M., and M. Chmielewski. 2017. “Mechanical parameters of rubber-sand mixtures for numerical analysis of a road embankment.” IOP Conf. Ser.: Mater. Sci. Eng. 245 (5): 052003. https://doi.org/10.1088/1757-899X/245/5/052003.
Kramer, S. L. 1996. Geotechnical earthquake engineering. London: Pearson Education India.
Lambert, S., F. Nicot, and P. Gotteland. 2011. “Uniaxial compressive behavior of scrapped tire and sand-filled wire netted geocell with a geotextile envelope.” Geotext. Geomembr. 29 (5): 483–490. https://doi.org/10.1016/j.geotexmem.2011.04.001.
Li, B., M. Huang, and X. Zeng. 2016. “Dynamic behavior and liquefaction analysis of recycled-rubber sand mixtures.” J. Mater. Civ. Eng. 28 (11): 04016122. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001629.
Li, M.-H., and R. B. Gilbert. 2006. “Mechanism of post-peak strength reduction for textured geomembrane–nonwoven geotextile interfaces.” Geosynth. Int. 13 (5): 206–209. https://doi.org/10.1680/gein.2006.13.5.206.
Liu, F. Y., P. Wang, X. Y. Geng, J. Wang, and X. Lin. 2016. “Cyclic and post-cyclic behaviour from sand–geogrid interface large-scale direct shear tests.” Geosynth. Int. 23 (2): 129–139. https://doi.org/10.1680/jgein.15.00037.
Liu, S., Y. Wang, and C. Shen. 2017. “DEM analysis of granular crushing during simple shearing.” Mar. Georesour. Geotechnol. 36 (5): 522–531. https://doi.org/10.1080/1064119X.2017.1349846.
Madhusudhan, B. R., A. Boominathan, and S. Banerjee. 2017. “Static and large-strain dynamic properties of sand–rubber tire shred mixtures.” J. Mater. Civ. Eng. 29 (10): 04017165. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002016.
Madhusudhan, B. R., A. Boominathan, and S. Banerjee. 2019. “Factors affecting strength and stiffness of dry sand-rubber tire shred mixtures.” Geotech. Geol. Eng. 37 (4): 2763–2780. https://doi.org/10.1007/s10706-018-00792-y.
Markou, I. N. 2018. “A study on geotextile—Sand interface behavior based on direct shear and triaxial compression tests.” Int. J. Geosynth. Ground Eng. 4 (1): 1–15. https://doi.org/10.1007/s40891-017-0121-7.
Mashiri, M. S., J. S. Vinod, M. N. Sheikh, and J. A. H. Carraro. 2017. “Shear modulus of sand–tyre chip mixtures.” Environ. Geotech. 5 (6): 336–344. https://doi.org/10.1680/jenge.16.00016.
Mashiri, M. S., J. S. Vinod, M. N. Sheikh, and H.-H. Tsang. 2015. “Shear strength and dilatancy behaviour of sand–tyre chip mixtures.” Soils Found. 55 (3): 517–528. https://doi.org/10.1016/j.sandf.2015.04.004.
Mirnaghizadeh, M., M. Hajiazizi, and M. Nasiri. 2020. “Stabilization of earth slope by waste tire using experimental tests and PIV.” J. Rehabil. Civ. Eng. 8 (3): 139–157. https://doi.org/10.22075/jrce.2020.19096.1359.
Mortara, G., A. Mangiola, and V. T. Ghionna. 2007. “Cyclic shear stress degradation and post-cyclic behavior from sand–steel interface direct shear tests.” Can. Geotech. J. 44 (7): 739–752. https://doi.org/10.1139/t07-019.
Noorzad, R., and S. H. Mirmoradi. 2010. “Laboratory evaluation of the behavior of a geotextile reinforced clay.” Geotext. Geomembr. 28 (4): 386–392. https://doi.org/10.1016/j.geotexmem.2009.12.002.
Punetha, P., P. Mohanty, and M. Samanta. 2017. “Microstructural investigation on mechanical behavior of soil-geosynthetic interface in direct shear test.” Geotext. Geomembr. 45 (3): 197–210. https://doi.org/10.1016/j.geotexmem.2017.02.001.
Sayeed, M. M. A., B. J. Ramaiah, and A. Rawal. 2014. “Interface shear characteristics of jute/polypropylene hybrid nonwoven geotextiles and sand using large size direct shear test.” Geotext. Geomembr. 42 (1): 63–68. https://doi.org/10.1016/j.geotexmem.2013.12.001.
Senetakis, K., A. Anastasiadis, and K. Pitilakis. 2012. “Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes.” Soil Dyn. Earthquake Eng. 33 (1): 38–53. https://doi.org/10.1016/j.soildyn.2011.10.003.
Shrestha, S., N. Ravichandran, M. Raveendra, and J. A. Attenhofer. 2016. “Design and analysis of retaining wall backfilled with shredded tire and subjected to earthquake shaking.” Soil Dyn. Earthquake Eng. 90 (Nov): 227–239. https://doi.org/10.1016/j.soildyn.2016.08.034.
Stormont, J. C., K. S. Henry, and T. M. Evans. 1997. “Water retention functions of four nonwoven polypropylene geotextiles.” Geosynth. Int. 4 (6): 661–672. https://doi.org/10.1680/gein.4.0110.
Stormont, J. C., C. Ray, and T. M. Evans. 2001. “Transmissivity of a nonwoven polypropylene geotextile under suction.” Geotech. Test. J. 24 (2): 164–171. https://doi.org/10.1520/GTJ11336J.
Tanchaisawat, T., D. T. Bergado, P. Voottipruex, and K. Shehzad. 2010. “Interaction between geogrid reinforcement and tire chip–sand lightweight backfill.” Geotext. Geomembr. 28 (1): 119–127. https://doi.org/10.1016/j.geotexmem.2009.07.002.
Tatlisoz, N., T. B. Edil, and C. H. Benson. 1998. “Interaction between reinforcing geosynthetics and soil-tire chip mixtures.” J. Geotech. Geoenviron. Eng. 124 (11): 1109–1119. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1109).
Thay, S., S. Likitlersuang, and T. Pipatpongsa. 2013. “Monotonic and cyclic behavior of Chiang Mai sand under simple shear mode.” Geotech. Geol. Eng. 31 (1): 67–82. https://doi.org/10.1007/s10706-012-9563-9.
Tian, Y., S. S. Kasyap, and K. Senetakis. 2021. “Influence of loading history and soil type on the normal contact behavior of natural sand grain-elastomer composite interfaces.” Polymers 13 (11): 1830. https://doi.org/10.3390/polym13111830.
Tian, Y., and K. Senetakis. 2021. “Influence of creep on the small-strain stiffness of sand–rubber mixtures.” Géotechnique 1–12. https://doi.org/10.1680/jgeot.20.P.208.
Tian, Y., and K. Senetakis. 2022. “On the contact problem of soft-rigid interfaces: Incorporation of Mindlin-Deresiewicz and self-deformation concepts.” Granular Matter 24 (1): 28. https://doi.org/10.1007/s10035-021-01186-3.
Uchimura, T., N. Chi, S. Nirmalan, T. Sato, M. Meidani, and I. Towhata. 2007. “Shaking table tests on effect of tire chips and sand mixture in increasing liquefaction resistance and mitigating uplift of pipe.” In Proc., Int. Workshop on Scrap tire Derived Geomaterials—Opportunities and Challenges, 179–186. London: Taylor & Francis.
Vieira, C. S., M. D. L. Lopes, and L. Caldeira. 2015. “Sand-Nonwoven geotextile interfaces shear strength by direct shear and simple shear tests.” Geomech. Eng. 9 (5): 601–618. https://doi.org/10.12989/gae.2015.9.5.601.
Vieira, C. S., M. L. Lopes, and L. M. Caldeira. 2013. “Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests.” Geosynth. Int. 20 (1): 26–38. https://doi.org/10.1680/gein.12.00037.
Wang, J., F. Y. Liu, P. Wang, and Y. Q. Cai. 2016. “Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests.” Geotext. Geomembr. 44 (6): 854–861. https://doi.org/10.1016/j.geotexmem.2016.06.011.
Wang, J., and H. B. Yan. 2013. “On the role of particle breakage in the shear failure behavior of granular soils by DEM.” Int. J. Numer. Anal. Methods Geomech. 37 (8): 832–854. https://doi.org/10.1002/nag.1124.
Yang, Z. X., R. J. Jardine, B. T. Zhu, P. Foray, and C. H. Tsuha. 2010. “Sand grain crushing and interface shearing during displacement pile installation in sand.” Géotechnique 60 (6): 469–482. https://doi.org/10.1680/geot.2010.60.6.469.
Ying, M.-J., J. Wang, F. Y. Liu, J.-T. Li, and S.-Q. Chen. 2022. “Analysis of cyclic shear characteristics of reinforced soil interfaces under cyclic loading and unloading.” Geotext. Geomembr. 50 (1): 99–115. https://doi.org/10.1016/j.geotexmem.2021.09.004.
Zornberg, J. G., A. R. Cabral, and C. Viratjandr. 2004. “Behaviour of tire shred–sand mixtures.” Can. Geotech. J. 41 (2): 227–241. https://doi.org/10.1139/t03-086.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 2February 2023

History

Received: Nov 3, 2021
Accepted: May 23, 2022
Published online: Nov 28, 2022
Published in print: Feb 1, 2023
Discussion open until: Apr 28, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Navid Madani [email protected]
M.Sc. Student, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Guilan, Persian Gulf Hwy., Rasht 41996-13776, Iran. Email: [email protected]
Iman Hosseinpour, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Guilan, Persian Gulf Hwy., Rasht 41996-13776, Iran (corresponding author). Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Guilan, Persian Gulf Hwy., Rasht 41996-13776, Iran. ORCID: https://orcid.org/0000-0002-1942-7915. Email: [email protected]
Kostas Senetakis, Ph.D., M.ASCE [email protected]
Associate Professor, Dept. of Architecture and Civil Engineering, City Univ. of Hong Kong, Kowloon Tong, Hong Kong. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Nondestructive Shear Stiffness Evaluation of EPS-Sand Composites Using Quartz and Calcareous Aggregates, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15189, 35, 7, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share