Technical Papers
Nov 17, 2022

Estimating the Optimum Addition of Carbide Sludge for Enhancing Strength Development of Ground-Granulated Blast Furnace Slag-Treated Slurry Based on Initial pH

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 2

Abstract

The use of carbide sludge (CS)-ground granulated blast furnace slag (GGBS) for clay slurry treatment has shown superior strength performance compared to ordinary Portland cement (OPC). To achieve a maximum level of unconfined compressive strength (UCS) of the CS-GGBS-treated slurry, there is an optimal level of CS, but this content varies with soil type and GGBS content. Optimal CS content is conventionally assessed by evaluating the UCS at 28 or 56 days. In this study, a rapid test method is proposed to estimate the optimum CS content in a few hours by measuring the pH, instead of UCS, of the CS-GGBS-treated slurry. Results show that the 28-day and 56-day UCS versus CS content curves of CS-GGBS-treated slurries are quite similar to their one-hour pH profiles. Hence, the pH versus CS content profile could be used to estimate the optimum CS content, i.e., the minimum CS content required to obtain a saturated Ca(OH)2 solution was estimated as the optimum CS content. The CS-GGBS-treated slurry with an estimated optimum CS content based on initial pH achieved a high strength level (91% of the maximum UCS) after curing for 28 and 56 days. Furthermore, the thermogravimetric analysis (TGA) results indicate that excess CS addition beyond the optimum CS content led to the generation of more hydrotalcite phases, but less calcium silicate hydrate (CSH), which contributed to the strength difference.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abdalqader, A. F., F. Jin, and A. Al-Tabbaa. 2016. “Development of greener alkali-activated cement: Utilisation of sodium carbonate for activating slag and fly ash mixtures.” J. Cleaner Prod. 113 (Feb): 66–75. https://doi.org/10.1016/j.jclepro.2015.12.010.
Arabi, N., R. Jauberthie, N. Chelghoum, and L. Molez. 2015. “Formation of CSH in calcium hydroxide–blast furnace slag–quartz–water system in autoclaving conditions.” Adv. Cem. Res. 27 (3): 153–162. https://doi.org/10.1680/adcr.13.00069.
Aramendía, M. A. A., Y. Avilés, J. A. Benítez, V. Borau, C. Jiménez, J. M. Marinas, J. R. Ruiz, and F. J. Urbano. 1999. “Comparative study of Mg/Al and Mg/Ga layered double hydroxides.” Microporous Mesoporous Mater. 29 (3): 319–328. https://doi.org/10.1016/S1387-1811(98)00345-X.
ASTM. 2006. Standard test method for using pH to estimate the soil-lime proportion requirement for soil stabilization. West Conshohocken, PA: ASTM International.
ASTM. 2013. Standard test method for unconfined compressive strength of cohesive soil. West Conshohocken, PA: ASTM International.
ASTM. 2019. Standard test methods for pH of soils. West Conshohocken, PA: ASTM International.
Bäckblom, G. 2004. “R&D on low-pH cement for a geological repository.” In Proc., 2nd Low-pH Workshop. Madrid, Spain: ESDRED.
Baldusco, R., T. R. S. Nobre, S. C. Angulo, V. A. Quarcioni, and M. A. Cincotto. 2019. “Dehydration and rehydration of blast furnace slag cement.” J. Mater. Civ. Eng. 31 (8): 04019132. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002725.
Benzerzour, M., M. Amar, and N.-E. Abriak. 2017. “New experimental approach of the reuse of dredged sediments in a cement matrix by physical and heat treatment.” Constr. Build. Mater. 140 (Jun): 432–444. https://doi.org/10.1016/j.conbuildmat.2017.02.142.
Bernal, S. A., J. L. Provis, R. J. Myers, R. San Nicolas, and J. S. van Deventer. 2015. “Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders.” Mater. Struct. 48 (3): 517–529. https://doi.org/10.1617/s11527-014-0412-6.
Bian, X., Z. F. Wang, G. Q. Ding, and Y. P. Cao. 2016. “Compressibility of cemented dredged clay at high water content with super-absorbent polymer.” Eng. Geol. 208 (Jun): 198–205. https://doi.org/10.1016/j.enggeo.2016.04.036.
Boutouil, M., and D. Levacher. 2005. “Effect of high initial water content on cement-based sludge solidification.” Proc. Inst. Civ. Eng. Ground Improv. 9 (4): 169–174. https://doi.org/10.1680/grim.2005.9.4.169.
Bushnell-Watson, S., and J. Sharp. 1992. “The application of thermal analysis to the hydration and conversion reactions of calcium aluminate cements.” Mater. Constr. 42 (228): 13–32. https://doi.org/10.3989/mc.1992.v42.i228.694.
Cabeza, L. F., C. Barreneche, L. Miró, J. M. Morera, E. Bartolí, and A. I. Fernández. 2013. “Low carbon and low embodied energy materials in buildings: A review.” Renewable Sustainable Energy Rev. 23 (Jul): 536–542. https://doi.org/10.1016/j.rser.2013.03.017.
Carmona-Quiroga, P., and M. Blanco-Varela. 2013. “Ettringite decomposition in the presence of barium carbonate.” Cem. Concr. Res. 52 (Oct): 140–148. https://doi.org/10.1016/j.cemconres.2013.05.021.
Celik, E., and Z. Nalbantoglu. 2013. “Effects of ground granulated blast furnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils.” Eng. Geol. 163 (Aug): 20–25. https://doi.org/10.1016/j.enggeo.2013.05.016.
Cong, P., and L. Mei. 2021. “Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum.” Constr. Build. Mater. 275 (Mar): 122171. https://doi.org/10.1016/j.conbuildmat.2020.122171.
Davidovits, J. 2013. “Geopolymer cement a review.” Geopolym. Sci. Technics 21 (Jan): 1–11.
Fernández-Jiménez, A., and F. Puertas. 2003. “Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements.” Adv. Cem. Res. 15 (3): 129–136. https://doi.org/10.1680/adcr.2003.15.3.129.
Goodarzi, A., and M. Salimi. 2015. “Stabilization treatment of a dispersive clayey soil using granulated blast furnace slag and basic oxygen furnace slag.” Appl. Clay Sci. 108 (May): 61–69. https://doi.org/10.1016/j.clay.2015.02.024.
Grubb, D. G., M. Chrysochoou, C. J. Smith, and N. E. Malasavage. 2010. “Stabilized dredged material. I: Parametric study.” J. Geotech. Geoenviron. Eng. 136 (8): 1011–1024. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000254.
Gu, K., F. Jin, A. Al-Tabbaa, B. Shi, C. Liu, and L. Gao. 2015. “Incorporation of reactive magnesia and quicklime in sustainable binders for soil stabilization.” Eng. Geol. 195 (Sep): 53–62. https://doi.org/10.1016/j.enggeo.2015.05.025.
Haha, M. B., B. Lothenbach, G. Le Saout, and F. Winnefeld. 2011. “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO.” Cem. Concr. Res. 41 (9): 955–963. https://doi.org/10.1016/j.cemconres.2011.05.002.
Hamzah, H. N., M. M. Al Bakri Abdullah, C. Y. Heah, M. R. R. Arif Zainol, and K. Hussin. 2015. “Review of soil stabilization techniques: Geopolymerization method one of the new technique.” In Vol. 660 of Key engineering materials, 298–304. Bäch, SZ: Trans Tech Publications.
He, J., J. Chu, S. K. Tan, T. T. Vu, and K. P. Lam. 2017. “Sedimentation behavior of flocculant-treated soil slurry.” Mar. Georesour. Geotechnol. 35 (5): 593–602. https://doi.org/10.1080/1064119X.2016.1177625.
He, Z., X. Zhu, J. Wang, M. Mu, and Y. Wang. 2019. “Comparison of CO2 emissions from OPC and recycled cement production.” Constr. Build. Mater. 211 (Jun): 965–973. https://doi.org/10.1016/j.conbuildmat.2019.03.289.
Higgins, D., J. Kinuthia, and S. Wild. 1998. “Soil stabilization using lime-activated ground granulated blast furnace slag.” Spec. Publ. 178 (Jun): 1057–1074.
Horpibulsuk, S., N. Miura, and D. Bergado. 2004. “Undrained shear behavior of cement admixed clay at high water content.” J. Geotech. Geoenviron. Eng. 130 (10): 1096–1105. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1096).
Horpibulsuk, S., R. Rachan, and Y. Raksachon. 2009. “Role of fly ash on strength and microstructure development in blended cement stabilized silty clay.” Soils Found. 49 (1): 85–98. https://doi.org/10.3208/sandf.49.85.
Huang, J., R. B. Kogbara, N. Hariharan, E. A. Masad, and D. N. Little. 2021. “A state-of-the-art review of polymers used in soil stabilization.” Constr. Build. Mater. 305 (Oct): 124685. https://doi.org/10.1016/j.conbuildmat.2021.124685.
Islam, S., A. Haque, and S. Wilson. 2014. “Effects of curing environment on the strength and mineralogy of lime-GGBS–treated acid sulphate soils.” J. Mater. Civ. Eng. 26 (5): 1003–1008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000887.
Jaditager, M., and N. Sivakugan. 2017. “Influence of fly ash–based geopolymer binder on the sedimentation behavior of dredged mud.” J. Waterway, Port, Coastal, Ocean Eng. 143 (5): 04017012. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000390.
James, R., A. Kamruzzaman, A. Haque, and A. Wilkinson. 2008. “Behaviour of lime–slag-treated clay.” Proc. Inst. Civ. Eng. Ground Improv. 161 (4): 207–216. https://doi.org/10.1680/grim.2008.161.4.207.
Jeong, Y., H. Park, Y. Jun, J. H. Jeong, and J. E. Oh. 2016. “Influence of slag characteristics on strength development and reaction products in a CaO-activated slag system.” Cem. Concr. Compos. 72 (Sep): 155–167. https://doi.org/10.1016/j.cemconcomp.2016.06.005.
Jin, F., K. Gu, A. Abdollahzadeh, and A. Al-Tabbaa. 2015. “Effects of different reactive MgOs on the hydration of MgO-activated GGBS paste.” J. Mater. Civ. Eng. 27 (7): B4014001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001009.
Kamruzzaman, A., S. Chew, and F. Lee. 2006. “Microstructure of cement-treated Singapore marine clay.” Proc. Inst. Civ. Eng. Ground Improv. 10 (3): 113–123. https://doi.org/10.1680/grim.2006.10.3.113.
Ke, X., S. A. Bernal, and J. L. Provis. 2016. “Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides.” Cem. Concr. Res. 81 (Mar): 24–37. https://doi.org/10.1016/j.cemconres.2015.11.012.
Khater, H. 2012. “Effect of calcium on geopolymerization of aluminosilicate wastes.” J. Mater. Civ. Eng. 24 (1): 92–101. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000352.
Kim, M. S., Y. Jun, C. Lee, and J. E. Oh. 2013. “Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag.” Cem. Concr. Res. 54 (Dec): 208–214. https://doi.org/10.1016/j.cemconres.2013.09.011.
Kitazume, M., A. Maher, M. Janbaz, R. Miskewitz, and D. Yang. 2018. “Field strength properties of cement stabilized soil by pneumatic flow tube mixing method.” In Proc., IFCEE 2018, 165–174. Reston, VA: ASCE.
Kitazume, M., and T. Satoh. 2003. “Development of a pneumatic flow mixing method and its application to Central Japan International Airport construction.” Proc. Inst. Civ. Eng. Ground Improv. 7 (3): 139–148. https://doi.org/10.1680/grim.2003.7.3.139.
Kitazume, M., and T. Satoh. 2005. “Quality control in central Japan international airport construction.” Proc. Inst. Civ. Eng. Ground Improv. 9 (2): 59–66. https://doi.org/10.1680/grim.2005.9.2.59.
Kong, D. L., and J. G. Sanjayan. 2010. “Effect of elevated temperatures on geopolymer paste, mortar and concrete.” Cem. Concr. Res. 40 (2): 334–339. https://doi.org/10.1016/j.cemconres.2009.10.017.
Lang, L., B. Chen, and N. Li. 2020. “Utilization of lime/carbide slag-activated ground granulated blast-furnace slag for dredged sludge stabilization.” Mar. Georesour. Geotechnol. 39 (6): 659–669. https://doi.org/10.1080/1064119X.2020.1741050.
Lang, L., B. Chen, and N. Li. 2021. “Utilization of lime/carbide slag-activated ground granulated blast-furnace slag for dredged sludge stabilization.” Mar. Georesour. Geotechnol. 39 (6): 659–669. https://doi.org/10.1080/1064119X.2020.1741050.
Li, W., and Y. Yi. 2020. “Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag.” Constr. Build. Mater. 238 (Mar): 117713. https://doi.org/10.1016/j.conbuildmat.2019.117713.
Li, W., Y. Yi, and A. J. Puppala. 2022. “Comparing carbide sludge-ground granulated blast furnace slag and ordinary Portland cement: Different findings from binder paste and stabilized clay slurry.” Constr. Build. Mater. 321 (Feb): 126382. https://doi.org/10.1016/j.conbuildmat.2022.126382.
Liu, G., J. Meng, Y. Huang, Z. Dai, C. Tang, and J. Xu. 2020. “Effects of carbide slag, lodestone and biochar on the immobilization, plant uptake and translocation of As and Cd in a contaminated paddy soil.” Environ. Pollut. 266 (Nov): 115194. https://doi.org/10.1016/j.envpol.2020.115194.
Marsh, A., A. Heath, P. Patureau, M. Evernden, and P. Walker. 2018. “A mild conditions synthesis route to produce hydrosodalite from kaolinite, compatible with extrusion processing.” Microporous Mesoporous Mater. 264 (Jul): 125–132. https://doi.org/10.1016/j.micromeso.2018.01.014.
Meng, J., L. Zhong, L. Wang, X. Liu, C. Tang, H. Chen, and J. Xu. 2018. “Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil.” Environ. Sci. Pollut. Res. 25 (9): 8827–8835. https://doi.org/10.1007/s11356-017-1148-y.
Mizukami, J., and Y. Matsunaga. 2016. “Construction of D-Runway at Tokyo international airport.” Jpn. Geotech. Soc. Spec. Publ. 2 (2): 122–134. https://doi.org/10.3208/jgssp.ESD-KL-4.
Oti, J. E., J. M. Kinuthia, and J. Bai. 2008. “Developing unfired stabilised building materials in the UK.” Proc. Inst. Civ. Eng. Eng. Sustainability 161 (4): 211–218. https://doi.org/10.1680/ensu.2008.161.4.211.
Ouf, M. E. S. A. R. 2001. “Stabilisation of clay subgrade soils using ground granulated blast furnace slag.” Ph.D. thesis, School of Civil Engineering, Univ. of Leeds.
Provis, J. L., G. C. Lukey, and J. S. van Deventer. 2005. “Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results.” Chem. Mater. 17 (12): 3075–3085. https://doi.org/10.1021/cm050230i.
Rabbani, P., Y. Daghigh, M. R. Atrechian, M. Karimi, and A. Tolooiyan. 2012. “The potential of lime and grand granulated blast furnace slag (GGBFS) mixture for stabilisation of desert silty sands.” J. Civ. Eng. Res. 2 (6): 108–119. https://doi.org/10.5923/j.jce.20120206.07.
Richardson, J. M., J. J. Biernacki, P. E. Stutzman, and D. P. Bentz. 2002. “Stoichiometry of slag hydration with calcium hydroxide.” J. Am. Ceram. Soc. 85 (4): 947–953. https://doi.org/10.1111/j.1151-2916.2002.tb00197.x.
Royal, A., A. Opukumo, C. Qadr, L. Perkins, and M. Walenna. 2018. “Deformation and compression behaviour of a cement–bentonite slurry for groundwater control applications.” Geotech. Geol. Eng. 36 (2): 835–853. https://doi.org/10.1007/s10706-017-0359-9.
Saikia, N., P. Sengupta, P. K. Gogoi, and P. C. Borthakur. 2002. “Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge.” Appl. Clay Sci. 22 (3): 93–102. https://doi.org/10.1016/S0169-1317(02)00130-8.
Samantasinghar, S., and S. P. Singh. 2019. “Fresh and hardened properties of fly ash–slag blended geopolymer paste and mortar.” Int. J. Concr. Struct. Mater. 13 (1): 1–12. https://doi.org/10.1186/s40069-019-0360-1.
Samantasinghar, S., and S. P. Singh. 2021. “Strength and durability of granular soil stabilized with FA-GGBS geopolymer.” J. Mater. Civ. Eng. 33 (6): 06021003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003736.
Sargent, P., P. N. Hughes, M. Rouainia, and M. L. White. 2013. “The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils.” Eng. Geol. 152 (1): 96–108. https://doi.org/10.1016/j.enggeo.2012.10.013.
Schöler, A., B. Lothenbach, F. Winnefeld, and M. Zajac. 2015. “Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder.” Cem. Concr. Compos. 55 (Jan): 374–382. https://doi.org/10.1016/j.cemconcomp.2014.10.001.
Seco, A., J. M. del Castillo, S. Espuelas, S. Marcelino-Sadaba, and B. Garcia. 2021. “Stabilization of a clay soil using cementing material from spent refractories and ground-granulated blast furnace slag.” Sustainability 13 (6): 3015. https://doi.org/10.3390/su13063015.
Sekhar, D., and S. Nayak. 2019. “SEM and XRD investigations on lithomargic clay stabilized using granulated blast furnace slag and cement.” Int. J. Geotech. Eng. 13 (6): 615–629. https://doi.org/10.1080/19386362.2017.1380355.
Sha, W. 2002. “Differential scanning calorimetry study of the hydration products in Portland cement pastes with metakaolin replacement.” In Advances in building technology, 881–888. Amsterdam, Netherlands: Elsevier.
Shi, C., D. Roy, and P. Krivenko. 2006. Alkali-activated cements and concretes. Boca Raton, FL: CRC Press.
Song, S., D. Sohn, H. Jennings, and T. O. Mason. 2000. “Hydration of alkali-activated ground granulated blast furnace slag.” J. Mater. Sci. 35 (1): 249–257. https://doi.org/10.1023/A:1004742027117.
Stajanča, M., and A. Eštoková. 2012. “Environmental impacts of cement production.” Lviv Polytechnic National University of Košice Institutional Repository 38: 296–302.
Stegemann, J., C. Shi, and R. Caldwell. 1997. “Response of various solidification systems to acid addition.” In Studies in environmental science. Amsterdam, Netherlands: Elsevier.
Sun, J., W. Liu, Y. Hu, J. Wu, M. Li, X. Yang, W. Wang, and M. Xu. 2016. “Enhanced performance of extruded–spheronized carbide slag pellets for high temperature CO2 capture.” Chem. Eng. J. 285 (Feb): 293–303. https://doi.org/10.1016/j.cej.2015.10.026.
Tasong, W. A., S. Wild, and R. J. Tilley. 1999. “Mechanisms by which ground granulated blast furnace slag prevents sulphate attack of lime-stabilised kaolinite.” Cem. Concr. Res. 29 (7): 975–982. https://doi.org/10.1016/S0008-8846(99)00007-1.
Temuujin, J., A. Van Riessen, and R. Williams. 2009. “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes.” J. Hazard. Mater. 167 (1–3): 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121.
Thomas, A., R. Tripathi, and L. Yadu. 2018. “A laboratory investigation of soil stabilization using enzyme and alkali-activated ground granulated blast-furnace slag.” Arab. J. Sci. Eng. 43 (10): 5193–5202. https://doi.org/10.1007/s13369-017-3033-x.
Wang, D., X. Gao, R. Wang, S. Larsson, and M. Benzerzour. 2020. “Elevated curing temperature-associated strength and mechanisms of reactive MgO-activated industrial by-products solidified soils.” Mar. Georesour. Geotechnol. 38 (6): 659–671. https://doi.org/10.1080/1064119X.2019.1610817.
Wang, N., M. Mao, G. Mao, J. Yin, R. He, H. Zhou, N. Li, Q. Liu, and K. Zhi. 2021. “Investigation on carbide slag catalytic effect of Mongolian bituminous coal steam gasification process.” Chemosphere 264 (Jan): 128500. https://doi.org/10.1016/j.chemosphere.2020.128500.
Wang, X., Y. Li, J. Shi, J. Zhao, Z. Wang, H. Liu, and X. Zhou. 2018. “Simultaneous SO2/NO removal performance of carbide slag pellets by bagasse templating in a bubbling fluidized bed reactor.” Fuel Process. Technol. 180 (Nov): 75–86. https://doi.org/10.1016/j.fuproc.2018.08.007.
Xu, G. 2013. “Grain sorting behavior of dredged slurries in reclaimed land and its effects on engineering properties.” Ph.D. thesis, Geotechnical Research Institute, Hohai Univ.
Yadu, L., and R. Tripathi. 2013. “Effects of granulated blast furnace slag in the engineering behaviour of stabilized soft soil.” Procedia Eng. 51 (Jan): 125–131. https://doi.org/10.1016/j.proeng.2013.01.019.
Yang, K.-H., A.-R. Cho, J.-K. Song, and S.-H. Nam. 2012. “Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars.” Constr. Build. Mater. 29 (Apr): 410–419. https://doi.org/10.1016/j.conbuildmat.2011.10.063.
Yi, Y., L. Gu, and S. Liu. 2015a. “Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blast furnace slag.” Appl. Clay Sci. 103 (Jan): 71–76. https://doi.org/10.1016/j.clay.2014.11.005.
Yi, Y., L. Gu, S. Liu, and A. J. Puppala. 2015b. “Carbide slag–activated ground granulated blast furnace slag for soft clay stabilization.” Can. Geotech. J. 52 (5): 656–663. https://doi.org/10.1139/cgj-2014-0007.
Yi, Y., C. Li, and S. Liu. 2015c. “Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay.” J. Mater. Civ. Eng. 27 (4): 04014146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001100.
Yi, Y., M. Liska, and A. Al-Tabbaa. 2014a. “Properties and microstructure of GGBS–magnesia pastes.” Adv. Cem. Res. 26 (2): 114–122. https://doi.org/10.1680/adcr.13.00005.
Yi, Y., M. Liska, and A. Al-Tabbaa. 2014b. “Properties of two model soils stabilized with different blends and contents of GGBS, MgO, lime, and PC.” J. Mater. Civ. Eng. 26 (2): 267–274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000806.
Yi, Y., M. Liska, F. Jin, and A. Al-Tabbaa. 2016. “Mechanism of reactive magnesia–ground granulated blast furnace slag (GGBS) soil stabilization.” Can. Geotech. J. 53 (5): 773–782. https://doi.org/10.1139/cgj-2015-0183.
Yip, C., and J. Van Deventer. 2003. “Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder.” J. Mater. Sci. 38 (18): 3851–3860. https://doi.org/10.1023/A:1025904905176.
Yu, C., Y. Ke, X. Hu, Y. Zhao, Q. Deng, and S. Lu. 2019. “Effect of bifunctional montmorillonite on the thermal and tribological properties of polystyrene/montmorillonite nanocomposites.” Polymers (Basel) 11 (5): 834. https://doi.org/10.3390/polym11050834.
Yu, H., Y. Yi, and A. J. Puppala. 2021. “Effects of oven temperature and addition of ethanol on measurement of water content and specific gravity of cement-stabilized soft clay.” Geotech. Test. J. 44 (5): 20200039. https://doi.org/10.1520/GTJ20200039.
Zhang, R., C. Dong, and J. Zheng. 2018. “Physicochemical treatment of dredged clay slurry waste for land reclamation purpose.” In Proc., Int. Congress on Environmental Geotechnics, 243–249. New York: Springer.
Zhang, R., A. Santoso, T. Tan, and K. Phoon. 2013. “Strength of high water-content marine clay stabilized by low amount of cement.” J. Geotech. Geoenviron. Eng. 139 (12): 2170–2181. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000951.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 2February 2023

History

Received: Jan 16, 2022
Accepted: May 11, 2022
Published online: Nov 17, 2022
Published in print: Feb 1, 2023
Discussion open until: Apr 17, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Wentao Li, Ph.D. [email protected]
Research Fellow, School of Civil and Environmental Engineering, Nanyang Technological Univ., Singapore 639798. Email: [email protected]
Assistant Professor, School of Civil and Environmental Engineering, Nanyang Technological Univ., Singapore 639798 (corresponding author). ORCID: https://orcid.org/0000-0002-1188-3799. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share