Abstract

Warm-mix asphalt (WMA) is a group of technologies focused on reducing the viscosity of the asphalt binder (or binder) to produce asphalt mixtures at a reduced temperature compared with that specified for conventional hot-mix asphalt mixtures. The WMA technologies include two main groups: foaming and additives. The additives can be classified as synthetic-chemical or natural-based. This study aims at assessing the feasibility of optimizing the WMA additives dose by maximizing the adhesion between the asphalt binder and the aggregate at their interface in WMA mixtures. Adhesion is quantified using energy parameters derived from surface-free energy measurements (SFE), including three WMA additives (Carnauba wax, a natural-based warm-mix additive, Sasobit, and Evotherm). Accomplishing this objective required measurements of SFE for four different asphalt binders, and corresponding WMA-modified asphalt binders were performed. The results suggest the possibility of identifying a WMA-additive dose that maximizes adhesion at the binder–aggregate interface in terms of resistance to fracture (i.e., adhesive failure) and moisture damage, and the wettability of the binder. In addition, the results showed that the inclusion of Carnauba wax as a warm-mix additive yielded equivalent adhesion at the binder–aggregate interface compared with the response of the other commercially available WMA additives evaluated (i.e., Sasobit and Evotherm). Additional studies at the mixture level are recommended to validate further the conclusions obtained in this study.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors thank the support provided by the Vice-rectories of Research at the Universidad Industrial de Santander, Universidad Militar Nueva Granada, and Universidad del Magdalena to complete this research work. The authors also recognize the support from Asmiriam M. Perea and Katy Gómez to complete some laboratory testing. Finally, the authors express thanks to the companies Intercal and IncoAsfaltos for facilitating some materials required to accomplish this study.

Disclaimer

This paper does not constitute a standard, specification, nor is it intended for design, construction, bidding, contracting, tendering, or permit purposes. Trade names were used solely for information purposes and not for product endorsement.

References

AASHTO. 2016. Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR). AASHTO T 315-12 (2016). Washington, DC: AASHTO.
Al-Rawashdeh, A. S., and S. Sargand. 2014. “Performance assessment of a warm asphalt binder in the presence of water by using surface free energy concepts and nanoscale techniques.” J. Mater. Civ. Eng. 26 (5): 803–811. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000866.
Alvarez, A. E., L. V. Espinosa, A. M. Perea, O. J. Reyes, and I. J. Paba. 2019a. “Adhesion quality of chip seals: Comparing and correlating the plate-stripping test, boiling-water test, and energy parameters from surface free energy.” J. Mater. Civ. Eng. 31 (3): 04018401. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002603.
Alvarez, A. E., K. L. Gomez, D. C. Gomez, and O. J. Reyes-Ortiz. 2019b. “Optimising the effect of natural filler on asphalt-aggregate interfaces based on surface free energy measurements.” Road Mater. Pavement Des. 20 (7): 1548–1570. https://doi.org/10.1080/14680629.2018.1465451.
Alvarez, A. E., K. L. Gómez, D. C. Gómez, and O. J. Reyes. 2017. “Análisis de interfases mástico agregado empleando energía superficial libre.” In Proc., XIX Congreso Ibero-Latinoamericano del Asfalto-CILA. Bucaramanga, Colombia: Corasfaltos.
Alvarez, A. E., E. Ovalles, and O. J. Reyes-Ortiz. 2022. “Mixture design and performance characterization of asphalt mixtures prepared using paving-heavy crude oils for low-traffic volume roads.” Constr. Build. Mater. 329 (Apr): 127141. https://doi.org/10.1016/j.conbuildmat.2022.127141.
Baldi-Sevilla, A., M. L. Montero, J. P. Aguiar-Moya, L. G. Loria-Salazar, and A. Bhasin. 2017. “Influence of bitumen and aggregate polarity on interfacial adhesion.” Supplement, Road Mater. Pavement Des. 18 (S1): 304–317. https://doi.org/10.1080/14680629.2017.1304265.
Bhasin, A., J. Howson, E. Masad, D. N. Little, and R. L. Lytton. 2007a. “Effect of modification processes on bond energy of asphalt binders.” In Proc., Transportation Research Board 86th Annual Meeting, 1–14. Washington, DC: Transportation Research Board.
Bhasin, A., and D. N. Little. 2007. “Characterization of aggregate surface energy using the universal sorption device.” J. Mater. Civ. Eng. 19 (8): 634–641. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(634).
Bhasin, A., D. N. Little, K. L. Vasconcelos, and E. Masad. 2007b. “Surface free energy to identify moisture sensitivity of materials for asphalt mixes.” Transp. Res. Rec. 2001 (1): 37–45. https://doi.org/10.3141/2001-05.
Bhasin, A., E. Masad, D. Little, and R. Lytton. 2006. “Limits on adhesive bond energy for improved resistance of hot-mix asphalt to moisture damage.” Transp. Res. Rec. 1970 (1): 2–13. https://doi.org/10.1177/0361198106197000101.
Buddhala, A., Z. Hossain, N. M. Wasiuddin, M. Zaman, and E. O’Rear. 2012. “Effects of an amine anti-stripping agent on moisture susceptibility of Sasobit and Aspha-Min mixes by surface free energy analysis.” J. Test. Eval. 40 (1): 91–99. https://doi.org/10.1520/JTE103618.
Capitão, S. D., L. G. Picado-Santos, and F. Martinho. 2012. “Pavement engineering materials: Review on the use of warm-mix asphalt.” Constr. Build. Mater. 36 (Nov): 1016–1024. https://doi.org/10.1016/j.conbuildmat.2012.06.038.
Caputo, P., A. A. Abe, V. Loise, M. Porto, P. Calandra, R. Angelico, and C. Oliviero-Rossi. 2020. “The role of additives in warm mix asphalt technology: An insight into their mechanisms of improving an emerging technology.” Nanomaterials (Basel) 10 (6): 1–17. https://doi.org/10.3390/nano10061202.
Caro, S., and A. E. Alvarez. 2011. “Evaluación de la susceptibilidad al daño por humedad de mezclas asfálticas empleando propiedades termodinámicas.” Rev. Facultad Ing. Universidad Antioquia 58 (Jan): 95–104.
Cong, L., J. Peng, Z. Guo, and Q. Wang. 2017. “Evaluation of fatigue cracking in asphalt mixtures based on surface energy.” J. Mater. Civ. Eng. 29 (3): D4015003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001465.
Feitosa, J. P., A. E. de Alencar, J. R. de Souza, J. B. Soares, S. A. Soares, and N. M. Ricardo. 2015. “Evaluation of Carnauba waxes in warm mix asphalt technology.” Int. J. Civ. Environ. Eng. 15 (3): 1–9.
Feitosa, J. P., A. E. de Alencar, N. W. Filho, J. R. de Souza, V. T. Castelo Branco, J. B. Soares, S. A. Soares, and N. M. Ricardo. 2016. “Evaluation of sun-oxidized Carnauba wax as warm mix asphalt additive.” Constr. Build. Mater. 115 (Jul): 294–298. https://doi.org/10.1016/j.conbuildmat.2016.03.219.
Ferrotti, G., D. Ragni, X. Lu, and F. Canestrari. 2017. “Effect of warm mix asphalt chemical additives on the mechanical performance of asphalt binders.” Mater. Struct. 50 (5): 1–13. https://doi.org/10.1617/s11527-017-1096-5.
Firmansyah, F., and T. Tamalkhani. 2019. “Effect of field aging on adhesive properties of warm-mix asphalt.” In Proc., 3rd Int. Conf. on Automotive Innovation Green Energy Vehicle, 1–10. Gambang, Malaysia: Automotive Excellence Centre from Univ. Malaysia Pahang.
Guo, F., J. Pei, J. Zhang, B. Xue, G. Sun, and R. Li. 2020. “Study on the adhesion property between asphalt binder and aggregate: A state-of-the-art review.” Constr. Build. Mater. 256 (Sep): 119474. https://doi.org/10.1016/j.conbuildmat.2020.119474.
Guo, P., Y. Feng, W. Wei, L. He, and B. Tang. 2019. “Adhesion of warm-mix recycled asphalt aggregate mixtures based on surface free energy theory.” J. Mater. Civ. Eng. 31 (10): 04019209. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002802.
Habal, A., and D. Singh. 2017. “Moisture damage resistance of GTR-modified asphalt binders containing WMA additives using the surface free energy approach.” J. Perform. Constr. Facil. 31 (3): 04017006. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000995.
Habal, A., and D. Singh. 2021. “Effects of warm mix asphalt additives on bonding potential and failure pattern of asphalt-aggregate systems using strength and energy parameters.” Int. J. Pavement Eng. 22 (4): 467–479. https://doi.org/10.1080/10298436.2019.1623399.
Hefer, A. W., A. Bhasin, and D. N. Little. 2006. “Bitumen surface energy characterization using a contact angle approach.” J. Mater. Civ. Eng. 18 (6): 759–767. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(759).
Hurley, G. C., and B. D. Prowell. 2006. Evaluation of Evotherm for use in warm mix asphalt. Auburn, AL: National Center for Asphalt Technology-Auburn Univ.
INVIAS (Instituto Nacional de Vías). 2013. Especificaciones generales de construcción de carreteras y normas de ensayo para carreteras. Bogotá DC: INVIAS.
Jamshidi, A., M. O. Hamzah, and Z. You. 2013. “Performance of warm mix asphalt containing Sasobit: State-of-the-art.” Constr. Build. Mater. 38 (Jan): 530–553. https://doi.org/10.1016/j.conbuildmat.2012.08.015.
Kakar, M. R., M. O. Hamzah, M. N. Akhtar, and J. M. Saleh. 2019. “Evaluating the surface free energy and moisture sensitivity of warm mix asphalt binders using dynamic contact angle.” Adv. Civ. Eng. 2019 (Mar): 1–15. https://doi.org/10.1155/2019/9153603.
Karim, A. M., and H. P. Kavehpour. 2018. “Effect of viscous force on dynamic contact angle measurement using Wilhelmy plate method.” Colloids Surf., A 548 (Jul): 54–60. https://doi.org/10.1016/j.colsurfa.2018.03.058.
Kassem, E., L. Garcia-Cucalon, E. Masad, and D. Little. 2018. “Effect of warm mix additives on the interfacial bonding characteristics of asphalt binders.” Int. J. Pavement Eng. 19 (12): 1111–1124. https://doi.org/10.1080/10298436.2016.1240563.
Kataware, A. V., and D. Singh. 2018. “Effects of wax-based, chemical-based, and water-based warm-mix additives on mechanical performance of asphalt binders.” J. Mater. Civ. Eng. 30 (10): 04018237. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002441.
Liu, J., and P. Li. 2012. “Low temperature performance of sasobit-modified warm-mix asphalt.” J. Mater. Civ. Eng. 24 (1): 57–63. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000347.
Nejad, F. M., M. Asadi, and G. H. Hamedi. 2020. “Determination of moisture damage mechanism in asphalt mixtures using thermodynamic and mix design parameters.” Int. J. Pavement Res. Technol. 13 (2): 176–186. https://doi.org/10.1007/s42947-019-0099-8.
Prowell, B. D., G. C. Hurley, and B. Frank. 2012. Warm-mix asphalt: Best practices. Lanham, MD: National Asphalt Pavement Association.
Pullman, W. A., P. A. Altoona, and L. A. Baton Rouge. 2017. Long-term field performance of warm mix asphalt technologies. Washington, DC: National Cooperative Highway Research Program.
Ragni, D., G. Ferrotti, X. Lu, and F. Canestrari. 2018. “Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA.” Mater. Des. 160 (Dec): 514–526. https://doi.org/10.1016/j.matdes.2018.09.042.
Reyes-Ortiz, O., A. E. Alvarez, and L. G. Fuentes. 2013. “Modificación de asfaltos colombianos con ceras naturales y su efecto en las mezclas.” In Proc., XVII Congreso Ibero-Latinoamericano del Asfalto-CILA, 1–10. Guatemala: Asociación Española de la Carretera.
Reyes-Ortiz, O. J., L. G. Fuentes, and A. E. Alvarez. 2014. “Mechanical response of asphalt mixtures modified with natural wax.” In Advanced characterization of asphalt and concrete materials, 58–66. Reston, VA: ASCE.
Van Oss, C. J. 1994. Interfacial forces in aqueous media. New York: Marcel Dekker.
Wasiuddin, N. M., M. M. Zaman, and E. A. O’Rear. 2008. “Effect of Sasobit and Aspha-Min on wettability and adhesion between asphalt binders and aggregates.” Transp. Res. Rec. 2051 (1): 80–89. https://doi.org/10.3141/2051-10.
Wei, J., X. Huang, and Y. Zhang. 2010. “Influence of commercial wax on performance of asphalt.” J. Mater. Civ. Eng. 22 (8): 760–766. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000016.
West, R., C. Rodezno, G. Julian, B. Prowell, B. Frank, L. V. Osborn, and T. Kriech. 2014. Field performance of warm mix asphalt technologies. Washington, DC: National Cooperative Highway Research Program.
Williams, B. A., J. R. Willis, and J. Shacat. 2020. Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2019. Lanham, MD: National Asphalt Pavement Association.
Yu, J., C. Xiong, X. Zhang, Z. Ge, and G. An. 2018. “Assessing moisture sensitivity of rubberized warm mix asphalt mixtures using the surface free energy method and dynamic water pressure tester.” J. Test. Eval. 46 (2): 580–592. https://doi.org/10.1520/JTE20170241.
Zaumanis, M. 2010. “Warm mix asphalt investigation.” Master of Science, Dept. of Civil Engineering, Technical Univ. of Denmark.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 2February 2023

History

Received: Dec 14, 2021
Accepted: May 6, 2022
Published online: Nov 24, 2022
Published in print: Feb 1, 2023
Discussion open until: Apr 24, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Civil Engineering, Universidad Industrial de Santander, Carrera 27-calle 9, Edificio Alvaro Beltran, Bucaramanga 680002, Colombia. ORCID: https://orcid.org/0000-0001-9010-7642. Email: [email protected]
Edgardo J. Diaz [email protected]
Lecturer, Program of Civil Engineering, Universidad del Magdalena, Carrera 32 # 22-08, Bloque VIII, Santa Marta D.T.C.H. 470002, Colombia. Email: [email protected]
Ricardo A. Mejía [email protected]
Formerly, Student, Program of Civil Engineering, Universidad del Magdalena, Carrera 32 # 22-08, Bloque VIII, Santa Marta D.T.C.H. 470002, Colombia. Email: [email protected]
Research Engineer, Materials and Pavements Division, Texas A&M Transportation Institute, College Station, TX 77840 (corresponding author). ORCID: https://orcid.org/0000-0002-1435-3662. Email: [email protected]
Professor, Program of Civil Engineering, Laboratory of Civil Engineering, Universidad Militar Nueva Granada, Carrera 11 No. 101-80, Edificio F, Bogota D.C. 110111, Colombia. ORCID: https://orcid.org/0000-0002-2001-2450. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Study of Bonding Property of Warm Mix Asphalt Based on Binder Bond Strength and Molecular Dynamics Simulations, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15678, 35, 11, (2023).
  • Moisture susceptibility evaluation of zeolite-foamed asphalts based on the Surface Free Energy (SFE) concept, Construction and Building Materials, 10.1016/j.conbuildmat.2023.130762, 371, (130762), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share