Technical Papers
Oct 22, 2022

The Effect of Structural Stability of Chemical Admixtures on the NaOH Alkali-Activated Slag Properties

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 1

Abstract

The current study aims to construct a synthetic polymer (or family of polymers) with superior plasticizing properties in a highly alkaline medium. An invented laboratory-prepared superplasticizer (SP), namely phenol-formaldehyde sulfonilate (PFS), was synthesized, and its performance was measured against two types of commercial superplasticizers [naphthalene-based (Nb) and polycarboxylate-based (PCb)]. Fourier transform infrared (FTIR) and gel permeation chromatography (GPC) tests were performed to verify the admixture’s stability in a highly alkaline medium. The interaction between different SPs and alkali-activated slag (AAS) surface was investigated via zeta potential and adsorption measurements. The flowability, setting time, and compressive strength developments were evaluated for AAS mixes. The hydration products’ morphologies and phase compositions were studied using scanning electron microscope (SEM) and X-ray diffraction (XRD). The results reveal that the prepared PFS SP has a high stability against the highly alkaline medium. The dispersing efficiency of PFS SP resulted from the highly negative zeta potential value (49.8  mV) compared with Nb (41.5  mV) and PCb (15.8  mV), as well as its high adsorption percentage as PFS, Nb, and PCb adsorbed by 18.5%, 9.2%, and 3.7%, respectively. The PFS SP enhanced the physicomechanical properties for AAS because it combined several advantages at the same time compared to commercial superplasticizers; for instance, AAS pastes admixed with PFS SP have superior workability, acceptable setting time, and high early strength.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All the data are available from the corresponding author upon reasonable request.

References

Abdel-Gawwad, H. A., S. A. Mohamed, and M. S. Mohammed. 2019. “Recycling of slag and lead-bearing sludge in the cleaner production of alkali activated cement with high performance and microbial resistivity.” J. Cleaner Prod. 220 (May): 568–580. https://doi.org/10.1016/j.jclepro.2019.02.144.
Alonso, M. M., M. Palacios, and F. Puertas. 2013. “Compatibility between polycarboxylate-based admixtures and blended-cement pastes.” Cem. Concr. Compos. 35 (1): 151–162. https://doi.org/10.1016/j.cemconcomp.2012.08.020.
Alrefaei, Y., and J. G. Dai. 2022. “Effects of delayed addition of polycarboxylate ether on one-part alkali-activated fly ash/slag pastes: Adsorption, reaction kinetics, and rheology.” Constr. Build. Mater. 323 (Mar): 126611. https://doi.org/10.1016/j.conbuildmat.2022.126611.
Alrefaei, Y., Y. S. Wang, and J. G. Dai. 2019. “The effectiveness of different superplasticizers in ambient cured one-part alkali activated pastes.” Cem. Concr. Compos. 97 (Mar): 166–174. https://doi.org/10.1016/j.cemconcomp.2018.12.027.
Alrefaei, Y., Y. S. Wang, and J. G. Dai. 2021. “Effect of mixing method on the performance of alkali-activated fly ash/slag pastes along with polycarboxylate admixture.” Cem. Concr. Compos. 117 (Mar): 103917. https://doi.org/10.1016/j.cemconcomp.2020.103917.
Alrefaei, Y., Y. S. Wang, J. G. Dai, and Q. F. Xu. 2020. “Effect of superplasticizers on properties of one-part Ca(OH)2/Na2SO4 activated geopolymer pastes.” Constr. Build. Mater. 241 (Apr): 117990. https://doi.org/10.1016/j.conbuildmat.2019.117990.
ASTM. 2019. Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM C191-19. West Conshohocken, PA: ASTM International.
ASTM. 2021. Standard test method for slump flow of self-consolidating concrete. ASTM C1611/C1611M-21. West Conshohocken, PA: ASTM International.
Bernal, S. A., R. Mejía De Gutiérrez, and J. L. Provis. 2012. “Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends.” Constr. Build. Mater. 33 (Aug): 99–108. https://doi.org/10.1016/j.conbuildmat.2012.01.017.
Bishop, M., and A. R. Barron. 2006. “Cement hydration inhibition with sucrose, tartaric acid, and lignosulfonate:  Analytical and spectroscopic study.” Ind. Eng. Chem. Res. 45 (21): 7042–7049. https://doi.org/10.1021/ie060806t.
Boström, M., V. Deniz, G. V. Franks, and B. W. Ninham. 2006. “Extended DLVO theory: Electrostatic and non-electrostatic forces in oxide suspensions.” Adv. Colloid Interface Sci. 123 (Nov): 5–15. https://doi.org/10.1016/j.cis.2006.05.001.
Bullard, J. W., H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer, J. S. Schweitzer, K. L. Scrivener, and J. J. Thomas. 2011. “Mechanisms of cement hydration.” Cem. Concr. Res. 41 (12): 1208–1223. https://doi.org/10.1016/j.cemconres.2010.09.011.
Burgos-Montes, O., M. Palacios, P. Rivilla, and F. Puertas. 2012. “Compatibility between superplasticizer admixtures and cements with mineral additions.” Constr. Build. Mater. 31 (Jun): 300–309. https://doi.org/10.1016/j.conbuildmat.2011.12.092.
Cheung, J., L. Roberts, and J. Liu. 2018. “Admixtures and sustainability.” Cem. Concr. Res. 114 (Dec): 79–89. https://doi.org/10.1016/j.cemconres.2017.04.011.
Collins, F., and J. G. Sanjayan. 1998. “Early age strength and workability of slag pastes activated by NaOH and Na2CO3.” Cem. Concr. Res. 28 (5): 655–664. https://doi.org/10.1016/S0008-8846(98)00025-8.
Conte, T., and J. Plank. 2019. “Impact of molecular structure and composition of polycarboxylate comb polymers on the flow properties of alkali-activated slag.” Cem. Concr. Res. 116 (Feb): 95–101. https://doi.org/10.1016/j.cemconres.2018.11.014.
Esping, O., and I. Löfgren. 2005. “Investigation of early age deformation in self-compacting concrete.” In Proc., Knud Højgaard Conf. on Advanced Cement-Based Materials-Research and Teaching. Paris: RILEM Publications SARL. https://doi.org/10.1617/2351580028.058.
Favier, A., G. Habert, J. B. D. De Lacaillerie, and N. Roussel. 2013. “Mechanical properties and compositional heterogeneities of fresh geopolymer pastes.” Cem. Concr. Res. 48 (Jun): 9–16. https://doi.org/10.1016/j.cemconres.2013.02.001.
Folliard, K. J., and N. S. Berke. 1997. “Properties of high-performance concrete containing shrinkage-reducing admixture.” Cem. Concr. Res. 27 (9): 1357–1364. https://doi.org/10.1016/S0008-8846(97)00135-X.
Gelardi, G., and R. J. Flatt. 2016. “Working mechanisms of water reducers and superplasticizers.” In Science and technology of concrete admixtures, 257–278. Sawston, UK: Woodhead Publishing.
Gołaszewski, J., and J. Szwabowski. 2004. “Influence of superplasticizers on rheological behaviour of fresh cement mortars.” Cem. Concr. Res. 34 (2): 235–248. https://doi.org/10.1016/j.cemconres.2003.07.002.
Habbaba, A., and J. Plank. 2010. “Interaction between polycarboxylate superplasticizers and amorphous ground granulated blast furnace slag.” J. Am. Ceram. Soc. 93 (9): 2857–2863. https://doi.org/10.1111/j.1551-2916.2010.03755.x.
Habbaba, A., and J. Plank. 2012. “Surface chemistry of ground granulated blast furnace slag in cement pore solution and its impact on the effectiveness of polycarboxylate superplasticizers.” J. Am. Ceram. Soc. 95 (2): 768–775. https://doi.org/10.1111/j.1551-2916.2011.04968.x.
Habib, A. O., I. Aiad, F. I. El-Hosiny, and A. M. Abd El-Aziz. 2018. “Development of the fire resistance and mechanical characteristics of silica fume-blended cement pastes using some chemical admixtures.” Constr. Build. Mater. 181 (Aug): 163–174. https://doi.org/10.1016/j.conbuildmat.2018.06.051.
Habib, A. O., I. Aiad, F. I. El-Hosiny, and A. Mohsen. 2021. “Studying the impact of admixtures chemical structure on the rheological properties of silica-fume blended cement pastes using various rheological models.” Ain Shams Eng. J. 12 (2): 1583–1594. https://doi.org/10.1016/j.asej.2020.12.009.
Habib, A. O., I. Aiad, T. A. Youssef, and A. M. A. El-Aziz. 2016. “Effect of some chemical admixtures on the physico-chemical and rheological properties of oil well cement pastes.” Constr. Build. Mater. 120 (Sep): 80–88. https://doi.org/10.1016/j.conbuildmat.2016.05.044.
Hajimohammadi, A., J. L. Provis, and J. S. J. van Deventer. 2011. “The effect of silica availability on the mechanism of geopolymerisation.” Cem. Concr. Res. 41 (3): 210–216. https://doi.org/10.1016/j.cemconres.2011.02.001.
Hassan, H. S., H. A. Abdel-Gawwad, S. R. Vásquez-García, I. Israde-Alcántara, N. Flores-Ramirez, J. L. Rico, and M. S. Mohammed. 2019. “Cleaner production of one-part white geopolymer cement using pre-treated wood biomass ash and diatomite.” J. Cleaner Prod. 209 (Feb): 1420–1428. https://doi.org/10.1016/j.jclepro.2018.11.137.
Hojati, M., and A. Radlińska. 2017. “Shrinkage and strength development of alkali-activated fly ash-slag binary cements.” Constr. Build. Mater. 150 (Sep): 808–816. https://doi.org/10.1016/j.conbuildmat.2017.06.040.
Ismail, I., S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. J. van Deventer. 2014. “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash.” Cem. Concr. Compos. 45 (Jan): 125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
Jang, J. G., N. K. Lee, and H. K. Lee. 2014. “Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers.” Constr. Build. Mater. 50 (Jan): 169–176. https://doi.org/10.1016/j.conbuildmat.2013.09.048.
Johnson, S. B., G. V. Franks, P. J. Scales, D. V. Boger, and T. W. Healy. 2000. “Surface chemistry–rheology relationships in concentrated mineral suspensions.” Int. J. Miner. Process. 58 (1–4): 267–304. https://doi.org/10.1016/S0301-7516(99)00041-1.
Juilland, P., E. Gallucci, R. Flatt, and K. Scrivener. 2010. “Dissolution theory applied to the induction period in alite hydration.” Cem. Concr. Res. 40 (6): 831–844. https://doi.org/10.1016/j.cemconres.2010.01.012.
Kashani, A., J. L. Provis, G. G. Qiao, and J. S. J. van Deventer. 2014a. “The interrelationship between surface chemistry and rheology in alkali activated slag paste.” Constr. Build. Mater. 65 (Aug): 583–591. https://doi.org/10.1016/j.conbuildmat.2014.04.127.
Kashani, A., J. L. Provis, J. Xu, A. R. Kilcullen, G. G. Qiao, and J. S. J. van Deventer. 2014b. “Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali-activated slag paste.” J. Mater. Sci. 49 (7): 2761–2772. https://doi.org/10.1007/s10853-013-7979-0.
Labbez, C., B. Jönsson, I. Pochard, A. Nonat, and B. Cabane. 2006. “Surface charge density and electrokinetic potential of highly charged minerals: Experiments and Monte Carlo simulations on calcium silicate hydrate.” J. Phys. Chem. B 110 (18): 9219–9230. https://doi.org/10.1021/jp057096+.
Lei, L., and H. K. Chan. 2020. “Investigation into the molecular design and plasticizing effectiveness of HPEG-based polycarboxylate superplasticizers in alkali-activated slag.” Cem. Concr. Res. 136 (Oct): 106150. https://doi.org/10.1016/j.cemconres.2020.106150.
Lei, L., and Y. Zhang. 2021. “Preparation of isoprenol ether-based polycarboxylate superplasticizers with exceptional dispersing power in alkali-activated slag: Comparison with ordinary portland cement.” Composites, Part B 223 (Oct): 109077. https://doi.org/10.1016/j.compositesb.2021.109077.
Li, C., H. Sun, and L. Li. 2010. “A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements.” Cem. Concr. Res. 40 (9): 1341–1349. https://doi.org/10.1016/j.cemconres.2010.03.020.
Lu, C., Z. Zhang, C. Shi, N. Li, D. Jiao, and Q. Yuan. 2021. “Rheology of alkali-activated materials: A review.” Cem. Concr. Compos. 121 (Aug): 104061. https://doi.org/10.1016/j.cemconcomp.2021.104061.
Maher El-Tair, A., M. S. El-Feky, A. Mohsen, and M. Kohail. 2021. “Properties of nano engineered concrete subjected to accelerated corrosion.” Nanotechnol. Constr. 13 (5): 293–305. https://doi.org/10.15828/2075-8545-2021-13-5-293-305.
Marchon, D., and R. J. Flatt. 2016a. “Impact of chemical admixtures on cement hydration.” In Science and technology of concrete admixtures, 279–304. Sawston, UK: Woodhead Publishing.
Marchon, D., and R. J. Flatt. 2016b. “Mechanisms of cement hydration.” In Science and technology of concrete admixtures, 129–145. Sawston, UK: Woodhead Publishing.
Marchon, D., S. Mantellato, A. B. Eberhardt, and R. J. Flatt. 2016. “Adsorption of chemical admixtures.” In Science and technology of concrete admixtures, 219–256. Boston: Elsevier.
Marchon, D., U. Sulser, A. Eberhardt, and R. J. Flatt. 2013. “Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete.” Soft Matter 9 (45): 10719–10728. https://doi.org/10.1039/c3sm51030a.
Mayhoub, O. A., A. Mohsen, Y. R. Alharbi, A. A. Abadel, A. O. Habib, and M. Kohail. 2021. “Effect of curing regimes on chloride binding capacity of geopolymer.” Ain Shams Eng. J. 12 (4): 3659–3698. https://doi.org/10.1016/j.asej.2021.04.032.
Meletov, K. P. 1991. “High pressure study of intermolecular resonance interaction in a naphthalene crystal.” Chem. Phys. 154 (3): 469–475. https://doi.org/10.1016/0301-0104(91)85029-G.
Mohsen, A., H. A. Abdel-Gawwad, and M. Ramadan. 2020a. “Performance, radiation shielding, and anti-fungal activity of alkali-activated slag individually modified with zinc oxide and zinc ferrite nano-particles.” Constr. Build. Mater. 257 (Oct): 119584. https://doi.org/10.1016/j.conbuildmat.2020.119584.
Mohsen, A., I. Aiad, F. I. El-Hossiny, and A. O. Habib. 2020b. “Evaluating the mechanical properties of admixed blended cement pastes and estimating its kinetics of hydration by different techniques.” Egypt. J. Pet. 29 (2): 171–186. https://doi.org/10.1016/j.ejpe.2020.03.001.
Mohsen, A., M. S. El-Feky, A. M. El-Tair, and M. Kohail. 2021. “Effect of delayed microwaving on the strength progress of Green alkali activated cement composites.” J. Build. Eng. 43 (Nov): 103135. https://doi.org/10.1016/j.jobe.2021.103135.
Möschner, G., B. Lothenbach, R. Figi, and R. Kretzschmar. 2009. “Influence of citric acid on the hydration of portland cement.” Cem. Concr. Res. 39 (4): 275–282. https://doi.org/10.1016/j.cemconres.2009.01.005.
Nasir, M., M. A. M. Johari, M. Maslehuddin, M. O. Yusuf, and M. A. Al-Harthi. 2020. “Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar.” Constr. Build. Mater. 251 (Aug): 118961. https://doi.org/10.1016/j.conbuildmat.2020.118961.
Nematollahi, B., and J. Sanjayan. 2014. “Efficacy of available superplasticizers on geopolymers.” Res. J. Appl. Sci., Eng. Technol. 7 (7): 1464–1468. https://doi.org/10.19026/rjaset.7.420.
Nicoleau, L., and M. A. Bertolim. 2016. “Analytical model for the alite (C3S) dissolution topography.” J. Am. Ceram. Soc. 99 (3): 773–786. https://doi.org/10.1111/jace.13647.
Nkinamubanzi, P. C., S. Mantellato, and R. J. Flatt. 2016. “Superplasticizers in practice.” In Science and technology of concrete admixtures, 353–377. Sawston, UK: Woodhead Publishing.
Oh, J. E., P. J. M. Monteiro, S. S. Jun, S. Choi, and S. M. Clark. 2010. “The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers.” Cem. Concr. Res. 40 (2): 189–196. https://doi.org/10.1016/j.cemconres.2009.10.010.
Ohta, A., T. Sugiyama, and Y. Tanaka. 1997. “Fluidizing mechanism and application of polycarboxlate-based superplasticizers.” ACI Symp. Paper 173 (Sep): 359–378. https://doi.org/10.14359/6193.
Palacios, M., P. F. G. Banfill, and F. Puertas. 2008. “Rheology and setting of alkali-activated slag pastes and mortars: Effect of organic admixture.” ACI Mater. J. 105 (2): 140–148. https://doi.org/10.14359/19754.
Palacios, M., Y. F. Houst, P. Bowen, and F. Puertas. 2009. “Adsorption of superplasticizer admixtures on alkali-activated slag pastes.” Cem. Concr. Res. 39 (8): 670–677. https://doi.org/10.1016/j.cemconres.2009.05.005.
Palacios, M., and F. Puertas. 2004. “Stability of superplasticizer and shrinkage-reducing admixtures in high basic media.” Mater. Constr. 54 (276): 65–86. https://doi.org/10.3989/mc.2004.v54.i276.256.
Palacios, M., and F. Puertas. 2005. “Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars.” Cem. Concr. Res. 35 (7): 1358–1367. https://doi.org/10.1016/j.cemconres.2004.10.014.
Palacios, M., and F. Puertas. 2007. “Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes.” Cem. Concr. Res. 37 (5): 691–702. https://doi.org/10.1016/j.cemconres.2006.11.021.
Pilato, L. 2010. Phenolic resins: A century of progress. Berlin: Springer.
Plank, J., and C. Hirsch. 2007. “Impact of zeta potential of early cement hydration phases on superplasticizer adsorption.” Cem. Concr. Res. 37 (4): 537–542. https://doi.org/10.1016/j.cemconres.2007.01.007.
Plank, J., and B. Sachsenhauser. 2006. “Impact of molecular structure on zeta potential and adsorbed conformation of α-allyl-ω-methoxypolyethylene glycol-maleic anhydride superplasticizers.” J. Adv. Concr. Technol. 4 (2): 233–239. https://doi.org/10.3151/jact.4.233.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (Dec): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Provis, J. L., R. J. Myers, C. E. White, V. Rose, and J. S. J. van Deventer. 2012. “X-ray microtomography shows pore structure and tortuosity in alkali-activated binders.” Cem. Concr. Res. 42 (6): 855–864. https://doi.org/10.1016/j.cemconres.2012.03.004.
Puertas, F., M. Palacios, H. Manzano, J. S. Dolado, A. Rico, and J. Rodríguez. 2011. “A model for the CASH gel formed in alkali-activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Puertas, F., H. Santos, M. Palacios, and S. Martínez-Ramírez. 2005. “Polycarboxylate superplasticiser admixtures: Effect on hydration, microstructure and rheological behaviour in cement pastes.” Adv. Cem. Res. 17 (2): 77–89. https://doi.org/10.1680/adcr.2005.17.2.77.
Qian, Y., K. Lesage, K. El Cheikh, and G. De Schutter. 2018. “Effect of polycarboxylate ether superplasticizer (PCE) on dynamic yield stress, thixotropy and flocculation state of fresh cement pastes in consideration of the Critical Micelle Concentration (CMC).” Cem. Concr. Res. 107 (May): 75–84. https://doi.org/10.1016/j.cemconres.2018.02.019.
Ramadan, M., M. S. Amin, and M. A. Sayed. 2020. “Superior physico-mechanical, fire resistivity, morphological characteristics and gamma radiation shielding of hardened OPC pastes incorporating ZnFe2O4 spinel nanoparticles.” Constr. Build. Mater. 234 (Feb): 117807. https://doi.org/10.1016/j.conbuildmat.2019.117807.
Ramadan, M., M. S. Amin, S. A. Waly, and A. Mohsen. 2021. “Effect of high gamma radiation dosage and elevated temperature on the mechanical performance of sustainable alkali-activated composite as a cleaner product.” Cem. Concr. Compos. 121 (Aug): 104087. https://doi.org/10.1016/j.cemconcomp.2021.104087.
Ravikumar, D., S. Peethamparan, and N. Neithalath. 2010. “Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder.” Cem. Concr. Compos. 32 (6): 399–410. https://doi.org/10.1016/j.cemconcomp.2010.03.007.
Refaat, M., A. Mohsen, E.-S. A. R. Nasr, and M. Kohail. 2021. “Minimizing energy consumption to produce safe one-part alkali-activated materials.” J. Cleaner Prod. 323 (Nov): 129137. https://doi.org/10.1016/j.jclepro.2021.129137.
Scales, P. J., S. B. Johnson, T. W. Healy, and P. C. Kapur. 1998. “Shear yield stress of partially flocculated colloidal suspensions.” AIChE J. 44 (3): 538–544. https://doi.org/10.1002/aic.690440305.
Scrivener, K. L., and A. Nonat. 2011. “Hydration of cementitious materials, present and future.” Cem. Concr. Res. 41 (7): 651–665. https://doi.org/10.1016/j.cemconres.2011.03.026.
Selim, F. A., M. S. Amin, M. Ramadan, and M. M. Hazem. 2020. “Effect of elevated temperature and cooling regimes on the compressive strength, microstructure and radiation attenuation of fly ash-cement composites modified with miscellaneous nanoparticles.” Constr. Build. Mater. 258 (Oct): 119648. https://doi.org/10.1016/j.conbuildmat.2020.119648.
Shwita, F., N. El-Faramawy, W. Ramadan, and M. Ramadan. 2021. “Investigation of the mechanical properties, morphology and the attenuation behavior of gamma rays for OPC pastes mingled with two different glass wastes.” Constr. Build. Mater. 313 (Dec): 125475. https://doi.org/10.1016/j.conbuildmat.2021.125475.
Soroka, I. 1993. Concrete in hot environments. Boca Raton, FL: CRC Press.
Steins, P., A. Poulesquen, O. Diat, and F. Frizon. 2012. “Structural evolution during geopolymerization from an early age to consolidated material.” Langmuir 28 (22): 8502–8510. https://doi.org/10.1021/la300868v.
Suraneni, P., and R. J. Flatt. 2015. “Use of micro-reactors to obtain new insights into the factors influencing tricalcium silicate dissolution.” Cem. Concr. Res. 78 (Dec): 208–215. https://doi.org/10.1016/j.cemconres.2015.07.011.
Wang, Y.-S., Y. Alrefaei, and J.-G. Dai. 2019. “Silico-aluminophosphate and alkali-aluminosilicate geopolymers: A comparative review.” Front. Mater. 6 (May): 106. https://doi.org/10.3389/fmats.2019.00106.
Wong, H. H. C., and A. K. H. Kwan. 2008. “Rheology of cement paste: Role of excess water to solid surface area ratio.” J. Mater. Civ. Eng. 20 (2): 189–197. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(189).
Yamada, K., T. Takahashi, S. Hanehara, and M. Matsuhisa. 2000. “Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer.” Cem. Concr. Res. 30 (2): 197–207. https://doi.org/10.1016/S0008-8846(99)00230-6.
Yoshioka, K., E. Sakai, M. Daimon, and A. Kitahara. 1997. “Role of steric hindrance in the performance of superplasticizers for concrete.” J. Am. Ceram. Soc. 80 (10): 2667–2671. https://doi.org/10.1111/j.1151-2916.1997.tb03169.x.
You, N., Y. Liu, D. Gu, T. Ozbakkaloglu, J. Pan, and Y. Zhang. 2020. “Rheology, shrinkage and pore structure of alkali-activated slag-fly ash mortar incorporating copper slag as fine aggregate.” Constr. Build. Mater. 242 (May): 118029. https://doi.org/10.1016/j.conbuildmat.2020.118029.
Zingg, A., F. Winnefeld, L. Holzer, J. Pakusch, S. Becker, R. Figi, and L. Gauckler. 2009. “Interaction of polycarboxylate-based superplasticizers with cements containing different C3A amounts.” Cem. Concr. Compos. 31 (3): 153–162. https://doi.org/10.1016/j.cemconcomp.2009.01.005.
Zuhua, Z., Y. Xiao, Z. Huajun, and C. Yue. 2009. “Role of water in the synthesis of calcined kaolin-based geopolymer.” Appl. Clay Sci. 43 (2): 218–223. https://doi.org/10.1016/j.clay.2008.09.003.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 1January 2023

History

Received: Oct 4, 2021
Accepted: Apr 19, 2022
Published online: Oct 22, 2022
Published in print: Jan 1, 2023
Discussion open until: Mar 22, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Master’s Student, Dept. of Structural Engineering, Faculty of Engineering, Ain Shams Univ., Cairo 11535, Egypt. Email: [email protected]
Assistant Professor, Physics and Engineering Mathematics Dept., Chemistry Div., Faculty of Engineering, Ain Shams Univ., Cairo 11535, Egypt. ORCID: https://orcid.org/0000-0003-2568-7534. Email: [email protected]
El-Sayed A. R. Nasr [email protected]
Professor, Dept. of Structural Engineering, Faculty of Engineering, Ain Shams Univ., Cairo 11535, Egypt. Email: [email protected]
Associate Professor, Dept. of Structural Engineering, Faculty of Engineering, Ain Shams Univ., Cairo 11535, Egypt (corresponding author). ORCID: https://orcid.org/0000-0001-5220-1849. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Ethylene Vinyl Acetate Copolymer Emulsion-Modified Alkali-Activated Slag Repair Material: Mechanical Strength and Durability Linked to Microstructural Properties, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17197, 36, 7, (2024).
  • Investigation of autoclave curing impact on the mechanical properties, heavy metal stabilization and anti-microbial activity of the green geopolymeric composite based on received/thermally-treated glass polishing sludge, Journal of Materials Research and Technology, 10.1016/j.jmrt.2023.01.158, 23, (2672-2689), (2023).
  • Synergetic effects of hydrothermal treatment on the behavior of toxic sludge-modified geopolymer: Immobilization of cerium and lead, textural characteristics, and mechanical efficiency, Construction and Building Materials, 10.1016/j.conbuildmat.2022.130249, 367, (130249), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share