Technical Papers
Sep 30, 2022

Investigation of the Performance of Bituminous Binder Modified with Calcium Carbonate and Polyethylene Compound

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 12

Abstract

In this study, the usability of calcium carbonate-polyethylene compound (PEC) was investigated as an alternative to styrene-butadiene-styrene (SBS), which is one of the most used additives in bitumen modification. The softening point, penetration, rotational viscosity, bending beam rheometer, dynamic shear rheometer, multiple stress creep recovery, and fourier transform infrared spectroscopy tests were applied to the bituminous binders. To reveal the effectiveness of PEC modification, the PEC and SBS modified binders were compared in terms of performance and cost. As a result, with the use of PEC in bitumen, penetration decreased, whereas softening point, viscosity, and rutting parameters increased. PEC also improved the low-temperature performance of pure bitumen. PEC modification offered low-stress sensitivity and made the binder suitable for heavy traffic conditions. When all experiments were evaluated together, it was determined that 9% PEC modification gave similar or better results than 4% SBS modification in terms of performance and cost. Consequently, it was revealed that PEC can be used as a good alternative to SBS in bitumen modification.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

AASHTO. 2012a. Standard method of test for determining the flexural creep stiffness of asphalt binder using the bending beam rheometer (BBR). AASHTO T 313-12. Washington, DC: AASHTO.
AASHTO. 2012b. Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR). AASHTO T 315-12. Washington, DC: AASHTO.
AASHTO. 2014. Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer. AASHTO T 350. Washington, DC: AASHTO.
Airey, G. D. 2002. “Use of black diagrams to identify inconsistencies in rheological data.” Road Mater. Pavement Des. 3 (4): 403–424. https://doi.org/10.1080/14680629.2002.9689933.
Alghrafy, Y. M., E. S. M. Abd Alla, and S. M. El-Badawy. 2021a. “Rheological properties and aging performance of sulfur extended asphalt modified with recycled polyethylene waste.” Constr. Build. Mater. 273 (Mar): 121771. https://doi.org/10.1016/j.conbuildmat.2020.121771.
Alghrafy, Y. M., S. M. El-Badawy, and E.-S. M. Abd Alla. 2021b. “Rheological and environmental evaluation of sulfur extended asphalt binders modified by high- and low-density polyethylene recycled waste.” Constr. Build. Mater. 307 (Nov): 125008. https://doi.org/10.1016/j.conbuildmat.2021.125008.
Al-Hadidy, A. I., and Y. Tan. 2009. “Evaluation of pyrolisis LDPE modified asphalt paving materials.” J. Mater. Civ. Eng. 21 (10): 618–623. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(618).
Ali, S. I. A., A. Ismail, R. A. Almansob, and D. I. Alhmali. 2017. “Evaluation of elevated temperature properties of asphalt cement modified with aluminum oxide and calcium carbonate nanoparticles.” IOP Conf. Ser.: Mater. Sci. Eng. 236 (1): 012008. https://doi.org/10.1088/1757-899X/236/1/012008.
Amirkhanian, S. 2020. “Utilization of scrap plastics in asphalt binders.” In Eco-efficient pavement construction materials, 13–32. Amsterdam, Netherlands: Elsevier.
ASTM. 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402/D4402M. West Conshohocken, PA: ASTM.
ASTM. 2020a. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36/D36M. West Conshohocken, PA: ASTM.
ASTM. 2020b. Standard test method for penetration of bituminous materials. ASTM D5/D5M. West Conshohocken, PA: ASTM.
Bagampadde, U., D. Kaddu, and B. M. Kiggundu. 2013. “Evaluation of rheology and moisture susceptibility of asphalt mixtures modified with low density polyethylene.” Int. J. Pavement Res. Technol. 6 (3): 217–224. https://doi.org/10.6135/ijprt.org.tw/2013.6(3).217.
Cai, L., X. Shi, and J. Xue. 2018. “Laboratory evaluation of composed modified asphalt binder and mixture containing nano-silica/rock asphalt/SBS.” Constr. Build. Mater. 172 (May): 204–211. https://doi.org/10.1016/j.conbuildmat.2018.03.187.
Costa, L. M. B., H. M. R. D. Silva, J. R. M. Oliveira, and S. R. M. Fernandes. 2013. “Incorporation of waste plastic in asphalt binders to improve their performance in the pavement.” Int. J. Pavement Res. Technol. 6 (4): 457–464.
Domingos, M. D. I., and A. L. Faxina. 2015. “Rheological behaviour of bitumens modified with PE and PPA at different MSCR creep-recovery times.” Int. J. Pavement Eng. 16 (9): 771–783. https://doi.org/10.1080/10298436.2014.953503.
Erkuş, Y., B. V. Kök, and M. Yilmaz. 2020. “Evaluation of performance and productivity of bitumen modified by three different additives.” Constr. Build. Mater. 261 (Nov): 120553. https://doi.org/10.1016/j.conbuildmat.2020.120553.
Essawy, A. I., A. M. M. Saleh, M. T. Zaky, R. K. Farag, and A. A. Ragab. 2013. “Environmentally friendly road construction.” Egypt. J. Pet. 22 (1): 189–198. https://doi.org/10.1016/j.ejpe.2012.09.010.
Fang, C., T. Li, Z. Zhang, and X. Wang. 2008. “Combined modification of asphalt by waste PE and rubber.” Polym. Compos. 29 (10): 1183–1187. https://doi.org/10.1002/pc.20424.
Fang, C., R. Yu, Y. Li, M. Zhang, J. Hu, and M. Zhang. 2013. “Preparation and characterization of an asphalt-modifying agent with waste packaging polyethylene and organic montmorillonite.” Polym. Test. 32 (5): 953–960. https://doi.org/10.1016/j.polymertesting.2013.04.006.
Fuentes-Audén, C., F. J. Martínez-Boza, F. J. Navarro, P. Partal, and C. Gallegos. 2007. “Formulation of new synthetic binders: Thermo-mechanical properties of recycled polymer/oil blends.” Polym. Test. 26 (3): 323–332. https://doi.org/10.1016/j.polymertesting.2006.11.002.
Fuentes-Audén, C., J. A. Sandoval, A. Jerez, F. J. Navarro, F. J. Martínez-Boza, P. Partal, and C. Gallegos. 2008. “Evaluation of thermal and mechanical properties of recycled polyethylene modified bitumen.” Polym. Test. 27 (8): 1005–1012. https://doi.org/10.1016/j.polymertesting.2008.09.006.
Gahleitner, M. 2001. “Melt rheology of polyolefins.” Prog. Polym. Sci. 26 (6): 895–944. https://doi.org/10.1016/S0079-6700(01)00011-9.
Giri, J. P., M. Panda, and U. C. Sahoo. 2020. “Use of waste polyethylene for modification of bituminous paving mixes containing recycled concrete aggregates.” Road Mater. Pavement Des. 21 (2): 289–309. https://doi.org/10.1080/14680629.2018.1487873.
Haider, S., I. Hafeez, S. Bilal Ahmed Zaidi, M. Ali Nasir, and M. Rizwan. 2020. “A pure case study on moisture sensitivity assessment using tests on both loose and compacted asphalt mixture.” Constr. Build. Mater. 239 (Apr): 117817. https://doi.org/10.1016/j.conbuildmat.2019.117817.
Hao, X., A. Zhang, and W. Yang. 2012. “Study on the performance of nano calcium carbonate modified asphalt concrete AC-13.” Adv. Mat. Res. 450: 503–507. https://doi.org/10.4028/www.scientific.net/AMR.450-451.503.
Joohari, I. B., and F. Giustozzi. 2020. “Chemical and high-temperature rheological properties of recycled plastics-polymer modified hybrid bitumen.” J. Cleaner Prod. 276 (Dec): 123064. https://doi.org/10.1016/j.jclepro.2020.123064.
Kaya, D., A. Topal, J. Gupta, and T. McNally. 2020. “Aging effects on the composition and thermal properties of styrene-butadiene-styrene (SBS) modified bitumen.” Constr. Build. Mater. 235 (Feb): 117450. https://doi.org/10.1016/j.conbuildmat.2019.117450.
Kebritchi, A., A. Jalali-Arani, and A. A. Roghanizad. 2011. “Rheological behavior and properties of bitumen modified with polymeric coated precipitated calcium carbonate.” Constr. Build. Mater. 25 (6): 2875–2882. https://doi.org/10.1016/j.conbuildmat.2010.12.043.
Khan, I. M., S. Kabir, M. A. Alhussain, and F. F. Almansoor. 2016. “Asphalt design using recycled plastic and crumb-rubber waste for sustainable pavement construction.” Procedia Eng. 145 (Jan): 1557–1564. https://doi.org/10.1016/j.proeng.2016.04.196.
Kök, B. V., M. Yilmaz, and Y. Erkus. 2017. “Effects of graphite on mechanical properties of stone mastic asphalt pavement.” J. Civ. Eng. Manage. 23 (8): 1013–1020. https://doi.org/10.3846/13923730.2017.1374302.
Li, J., S. Yang, Y. Liu, Y. Muhammad, Z. Su, and J. Yang. 2019. “Studies on the properties of modified heavy calcium carbonate and SBS composite modified asphalt.” Constr. Build. Mater. 218 (Sep): 413–423. https://doi.org/10.1016/j.conbuildmat.2019.05.139.
Liu, S., W. Cao, J. Fang, and S. Shang. 2009. “Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt.” Constr. Build. Mater. 23 (7): 2701–2708. https://doi.org/10.1016/j.conbuildmat.2008.12.009.
Liu, S., S. B. Zhou, A. Peng, W. Xuan, and W. Li. 2019. “Analysis of the performance and mechanism of desulfurized rubber and low-density polyethylene compound-modified asphalt.” J. Appl. Polym. Sci. 136 (45): 48194. https://doi.org/10.1002/app.48194.
Marasteanu, M., X. Li, T. Clyne, V. Voller, and D. Timm. 2004. Low temperature cracking of asphalt concrete pavement. St. Paul, MN: Minnesota DOT.
Melbouci, B., S. Sadoun, and A. Bilek. 2014. “Study of strengthening of recycled asphalt concrete by plastic aggregates.” Int. J. Pavement Res. Technol. 7 (4): 280–286. https://doi.org/10.6135/ijprt.org.tw/2014.7(4).280.
Moghadas Nejad, F., E. Geraee, and A. R. Azarhoosh. 2020. “The effect of nano calcium carbonate on the dynamic behaviour of asphalt concrete mixture.” Eur. J. Environ. Civ. Eng. 24 (8): 1219–1228. https://doi.org/10.1080/19648189.2018.1456486.
Moghadas Nejad, F., M. Gholami, K. Naderi, and M. Rahi. 2015. “Evaluation of rutting properties of high density polyethylene modified binders.” Mater. Struct./Materiaux et Constr. 48 (10): 3295–3305. https://doi.org/10.1617/s11527-014-0399-z.
Nejad, F. M., A. R. Azarhoosh, G. H. Hamedi, and M. J. Azarhoosh. 2015. “Characterization of permanent deformation resistance of precipitated calcium carbonate modified asphalt mixture.” J. Civ. Eng. Manage. 21 (5): 615–622. https://doi.org/10.3846/13923730.2014.890654.
Nejres, A. M., Y. F. Mustafa, and H. S. Aldewachi. 2020. “Evaluation of natural asphalt properties treated with egg shell waste and low density polyethylene.” Int. J. Pavement Eng. 23 (1): 39–45. https://doi.org/10.1080/10298436.2020.1728534.
Nizamuddin, S., M. Jamal, R. Gravina, and F. Giustozzi. 2020. “Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen.” J. Cleaner Prod. 266 (Sep): 121988. https://doi.org/10.1016/j.jclepro.2020.121988.
Nouali, M., Z. Derriche, E. Ghorbel, and L. Chuanqiang. 2020. “Plastic bag waste modified bitumen a possible solution to the Algerian road pavements.” Road Mater. Pavement Des. 21 (6): 1713–1725. https://doi.org/10.1080/14680629.2018.1560355.
Okhotnikova, E. S., I. N. Frolov, Y. M. Ganeeva, A. A. Firsin, and T. N. Yusupova. 2019. “Rheological behavior of recycled polyethylene modified bitumens.” Pet. Sci. Technol. 37 (10): 1136–1142. https://doi.org/10.1080/10916466.2019.1578796.
Padhan, R. K., Z. Leng, A. Sreeram, and X. Xu. 2020. “Compound modification of asphalt with styrene-butadiene-styrene and waste polyethylene terephthalate functionalized additives.” J. Cleaner Prod. 277 (Dec): 124286. https://doi.org/10.1016/j.jclepro.2020.124286.
Padhan, R. K., and A. Sreeram. 2018. “Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives.” Constr. Build. Mater. 188 (Nov): 772–780. https://doi.org/10.1016/j.conbuildmat.2018.08.155.
Punith, V. S., and A. Veeraragavan. 2011. “Behavior of reclaimed polyethylene modified asphalt cement for paving purposes.” J. Mater. Civ. Eng. 23 (6): 833–845. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000235.
Shan, L., R. Xie, N. J. Wagner, H. He, and Y. Liu. 2019. “Microstructure of neat and SBS modified asphalt binder by small-angle neutron scattering.” Fuel 253 (Oct): 1589–1596. https://doi.org/10.1016/j.fuel.2019.05.087.
Tanniru, M., R. D. K. Misra, K. Berbrand, and D. Murphy. 2005. “The determining role of calcium carbonate on surface deformation during scratching of calcium carbonate-reinforced polyethylene composites.” Mater. Sci. Eng., A 404 (1–2): 208–220. https://doi.org/10.1016/j.msea.2005.05.031.
Tayfur, S., H. Ozen, and A. Aksoy. 2007. “Investigation of rutting performance of asphalt mixtures containing polymer modifiers.” Constr. Build. Mater. 21 (2): 328–337. https://doi.org/10.1016/j.conbuildmat.2005.08.014.
Xu, P., Z. Zhu, Y. Wang, P. Cong, D. Li, J. Hui, and M. Ye. 2022. “Phase structure characterization and compatibilization mechanism of epoxy asphalt modified by thermoplastic elastomer (SBS).” Constr. Build. Mater. 320 (Feb): 126262. https://doi.org/10.1016/j.conbuildmat.2021.126262.
Yan, K., Z. Hong, L. You, J. Ou, and M. Miljković. 2021. “Influence of ethylene-vinyl acetate on the performance improvements of low-density polyethylene-modified bitumen.” J. Cleaner Prod. 278 (Jan): 123865. https://doi.org/10.1016/j.jclepro.2020.123865.
Yang, Y., and Y. Cheng. 2016. “Preparation and performance of asphalt compound modified with waste crumb rubber and waste polyethylene.” Adv. Mater. Sci. Eng. 2016: 1–6. https://doi.org/10.1155/2016/5803709.
Yao, Z., J. Zhang, F. Gao, S. Liu, and T. Yu. 2018. “Integrated utilization of recycled crumb rubber and polyethylene for enhancing the performance of modified bitumen.” Constr. Build. Mater. 170 (May): 217–224. https://doi.org/10.1016/j.conbuildmat.2018.03.080.
Zhang, J., H. Li, P. Liu, M. Liang, H. Jiang, Z. Yao, and G. Airey. 2020. “Experimental exploration of influence of recycled polymer components on rutting resistance and fatigue behavior of asphalt mixtures.” J. Mater. Civ. Eng. 32 (6): 04020129. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003140.
Zhang, J., Z. Yao, T. Yu, S. Liu, and H. Jiang. 2019. “Experimental evaluation of crumb rubber and polyethylene integrated modified asphalt mixture upon related properties.” Road Mater. Pavement Des. 20 (6): 1413–1428. https://doi.org/10.1080/14680629.2018.1447505.
Zhang, W., L. Qiu, J. Liu, K. Hu, L. Zou, Y. Chen, C. Yang, F. Wang, and J. Zang. 2021. “Modification mechanism of C9 petroleum resin and its influence on SBS modified asphalt.” Constr. Build. Mater. 306 (Nov): 124740. https://doi.org/10.1016/j.conbuildmat.2021.124740.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 12December 2022

History

Received: Dec 21, 2021
Accepted: Apr 1, 2022
Published online: Sep 30, 2022
Published in print: Dec 1, 2022
Discussion open until: Feb 28, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Dept. of Civil Engineering, Fırat Univ., Elazığ 23119, Turkey (corresponding author). ORCID: https://orcid.org/0000-0001-7664-2964. Email: [email protected]
Baha Vural Kök, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Fırat Univ., Elazığ 23119, Turkey. Email: [email protected]
Mehmet Yılmaz, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Fırat Univ., Elazığ 23119, Turkey. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share