Abstract

The last generation of cement hydration accelerators relies on the seeding effect induced by amorphous calcium silicate hydrate particles. However, little is known about the effect of variables, such as the degree of crystallinity and morphology, on their performance. In this work, particles with a Ca/(Si+Al) molar ratio of 0.83 and different proportions of aluminum substitution for silicon were synthesized under hydrothermal conditions. X-ray diffractograms, nuclear magnetic resonance spectra, and scanning electron microscopy images showed that this altered the degree of crystallinity, structure, and morphology of the particles. Nevertheless, the addition of the synthesis products to cement pastes and their subsequent study by isothermal calorimetry and mechanical tests showed that the variables with the largest impact on cement hydration are the dosage and the proper dispersion of the particles. In fact, the use of a dispersing agent is highly recommended while drying of the particles should be avoided to prevent irreversible agglomeration processes from taking place.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This study was carried out under the umbrella of the BASKRETE initiative and the Laboratory for Transborder Cooperation “Aquitaine-Euskadi Network in Green Concrete and Cement-based Materials” (LTC-Green Concrete). Economic support was provided by the Basque Government under the ELKARTEK Program [project NEOMAT (KK-2021/00059)]. In addition, Marta Diez-Garcia is grateful to the University of the Basque Country (UPV/EHU) and the University of Bordeaux for her pre-doctoral fellowship, within the framework of the Cross-Border Euroregional Campus of International Excellence IDEX Bordeaux–Euskampus. Francisco B. Aguirre acknowledges the funding received from Tecnalia to carry out his Ph.D. in cotutelle between the University of the Basque Country (UPV-EHU) and University of Bordeaux within the framework of the Cross-Border Euroregional Campus of International Excellence IDEX Bordeaux–Euskampus. The authors wish also to express their gratitude to the SAREN Research Group (IT-1619-22, Basque Government) and MCIN/AEI/10.13039/501100011033/ FEDER, UE (PID2021-124203OB-I00).

References

Alizadeh, R., L. Raki, J. M. Makar, J. Beaudoin, and I. Moudrakovski. 2009. “Hydration of tricalcium silicate in the presence of synthetic calcium–silicate–hydrate.” J. Mater. Chem. 19 (42): 7937–7946. https://doi.org/10.1039/B910216G.
Begarin, F., S. Garrault, A. Nonat, and L. Nicoleau. 2011. “Hydration of alite containing aluminium.” Adv. Appl. Ceram. 110 (3): 127–130. https://doi.org/10.1179/1743676110Y.0000000007.
Biagioni, C., S. Merlino, and E. Bonaccorsi. 2015. “The tobermorite supergroup: A new nomenclature.” Mineral. Mag. 79 (2): 485–495. https://doi.org/10.1180/minmag.2015.079.2.22.
Björnström, J., A. Martinelli, A. Matic, L. Börjesson, and I. Panas. 2004. “Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement.” Chem. Phys. Lett. 392 (1–3): 242–248. https://doi.org/10.1016/j.cplett.2004.05.071.
Campillo, I., A. Guerrero, J. S. Dolado, A. Porro, J. A. Ibáñez, and S. Goñi. 2007. “Improvement of initial mechanical strength by nanoalumina in belite cements.” Mater. Lett. 61 (8–9): 1889–1892. https://doi.org/10.1016/j.matlet.2006.07.150.
Diez-Garcia, M., J. J. Gaitero, J. S. Dolado, and C. Aymonier. 2017. “Ultra-fast supercritical hydrothermal synthesis of tobermorite under thermodynamically metastable conditions.” Angew. Chem. Int. Ed. 129 (12): 3210–3215. https://doi.org/10.1002/ange.201611858.
Diez-Garcia, M., J. J. Gaitero, J. I. Santos, J. S. Dolado, and C. Aymonier. 2018. “Supercritical hydrothermal flow synthesis of xonotlite nanofibers.” J. Flow Chem. 8 (2): 89–95. https://doi.org/10.1007/s41981-018-0012-7.
Dittmar, S., H. G. Hauck, and R. Konig. 2013. “C-S-H: A state of the art concept to accelerate concrete hardening.” Betonwerk und Fertigteil-Technik 79 (1): 44–51.
Edwards, G. C., and R. L. Angstadt. 1966. “The effect of some soluble inorganic admixtures on the early hydration of portland cement.” J. Appl. Chem. 16 (5): 166–168. https://doi.org/10.1002/jctb.5010160508.
Gaitero, J. J., I. Campillo, and A. Guerrero. 2008. “Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles.” Cem. Concr. Res. 38 (8–9): 1112–1118. https://doi.org/10.1016/j.cemconres.2008.03.021.
Gaitero, J. J., I. Campillo, P. Mondal, and S. P. Shah. 2010. “Small changes can make a great difference.” Transp. Res. Rec.: J. Transp. Res. Board 2141 (1): 1–5. https://doi.org/10.3141/2141-01.
Gebler, S. 1983. “Evaluation of calcium formate and sodium formate as accelerating admixtures for Portland cement concrete.” J. Am. Concr. Inst. 80 (5): 439–444. https://doi.org/10.14359/10868.
Guerrero, A., J. J. Gaitero, G. Pérez, and S. Goñi. 2014. “Multi-scale analysis of cement pastes with nanosilica addition.” Adv. Cem. Res. 26 (5): 271–280. https://doi.org/10.1680/adcr.13.00023.
Guo, X., F. Meng, and H. Shi. 2017. “Microstructure and characterization of hydrothermal synthesis of Al-substituted tobermorite.” Constr. Build. Mater. 133 (Feb): 253–260. https://doi.org/10.1016/j.conbuildmat.2016.12.059.
Houston, J. R., R. S. Maxwell, and S. A. Carroll. 2009. “Transformation of meta-stable calcium silicate hydrates to tobermorite: Reaction kinetics and molecular structure from XRD and NMR spectroscopy.” Geochem. Trans. 10 (1): 1–4. https://doi.org/10.1186/1467-4866-10-1.
Kanchanason, V., and J. Plank. 2017. “Role of pH on the structure, composition and morphology of C-S-H–PCE nanocomposites and their effect on early strength development of Portland cement.” Cem. Concr. Res. 102 (Dec): 90–98. https://doi.org/10.1016/j.cemconres.2017.09.002.
Kawashima, S., P. Hou, D. J. Corr, and S. P. Shah. 2013. “Modification of cement-based materials with nanoparticles.” Cem. Concr. Compos. 36 (Feb): 8–15. https://doi.org/10.1016/j.cemconcomp.2012.06.012.
Komarneni, S., R. Roy, D. M. Roy, C. A. Fyfe, G. J. Kennedy, A. A. Bothner-By, J. Dadok, and A. S. Chesnick. 1985. “27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites.” J. Mater. Sci. 20 (11): 4209–4214. https://doi.org/10.1007/BF00552416.
Kong, D., S. Huang, D. Corr, Y. Yang, and S. P. Shah. 2018. “. “Whether do nano-particles act as nucleation sites for C-S-H gel growth during cement hydration?” Cem. Concr. Compos. 87: 98–109. https://doi.org/10.1016/j.cemconcomp.2017.12.007
Konsta-Gdoutos, M. S. 2014. “Nanomaterials in self-consolidating concrete: A state-of-the-art review.” J. Sustainable Cem.-Based Mater. 3 (3–4): 167–180. https://doi.org/10.1080/21650373.2014.909751.
Krautwurst, N., L. Nicoleau, M. Dietzsch, I. Lieberwirth, C. Labbez, A. Fernandez-Martinez, A. E. S. Van Driessche, B. Barton, S. Leukel, and W. Tremel. 2018. “Two-step nucleation process of calcium silicate hydrate, the nanobrick of cement.” Chem. Mater. 30 (9): 2895–2904. https://doi.org/10.1021/acs.chemmater.7b04245.
Land, G., and D. Stephan. 2015a. “Controlling cement hydration with nanoparticles.” Cem. Concr. Compos. 57 (Mar): 64–67. https://doi.org/10.1016/j.cemconcomp.2014.12.003.
Land, G., and D. Stephan. 2015b. “Preparation and application of nanoscaled C-S-H as an accelerator for cement hydration.” In Nanotechnology in construction, 377–382. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-17088-6_14.
Lee, B. Y., and K. E. Kurtis. 2010. “Influence of TiO2 nanoparticles on early C3S hydration.” J. Am. Ceram. Soc. 93 (10): 3399–3405. https://doi.org/10.1111/j.1551-2916.2010.03868.x.
Li, J., W. Zhang, K. Garbev, G. Beuchle, and P. J. M. Monteiro. 2020. “Influences of cross-linking and Al incorporation on the intrinsic mechanical properties of tobermorite.” Cem. Concr. Res. 136 (Oct): 106170. https://doi.org/10.1016/j.cemconres.2020.106170.
Liao, W., W. Li, Z. Fang, C. Lu, and Z. Xu. 2019. “Effect of different aluminum substitution rates on the structure of Tobermorite.” Materials (Basel) 12 (22): 3765. https://doi.org/10.3390/ma12223765.
Manzano, H., J. S. Dolado, and A. Ayuela. 2009. “Aluminum incorporation to dreierketten silicate chains.” J. Phys. Chem. B 113 (9): 2832–2839. https://doi.org/10.1021/jp804867u.
Manzano, H., J. S. Dolado, M. Griebel, and J. Hamaekers. 2008. “A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C-S-H) gels.” Phys. Status Solidi (A) 205 (6): 1324–1329. https://doi.org/10.1002/pssa.200778175.
Matsui, K., A. Ogawa, J. Kikuma, M. Tsunashima, T. Ishikawa, and S. Matsuno. 2011. “In situ time-resolved X-ray diffraction of tobermorite formation process under hydrothermal condition: Influence of reactive Al compound.” Powder Diffr. 26 (2): 134–137. https://doi.org/10.1154/1.3591049.
Megaw, H. D., and C. H. Kelsey. 1956. “Crystal structure of tobermorite.” Nature 177 (4504): 390–391. https://doi.org/10.1038/177390a0.
Mitsuda, T., and H. F. W. Taylor. 1975. “Influence of aluminum on the conversion of calcium silicate hydrate gels into 11 Å tobermorite at 90°C and 120°C.” Cem. Concr. Res. 5 (3): 203–209. https://doi.org/10.1016/0008-8846(75)90001-0.
Nicoleau, L., T. Gädt, L. Chitu, G. Maier, and O. Paris. 2013. “Oriented aggregation of calcium silicate hydrate platelets by the use of comb-like copolymers.” Soft Matter 9 (19): 4864–4874. https://doi.org/10.1039/C3SM00022B.
Pardal, X., F. Brunet, T. Charpentier, I. Pochard, and A. Nonat. 2012. “27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate.” Inorg. Chem. 51 (3): 1827–1836. https://doi.org/10.1021/ic202124x.
Perez, G., E. Erkizia, J. J. Gaitero, I. Kaltzakorta, I. Jiménez, and A. Guerrero. 2015a. “Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete.” Mater. Chem. Phys. 165 (Sep): 39–48. https://doi.org/10.1016/j.matchemphys.2015.08.047.
Perez, G., J. J. Gaitero, E. Erkizia, I. Jimenez, and A. Guerrero. 2015b. “Characterisation of cement pastes with innovative self-healing system based in epoxy-amine adhesive.” Cem. Concr. Compos. 60 (Sep): 55–64. https://doi.org/10.1016/j.cemconcomp.2015.03.010.
Rashad, A. M. 2013. “Effects of ZnO2, ZrO2, Cu2O3, CuO, CaCO3, SF, FA, cement and geothermal silica waste nanoparticles on properties of cementitious materials—A short guide for civil engineer. “Constr. Build. Mater. 48 (Nov): 1120–1133. https://doi.org/10.1016/j.conbuildmat.2013.06.083.
Rosskopf, P., F. Linton, and R. Peppler. 1975. “Effect of various accelerating chemical admixtures on setting and strength development of concrete.” J. Test. Eval. 3 (4): 322. https://doi.org/10.1520/JTE10662J.
Sakiyama, M., and T. Mitsuda. 1977. “Hydrothermal reaction between C-S-H and kaolinite for the formation of tobermorite at 180°C.” Cem. Concr. Res. 7 (6): 681–685. https://doi.org/10.1016/0008-8846(77)90051-5.
Sato, T., and F. Diallo. 2010. “Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate.” Transp. Res. Rec. 2141 (1): 61–67. https://doi.org/10.3141%2F2141-11.
Schneider, J., M. Cincotto, and H. Panepucci. 2001. “29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes.” Cem. Concr. Res. 31 (7): 993–1001. https://doi.org/10.1016/S0008-8846(01)00530-0.
Shaw, S., S. M. Clark, and C. M. B. Henderson. 2000. “Hydrothermal formation of the calcium silicate hydrates, tobermorite and xonotlite: An in situ synchrotron study.” Chem. Geol. 167 (1–2): 129–140. https://doi.org/10.1016/S0009-2541(99)00205-3.
Sun, G. K., J. F. Young, and R. J. Kirkpatrick. 2006. “The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples.” Cem. Concr. Res. 36 (1): 18–29. https://doi.org/10.1016/j.cemconres.2005.03.002.
Thomas, J. J., J. J. Biernacki, J. W. Bullard, S. Bishnoi, J. S. Dolado, G. W. Scherer, and A. Luttge. 2011. “Modeling and simulation of cement hydration kinetics and microstructure development.” Cem. Concr. Res. 41 (12): 1257–1278. https://doi.org/10.1016/j.cemconres.2010.10.004.
Thomas, J. J., H. M. Jennings, and J. J. Chen. 2009. “Influence of nucleation seeding on the hydration mechanism of tricalcium silicate and cement.” J. Phys. Chem. C 113 (11): 4327–4334. https://doi.org/10.1021/jp809811w.
Torelli, G., and J. M. Lees. 2019. “Fresh state stability of vertical layers of concrete.” Cem. Concr. Res. 120 (Oct): 227–243. https://doi.org/10.1016/j.cemconres.2019.03.006.
Violetta, B. K., et al. 2016. Report on Chemical Admixtures for Concrete. Detroit: American Concrete.
Yang, H., M. Monasterio, D. Zheng, H. Cui, W. Tang, X. Bao, and X. Chen. 2021. “Effects of nano silica on the properties of cement-based materials: A comprehensive review.” Constr. Build. Mater. 282 (May): 122715. https://doi.org/10.1016/j.conbuildmat.2021.122715.
Zhao, Z., T. Qi, W. Zhou, D. Hui, C. Xiao, J. Qi, Z. Zheng, and Z. Zhao. 2020. “A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials.” Nanotechnol. Rev. 9 (1): 303–322. https://doi.org/10.1515/ntrev-2020-0023.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 12December 2022

History

Received: Sep 8, 2021
Accepted: Mar 21, 2022
Published online: Sep 27, 2022
Published in print: Dec 1, 2022
Discussion open until: Feb 27, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

M. Diez-Garcia [email protected]
Ph.D. Student, TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 700, 48160 Derio, Spain; Centre National de la Recherche Scientifique (CNRS), Univ. Bordeaux, Institut National Polytechnique De Bordeaux (Bordeaux INP), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Unité Mixte de Recherche (UMN) 5026, F-33600 Pessac, France; Dept. of Engineering in Mining, Metallurgical and Materials Science, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain. Email: [email protected]
Senior Researcher, TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 700, 48160 Derio, Spain (corresponding author). ORCID: https://orcid.org/0000-0002-4177-6214. Email: [email protected]
F. B. Aguirre [email protected]
Ph.D. Student, TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 700, 48160 Derio, Spain; Univ. Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique De Bordeaux (Bordeaux INP), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Unité Mixte de Recherche (UMN) 5026, F-33600 Pessac, France; Dept. of Applied Chemistry, Faculty of Chemistry, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain. Email: [email protected]
Senior Researcher, TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 700, 48160 Derio, Spain. Email: [email protected]
J. T. San-Jose [email protected]
Associate Professor, Dept. of Engineering in Mining, Metallurgical and Materials Science, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain. Email: [email protected]
C. Aymonier [email protected]
Senior Researcher, Centre National de la Recherche Scientifique (CNRS), Univ. Bordeaux, Institut National Polytechnique De Bordeaux (Bordeaux INP), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Unité Mixte de Recherche (UMN) 5026, F-33600 Pessac, France. Email: [email protected]
J. S. Dolado [email protected]
Senior Researcher, Centro de Física de Materiales, Centro Mixto Centro Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Univertsitatea (CSIC-UPV/EHU), Paseo Manuel Lardizabal 5, 20018 Donostia-San Sebastián, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share