Technical Papers
Mar 18, 2022

Effect of Predrying Temperature on Carbonation of Alkali-Activated Slag Pastes

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 6

Abstract

According to standard testing methods, predrying of portland cement (PC) usually is required as a preconditioning step before the determination of carbonation. However, the hydration process, the hydration products, and the microstructure of alkali-activated slag (AAS) differ from those of PC, and little research has focused on the effects of conventional predrying methods (applying to PC) on the microstructure change and carbonation process of AAS. To study the effect of predrying temperature on the carbonation performance of alkali-activated slag, AAS pastes were prepared with the activator of sodium hydroxide (NaOH). The carbonation depth of AAS was characterized by phenolphthalein spraying, differential thermogravimetry (DTG), Fourier-transform infrared spectroscopy (FTIR), and X-ray computed tomography (CT) at predrying temperatures of 40°C and 60°C. The results showed that predrying temperature had a remarkable effect on the degree of drying in the matrix. The higher the drying temperature, the greater was the water loss rate due to the inward movement of the actual evaporation surface. Higher predrying temperature also resulted in changed hydration products, and more hydrotalcite was detected in the AAS specimens conditioned at a predrying temperature of 60°C. Compared with the lower predrying temperature of 40°C, the predrying temperature of 60°C led to a coarse microstructure and cracks in AAS, resulting in greater carbonation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors greatly acknowledge the support provided by the National Natural Science Foundation of China (No. 51778132) and the support from the “333 Project” funded by Jiangsu Province in 2020 (BRA2020221).

References

Al-Fadhala, M., and K. C. Hover. 2001. “Rapid evaporation from freshly cast concrete and the Gulf environment.” Constr. Build. Mater. 15 (1): 1–7. https://doi.org/10.1016/S0950-0618(00)00064-7.
Aperador, W., R. Mejía de Gutiérrez, and D. M. Bastidas. 2009. “Steel corrosion behaviour in carbonated alkali-activated slag concrete.” Corros. Sci. 51 (9): 2027–2033. https://doi.org/10.1016/j.corsci.2009.05.033.
ASTM. 2011. Test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM C204-2011. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for density of hydraulic cement. ASTM C188-2015. West Conshohocken, PA: ASTM.
Aydın, S., and B. Baradan. 2014. “Effect of activator type and content on properties of alkali-activated slag mortars.” Composites, Part B 57 (Feb): 166–172. https://doi.org/10.1016/j.compositesb.2013.10.001.
Bakharev, T. 2005. “Durability of geopolymer materials in sodium and magnesium sulfate solutions.” Cem. Concr. Res. 35 (6): 1233–1246. https://doi.org/10.1016/j.cemconres.2004.09.002.
Bakharev, T., J. G. Sanjayan, and Y. B. Cheng. 2001. “Resistance of alkali-activated slag concrete to carbonation.” Cem. Concr. Res. 31 (9): 1277–1283. https://doi.org/10.1016/S0008-8846(01)00574-9.
Bakharev, T., J. G. Sanjayan, and Y.-B. Cheng. 1999. “Alkali activation of Australian slag cements.” Cem. Concr. Res. 29 (1): 113–120. https://doi.org/10.1016/S0008-8846(98)00170-7.
Bernal, S. A., R. Mejía de Gutierrez, J. L. Provis, and V. Rose. 2010. “Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags.” Cem. Concr. Res. 40 (6): 898–907. https://doi.org/10.1016/j.cemconres.2010.02.003.
Bernal, S. A., R. Mejía de Gutiérrez, A. L. Pedraza, J. L. Provis, E. D. Rodriguez, and S. Delvasto. 2011. “Effect of binder content on the performance of alkali-activated slag concretes.” Cem. Concr. Res. 41 (1): 1–8. https://doi.org/10.1016/j.cemconres.2010.08.017.
Bernal, S. A., J. L. Provis, D. G. Brice, A. Kilcullen, P. Duxson, and J. S. J. van Deventer. 2012. “Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: The role of pore solution chemistry.” Cem. Concr. Res. 42 (10): 1317–1326. https://doi.org/10.1016/j.cemconres.2012.07.002.
Bernal, S. A., J. L. Provis, B. Walkley, R. San Nicolas, J. D. Gehman, D. G. Brice, A. Kilcullen, P. Duxson, and J. S. J. van Deventer. 2013. “Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation.” Cem. Concr. Res. 53 (Nov): 127–144. https://doi.org/10.1016/j.cemconres.2013.06.007.
Bernal, S. A., R. San Nicolas, R. J. Myers, R. Mejía de Gutiérrez, F. Puertas, J. S. J. van Deventer, and J. L. Provis. 2014a. “MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders.” Cem. Concr. Res. 57 (Mar): 33–43. https://doi.org/10.1016/j.cemconres.2013.12.003.
Bernal, S. A., R. San Nicolas, J. L. Provis, R. Mejía de Gutiérrez, and J. S. J. van Deventer. 2014b. “Natural carbonation of aged alkali-activated slag concretes.” Mater. Struct. 47 (4): 693–707. https://doi.org/10.1617/s11527-013-0089-2.
Chang, C.-F., and J.-W. Chen. 2006. “The experimental investigation of concrete carbonation depth.” Cem. Concr. Res. 36 (9): 1760–1767. https://doi.org/10.1016/j.cemconres.2004.07.025.
Chinese Standard. 2006. Steel slag powder used for cement and concrete. GB/T 20491-2006. Beijing: Chinese Standard.
Chinese Standard. 2009. Standard for test methods of long-term performance and durability properties of ordinary concrete. GB/T 50082-2009. Beijing: Chinese Standard.
Chinese Standard. 2016. Standard for test method of performance on ordinary fresh concrete. GB/T 50081-2016. Beijing: Chinese Standard.
Dong, J., L. Wang, and T. Zhang. 2014. “Study on the strength development, hydration process and carbonation process of NaOH-activated Pisha Sandstone.” Constr. Build. Mater. 66 (Sep): 154–162. https://doi.org/10.1016/j.conbuildmat.2014.05.075.
Duxson, P., J. L. Provis, G. C. Lukey, and J. S. J. Van Deventer. 2007. “The role of inorganic polymer technology in the development of ‘green concrete’.” Cem. Concr. Res. 37 (12): 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018.
Fořt, J., E. Vejmelková, D. Koňáková, N. Alblová, M. Čáchová, M. Keppert, P. Rovnaníková, and R. Černý. 2018. “Application of waste brick powder in alkali activated aluminosilicates: Functional and environmental aspects.” J. Cleaner Prod. 194 (Sep): 714–725. https://doi.org/10.1016/j.jclepro.2018.05.181.
Gallé, C. 2001. “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: A comparative study between oven-, vacuum-, and freeze-drying.” Cem. Concr. Res. 31 (10): 1467–1477. https://doi.org/10.1016/S0008-8846(01)00594-4.
Han, J., W. Liu, S. Wang, D. Du, F. Xu, W. Li, and G. De Schutter. 2016. “Effects of crack and ITZ and aggregate on carbonation penetration based on 3D micro X-ray CT microstructure evolution.” Constr. Build. Mater. 128 (Dec): 256–271. https://doi.org/10.1016/j.conbuildmat.2016.10.062.
Han, J., W. Sun, G. Pan, C. Wang, and H. Rong. 2012. “Application of X-ray computed tomography in characterization microstructure changes of cement pastes in carbonation process.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 27 (2): 358–363. https://doi.org/10.1007/s11595-012-0466-7.
Hover, K. C. 2006. “Evaporation of water from concrete surfaces.” ACI Mater. J. 103 (5): 384–389.
Ismail, I., S. A. Bernal, J. L. Provis, S. Hamdan, and J. S. J. van Deventer. 2013. “Drying-induced changes in the structure of alkali-activated pastes.” J. Mater. Sci. 48 (9): 3566–3577. https://doi.org/10.1007/s10853-013-7152-9.
Juenger, M. C. G., F. Winnefeld, J. L. Provis, and J. H. Ideker. 2011. “Advances in alternative cementitious binders.” Cem. Concr. Res. 41 (12): 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
Lee, H. J., D. G. Kim, J. H. Lee, and M. S. Cho. 2012. “A study for carbonation degree on Concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy.” Int. J. Civ. Environ. Eng. 34 (62): 184–190. https://doi.org/10.5281/zenodo.1328180.
Li, N., N. Farzadnia, and C. Shi. 2017. “Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation.” Cem. Concr. Res. 100 (Oct): 214–226. https://doi.org/10.1016/j.cemconres.2017.07.008.
Lo, Y., and H. M. Lee. 2002. “Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy.” Build. Environ. 37 (5): 507–514. https://doi.org/10.1016/S0360-1323(01)00052-X.
Metalssi, O. O., A. Ait-Mokhtar, and P. Turcry. 2020. “A proposed modelling of coupling carbonation-porosity-moisture transfer in concrete based on mass balance equilibrium.” Constr. Build. Mater. 230 (Jan): 116997. https://doi.org/10.1016/j.conbuildmat.2019.116997.
Mozgawa, W., and J. Deja. 2009. “Spectroscopic studies of alkaline activated slag geopolymers.” J. Mol. Struct. 924 (Apr): 434–441. https://doi.org/10.1016/j.molstruc.2008.12.026.
Palacios, M., and F. Puertas. 2006. “Effect of carbonation on alkali-activated slag paste.” J. Am. Ceram. Soc. 89 (10): 3211–3221. https://doi.org/10.1111/j.1551-2916.2006.01214.x.
Parrott, L. J. 1992. “Carbonation, moisture and empty pores.” Adv. Cem. Res. 4 (15): 111–118. https://doi.org/10.1680/adcr.1992.4.15.111.
Phung, Q. T., N. Maes, D. Jacques, G. De Schutter, G. Ye, and J. Perko. 2016. “Modelling the carbonation of cement pastes under a CO2 pressure gradient considering both diffusive and convective transport.” Constr. Build. Mater. 114 (Jul): 333–351. https://doi.org/10.1016/j.conbuildmat.2016.03.191.
Provis, J. L., and J. S. J. Van Deventer, eds. 2009. Geopolymers: Structures, processing, properties and industrial applications. Amsterdam, Netherlands: Elsevier.
Puertas, F., M. Palacios, and T. Vázquez. 2006. “Carbonation process of alkali-activated slag mortars.” J. Mater. Sci. 41 (10): 3071–3082. https://doi.org/10.1007/s10853-005-1821-2.
Rey, F., V. Fornés, and J. M. Rojo. 1992. “Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study.” J. Chem. Soc., Faraday Trans. 88 (15): 2233–2238. https://doi.org/10.1039/FT9928802233.
Rougelot, T., N. Burlion, D. Bernard, and F. Skoczylas. 2010. “About microcracking due to leaching in cementitious composites: X-ray microtomography description and numerical approach.” Cem. Concr. Res. 40 (2): 271–283. https://doi.org/10.1016/j.cemconres.2009.09.021.
Ruiz-Sánchez, A., M. Sánchez, C. A. Zaror, M. I. Vega, and C. M. Muñoz. 2014. “Greenhouse gases in the production of cement using marble dust as raw material.” In Construction and building research, 435–441. Dordrecht, Netherlands: Springer.
Tuyan, M., Ö. Andiç-Çakir, and K. Ramyar. 2018. “Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer.” Composites, Part B 135 (Feb): 242–252. https://doi.org/10.1016/j.compositesb.2017.10.013.
Villain, G., M. Thiery, and G. Platret. 2007. “Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gamma densimetry.” Cem. Concr. Res. 37 (8): 1182–1192. https://doi.org/10.1016/j.cemconres.2007.04.015.
Wang, D., T. Noguchi, and T. Nozaki. 2019. “Increasing efficiency of carbon dioxide sequestration through high temperature carbonation of cement-based materials.” J. Cleaner Prod. 238 (Nov): 117980. https://doi.org/10.1016/j.jclepro.2019.117980.
Ye, H., R. Cai, and Z. Tian. 2020. “Natural carbonation-induced phase and molecular evolution of alkali-activated slag: Effect of activator composition and curing temperature.” Constr. Build. Mater. 248 (Jul): 118726. https://doi.org/10.1016/j.conbuildmat.2020.118726.
Ye, H., and A. Radlińska. 2017. “Carbonation-induced volume change in alkali-activated slag.” Constr. Build. Mater. 144 (Jul): 635–644. https://doi.org/10.1016/j.conbuildmat.2017.03.238.
You, N., B. Li, R. Cao, J. Shi, C. Chen, and Y. Zhang. 2019. “The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar.” Constr. Build. Mater. 227 (Dec): 116614. https://doi.org/10.1016/j.conbuildmat.2019.07.340.
You, N., Y. Liu, D. Gu, T. Ozbakkaloglu, J. Pan, and Y. Zhang. 2020a. “Rheology, shrinkage and pore structure of alkali-activated slag-fly ash mortar incorporating copper slag as fine aggregate.” Constr. Build. Mater. 242 (May): 118029. https://doi.org/10.1016/j.conbuildmat.2020.118029.
You, N., J. Shi, and Y. Zhang. 2020b. “Corrosion behaviour of low-carbon steel reinforcement in alkali-activated slag-steel slag and Portland cement-based mortars under simulated marine environment.” Corros. Sci. 175 (Oct): 108874. https://doi.org/10.1016/j.corsci.2020.108874.
Živica, V. 2006. “Effectiveness of new silica fume alkali activator.” Cem. Concr. Compos. 28 (1): 21–25. https://doi.org/10.1016/j.cemconcomp.2005.07.004.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 6June 2022

History

Received: May 21, 2021
Accepted: Oct 6, 2021
Published online: Mar 18, 2022
Published in print: Jun 1, 2022
Discussion open until: Aug 18, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Nanqiao You, Ph.D. [email protected]
School of Materials Science and Engineering, Southeast Univ., Nanjing 211189, China. Email: [email protected]
Ph.D. Candidate, School of Materials Science and Engineering, Southeast Univ., Nanjing 211189, China. Email: [email protected]
Tongtong He [email protected]
Formerly, Graduate Student, School of Materials Science and Engineering, Southeast Univ., Nanjing 211189, China. Email: [email protected]
Yamei Zhang [email protected]
Professor, School of Materials Science and Engineering, Southeast Univ., Nanjing 211189, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Properties and Microstructure of Alkali-Activated Slag Paste Modified by Superabsorbent Polymers, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17117, 36, 5, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share