Abstract

The main objective of this study is to explore the effects of various asphalt binder modifiers, including styrene–butadiene–styrene (SBS), elemental sulfur, reactive ethylene terpolymer (Elvaloy), and polyphosphoric acid (PPA) polymers on the nanostructural and nanomechanical (elastic and viscoelastic) properties of low-density polyethylene (LDPE)-modified binders. The study also aims to investigate the effect of aging on the nanoproperties of such blends. To this end, we used the PeakForce quantitative nanomechanical mapping (PFQNM) test and the nanoscale dynamic mechanical analysis (nDMA) test by means of atomic force microscopy. We further utilized the nanoscale results to better understand and interpret the bulk scale properties obtained using the dynamic shear rheometer (DSR). The nDMA results indicated an increase in stiffness and an enhancement in the elastic behavior of the blends after modification. Moreover, the blends exhibited a stiffer and more elastic behavior at the nanoscale when compared with the bulk DSR test results. Using Elvaloy and Elvaloy+PPA greatly enhanced the bond between LDPE and the binder. Both blends also showed resistance to heat-induced polymer separation and aging. Furthermore, the addition of SBS+sulfur enhanced LDPE dispersion within the binder. It was demonstrated that the use of elemental sulfur showed high efficacy in stabilizing LDPE-modified binders by inducing physical interaction between LDPE and the binder. Lastly, we concluded that the nanoscale measurements are very useful in understanding the local interactions, explaining the main aspects of the response at the bulk scale, and in the design of asphalt blends with improved properties.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the Qatar National Research Fund (QNRF): NPRP11S-1128-170041. The authors also acknowledge the cofunding of Qatar Petrochemical Company (QAPCO) and RAETEX Doha company. All statements are those of the authors.

References

Aljarrah, M. F., and E. Masad. 2020. “Nanoscale viscoelastic characterization of asphalt binders using the AFM-nDMA test.” Mater. Struct. 53 (4): 110. https://doi.org/10.1617/s11527-020-01543-3.
Attaelmanan, M., C. P. Feng, and A. Al-Hadidy. 2011. “Laboratory evaluation of HMA with high density polyethylene as a modifier.” Constr. Build. Mater. 25 (5): 2764–2770. https://doi.org/10.1016/j.conbuildmat.2010.12.037.
Baumgardner, G. L. 2010. “Why and how of polyphosphoric acid modification—An industry perspective.” J. Assoc. Asphalt Paving Technol. 74: 663–678.
Baumgardner, G. L., J. F. Masson, J. R. Hardee, A. M. Menapace, and A. G. Williams. 2005. “Polyphosphoric acid modified asphalt: Proposed mechanisms.” J. Assoc. Asphalt Paving Technol. 79: 283–305.
Behnood, A., and M. M. Gharehveran. 2019. “Morphology, rheology, and physical properties of polymer-modified asphalt binders.” Eur. Polym. J. 112 (Mar): 766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049.
Benedetto, H. D., B. Delaporte, and C. Sauzéat. 2007. “Three-dimensional linear behavior of bituminous materials: Experiments and modeling.” Int. J. Geomech. 7 (2): 149–157. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:2(149).
Bulatović, V. O., V. Rek, and J. Marković. 2014. “Rheological properties of bitumen modified with ethylene butylacrylate glycidylmethacrylate.” Polym. Eng. Sci. 54 (5): 1056–1065. https://doi.org/10.1002/pen.23649.
Chen, J.-S., and C. Huang. 2007. “Fundamental characterization of SBS-modified asphalt mixed with sulfur.” J. Appl. Polym. Sci. 103 (5): 2817–2825. https://doi.org/10.1002/app.24621.
Derjaguin, B. V., V. M. Muller, and Y. P. Toporov. 1975. “Effect of contact deformations on the adhesion of particles.” J. Colloid Interface Sci. 53 (2): 314–326. https://doi.org/10.1016/0021-9797(75)90018-1.
Domingos, M. D. I., and A. L. Faxina. 2015. “Rheological analysis of asphalt binders modified with Elvaloy® terpolymer and polyphosphoric acid on the multiple stress creep and recovery test.” Mater. Struct. 48 (5): 1405–1416. https://doi.org/10.1617/s11527-013-0242-y.
Fee, D., R. Maldonado, G. Reinke, and H. Romagosa. 2010. “Polyphosphoric acid modification of asphalt.” Transp. Res. Rec. 2179 (1): 49–57. https://doi.org/10.3141/2179-06.
Geckil, T., and M. Seloglu. 2018. “Performance properties of asphalt modified with reactive terpolymer.” Constr. Build. Mater. 173 (Jun): 262–271. https://doi.org/10.1016/j.conbuildmat.2018.04.036.
Geçkil, T. 2019. “Physical, chemical, microstructural and rheological properties of reactive terpolymer-modified bitumen.” Materials 12 (6): 921. https://doi.org/10.3390/ma12060921.
Geyer, R., J. R. Jambeck, and K. L. Law. 2017. “Production, use, and fate of all plastics ever made.” Sci. Adv. 3 (7): e1700782. https://doi.org/10.1126/sciadv.1700782.
Ghuzlan, K. A., G. G. Al-Khateeb, and Y. Qasem. 2013. “Rheological properties of polyethylene-modified asphalt binder.” In Proc., 3rd Annual Int. Conf. on Civil Engineering. Sharjah, UAE: Univ. of Sharjah.
González, O., J. Peña, M. Muñoz, A. Santamaría, A. Pérez-Lepe, F. Martínez-Boza, and C. Gallegos. 2002. “Rheological techniques as a tool to analyze polymer−bitumen interactions: Bitumen modified with polyethylene and polyethylene-based blends.” Energy Fuels 16 (5): 1256–1263. https://doi.org/10.1021/ef020049l.
Gudmarsson, A., N. Ryden, H. Di Benedetto, and C. Sauzéat. 2015. “Complex modulus and complex Poisson’s ratio from cyclic and dynamic modal testing of asphalt concrete.” Constr. Build. Mater. 88 (Jul): 20–31. https://doi.org/10.1016/j.conbuildmat.2015.04.007.
Holleran, I., E. Masad, G. Holleran, Y. Wubulikasimu, J. Malmstrom, and D. J. Wilson. 2021. “Nanomechanical mapping of rejuvenated asphalt binders.” Road Mater. Pavement Des. 22 (11): 2478–2497. https://doi.org/10.1080/14680629.2020.1771406.
Hung, A. M., and E. H. Fini. 2015. “AFM study of asphalt binder ‘bee’ structures: Origin, mechanical fracture, topological evolution, and experimental artifacts.” RSC Adv. 5 (117): 96972–96982. https://doi.org/10.1039/C5RA13982A.
Jasso, M., R. Hampl, O. Vacin, D. Bakos, J. Stastna, and L. Zanzotto. 2015. “Rheology of conventional asphalt modified with SBS, Elvaloy and polyphosphoric acid.” Fuel Process. Technol. 140 (Dec): 172–179. https://doi.org/10.1016/j.fuproc.2015.09.002.
Jun, L., Z. Yuxia, and Z. Yuzhen. 2008. “The research of GMA-g-LDPE modified Qinhuangdao bitumen.” Constr. Build. Mater. 22 (6): 1067–1073. https://doi.org/10.1016/j.conbuildmat.2007.03.007.
Koyun, A. N., J. Zakel, S. Kayser, H. Stadler, F. N. Keutsch, and H. Grothe. 2021. “High resolution nanoscale chemical analysis of bitumen surface microstructures.” Sci. Rep. 13554. https://doi.org/10.1038/s41598-021-92835-3.
Lakshmi Roja, K., M. F. Aljarrah, O. Sirin, N. Al-Nuaimi, and E. Masad. Forthcoming. “Rheological, thermal, and chemical evaluation of asphalt binders modified using crumb rubber and warm mix additive.” J. Mater. Civ. Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004194.
Lefevre, M., T. Q. Tran, T. De Muijlder, B. Pittenger, P. Flammang, E. Hennebert, and P. Leclère. 2021. “On the nanomechanical and viscoelastic properties of coatings made of recombinant sea star adhesive proteins.” Front. Mech. Eng. 7 (43): 667491. https://doi.org/10.3389/fmech.2021.667491.
Liang, M., X. Xin, W. Fan, J. Zhang, H. Jiang, and Z. Yao. 2021. “Comparison of rheological properties and compatibility of asphalt modified with various polyethylene.” Int. J. Pavement Eng. 22 (1): 11–20. https://doi.org/10.1080/10298436.2019.155968.
Masad, E., K. L. Roja, A. Rehman, and A. Abdala. 2020. A review of asphalt modification using plastics: A focus on polyethylene. Qatar, Doha: Texas A&M Univ.
Masson, J., P. Collins, and G. Polomark. 2005. “Steric hardening and the ordering of asphaltenes in bitumen.” Energy Fuels 19 (1): 120–122. https://doi.org/10.1021/ef0498667.
Maugis, D. 2013. Contact, adhesion and rupture of elastic solids. Cham, Switzerland: Springer.
Ministry of Municipality and Environment. 2014. “Qatar construction specifications.” Accessed November 9, 2017. https://www.mme.gov.qa/cui/view.dox?id=1441&contentID=3815&siteID=2.
Nouali, M., E. Ghorbel, and Z. Derriche. 2020. “Phase separation and thermal degradation of plastic bag waste modified bitumen during high temperature storage.” Constr. Build. Mater. 239 (Apr): 117872. https://doi.org/10.1016/j.conbuildmat.2019.117872.
Nuñez, J. Y. M., M. D. I. Domingos, and A. L. Faxina. 2014. “Susceptibility of low-density polyethylene and polyphosphoric acid-modified asphalt binders to rutting and fatigue cracking.” Constr. Build. Mater. 73 (Dec): 509–514. https://doi.org/10.1016/j.conbuildmat.2014.10.002.
Pérez-Lepe, A., F. Martínez-Boza, and C. Gallegos. 2005. “Influence of polymer concentration on the microstructure and rheological properties of high-density polyethylene (HDPE)-modified bitumen.” Energy Fuels 19 (3): 1148–1152. https://doi.org/10.1021/ef0497513.
Pittenger, B., N. Erina, and C. Su. 2012. Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM. Santa Barbra, CA: Bruker.
Pittenger, B., S. Osechinskiy, and D. Yablon. 2019a. “Measuring nanoscale viscoelastic properties with AFM-based nanoscale DMA. Santa Barbra, CA: Bruker.
Pittenger, B., S. Osechinskiy, D. Yablon, and T. Mueller. 2019b. “Nanoscale DMA with the atomic force microscope: A new method for measuring viscoelastic properties of nanostructured polymer materials.” JOM 71 (10): 3390–3398. https://doi.org/10.1007/s11837-019-03698-z.
Polacco, G., S. Berlincioni, D. Biondi, J. Stastna, and L. Zanzotto. 2005. “Asphalt modification with different polyethylene-based polymers.” Eur. Polym. J. 41 (12): 2831–2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034.
Polacco, G., J. Stastna, D. Biondi, F. Antonelli, Z. Vlachovicova, and L. Zanzotto. 2004. “Rheology of asphalts modified with glycidylmethacrylate functionalized polymers.” J. Colloid Interface Sci. 280 (2): 366–373. https://doi.org/10.1016/j.jcis.2004.08.043.
Polacco, G., J. Stastna, D. Biondi, and L. Zanzotto. 2006. “Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts.” Curr. Opin. Colloid Interface Sci. 11 (4): 230–245. https://doi.org/10.1016/j.cocis.2006.09.001.
Porto, M., P. Caputo, V. Loise, S. Eskandarsefat, B. Teltayev, and C. Oliviero Rossi. 2019. “Bitumen and bitumen modification: A review on latest advances.” Appl. Sci. 9 (4): 742. https://doi.org/10.3390/app9040742.
Punith, V., and A. Veeraragavan. 2007. “Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive.” J. Mater. Civ. Eng. 19 (6): 500–507. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(500).
Ramm, A., M. Downer, N. Sakib, and A. Bhasin. 2019. “Morphology and kinetics of asphalt binder microstructure at gas, liquid and solid interfaces.” J. Microsc. 276 (3): 109–117. https://doi.org/10.1111/jmi.12842.
Robinson, H. 2005. Polymers in asphalt. Shrewsbury, UK: iSmithers Rapra Publishing.
Roja, K. L., E. Masad, B. Vajipeyajula, W. Yiming, E. Khalid, and V. C. Shunmugasamy. 2020. “Chemical and multi-scale material properties of recycled and blended asphalt binders.” Constr. Build. Mater. 261 (Nov): 119689. https://doi.org/10.1016/j.conbuildmat.2020.119689.
Sobhi, S., A. Yousefi, and A. Behnood. 2020. “The effects of Gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures.” Constr. Build. Mater. 238 (Mar): 117676. https://doi.org/10.1016/j.conbuildmat.2019.117676.
Tandon, V., X. Bai, and S. Nazarian. 2006. “Impact of specimen geometry on dynamic modulus measurement test setup.” J. Mater. Civ. Eng. 18 (4): 477–484. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(477).
Tao, M., and R. B. Mallick. 2009. “Effects of warm-mix asphalt additives on workability and mechanical properties of reclaimed asphalt pavement material.” Transp. Res. Rec. 2126 (1): 151–160. https://doi.org/10.3141/2126-18.
Tarefder, R. A., and A. M. Zaman. 2009. “Nanoscale evaluation of moisture damage in polymer modified asphalts.” J. Mater. Civ. Eng. 22 (7): 714–725. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000072.
Wang, M., and L. Liu. 2017. “Investigation of microscale aging behavior of asphalt binders using atomic force microscopy.” Constr. Build. Mater. 135 (Mar): 411–419. https://doi.org/10.1016/j.conbuildmat.2016.12.180.
Wang, S., Y. Zhang, and Y. Zhang. 2003. “SBS/carbon black compounds give asphalts with improved high-temperature storage stability.” Polym. Polym. Compos. 11 (6): 477–485. https://doi.org/10.1177/096739110301100606.
Wen, G., Y. Zhang, Y. Zhang, K. Sun, and Y. Fan. 2002. “Rheological characterization of storage-stable SBS-modified asphalts.” Polym. Test. 21 (3): 295–302. https://doi.org/10.1016/S0142-9418(01)00086-1.
Wu, S.-P., L. Pang, L.-T. Mo, Y.-C. Chen, and G.-J. Zhu. 2009. “Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen.” Constr. Build. Mater. 23 (2): 1005–1010. https://doi.org/10.1016/j.conbuildmat.2008.05.004.
Yeh, P. H., Y. H. Nien, W. C. Chen, and W. T. Liu. 2010. “Evaluation of thermal and viscoelastic properties of asphalt binders by compounding with polymer modifiers.” Polym. Compos. 31 (10): 1738–1744. https://doi.org/10.1002/pc.20964.
Yildirim, Y. 2007. “Polymer modified asphalt binders.” Constr. Build. Mater. 21 (1): 66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007.
Yousefi, A. A. 2003. “Polyethylene dispersions in bitumen: The effects of the polymer structural parameters.” J. Appl. Polym. Sci. 90 (12): 3183–3190. https://doi.org/10.1002/app.12942.
Zhang, F., J. Yu, and J. Han. 2011. “Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS-and SBS/sulfur-modified asphalts.” Constr. Build. Mater. 25 (1): 129–137. https://doi.org/10.1016/j.conbuildmat.2010.06.048.
Zhang, F., J. Yu, and S. Wu. 2010. “Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts.” J. Hazard. Mater. 182 (1–3): 507–517. https://doi.org/10.1016/j.jhazmat.2010.06.061.
Zhu, J., B. Birgisson, and N. Kringos. 2014. “Polymer modification of bitumen: Advances and challenges.” Eur. Polym. J. 54 (May): 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 6June 2022

History

Received: Jun 11, 2021
Accepted: Sep 24, 2021
Published online: Mar 16, 2022
Published in print: Jun 1, 2022
Discussion open until: Aug 16, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Assistant, Zachry Dept. of Civil and Environmental Engineering, Texas A&M Univ., College Station, TX 77843 (corresponding author). ORCID: https://orcid.org/0000-0002-6643-8721. Email: [email protected]
Assistant Research Scientist, Mechanical Engineering Program, Texas A&M Univ. at Qatar, P.O. Box 23874, Doha, Qatar. ORCID: https://orcid.org/0000-0003-1862-7293. Email: [email protected]
Eyad Masad, Ph.D., F.ASCE [email protected]
P.E.
Professor, Mechanical Engineering Program, Texas A&M Univ. at Qatar, P.O. Box 23874, Doha, Qatar. Email: [email protected]
Head of R&D, Qatar Petrochemical Company (QAPCO) Q.P.J.S.C., P.O. Box 756, Doha, Qatar. ORCID: https://orcid.org/0000-0002-5139-4762. Email: [email protected]
QA/QC & Technical Manager, RAETEX Doha, P.O. Box 30432, Doha, Qatar. ORCID: https://orcid.org/0000-0002-5558-7158. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Ageing characteristics of polyethylene-modified asphalt binders blended with different compatibilisers, Road Materials and Pavement Design, 10.1080/14680629.2023.2181123, (1-18), (2023).
  • Reconstruction of Asphalt Nanostructures via Generative Adversarial Networks, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15418, 35, 8, (2023).
  • A framework for the analysis of damage and healing viscoelastic behaviour of asphalt binders, Construction and Building Materials, 10.1016/j.conbuildmat.2023.130908, 374, (130908), (2023).
  • Computational generation of multiphase asphalt nanostructures using random fields, Computer-Aided Civil and Infrastructure Engineering, 10.1111/mice.12898, 37, 13, (1639-1653), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share