Technical Papers
Jan 21, 2022

Multiphysical Characteristics of Limestones for Energy-Efficient and Sustainable Buildings Components

This article has been corrected.
VIEW CORRECTION
Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 4

Abstract

Natural stone is a traditional building material used worldwide for millennia. Its mechanical properties are rather well known, but only a small quantity of data is available regarding its hygrothermal characteristics. However, these characteristics are essential for the design of energy efficient buildings. Stones are in fact associated with insulation materials, which strongly modify the hygrothermal behavior of building walls, thereby impacting their durability and thermal comfort. This study focused on the hygrothermal characterization of a dozen samples of limestone, offering an adequate representation of their use across France. Thermal conductivity and heat capacity, sorption and desorption isotherms, water vapor permeability, and moisture buffer value (MBV) all were determined and analyzed. These data can be used to model heat and mass transfers in building walls. Limestone features extensive physical properties that can vary from one place to another within the same quarry. A statistical classification of the mechanical properties of thousands of French limestones was carried out. This classification allows estimating the hygrothermal properties previously determined for other stones.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Data, models, or codes that support the results of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research work was carried out as part of a thesis co-funded by the Technical Center for Natural Construction Materials (CTMNC) and the National Association for Research and Technology (ANRT) in partnership with the Laboratory of Civil Engineering and Geo-Environment (LGCgE).

References

Abadie, M., P. Blondeau, and J. Nicolle. 2013. Mémento Santé Bâtiment—Qualité de l’air intérieur. La Rochelle, France: Université de la Rochelle.
Abelé, C., B. Abraham, J. L. Salagnac, J. Fontan, D. Quenard, S. Gilliot, and C. Pompéo. 2009. Transferts d’humidité à travers les parois évaluer les risques de condensation. France: Scientific and Technical Center for Building.
Abhilash, H. N., F. McGregor, Y. Millogo, A. Fabbri, A. D. Séré, J. E. Aubert, and J. C. Morel. 2016. “Physical, mechanical and hygrothermal properties of lateritic building stones (LBS) from Burkina Faso.” Constr. Build. Mater. 125 (Oct): 731–741. https://doi.org/10.1016/j.conbuildmat.2016.08.082.
Akil, M., P. Tittelein, D. Defer, and F. Suard. 2019. “Statistical indicator for the detection of anomalies in gas, electricity and water consumption: Application of smart monitoring for educational buildings.” Energy Build. 199 (Sep): 512–522. https://doi.org/10.1016/j.enbuild.2019.07.025.
Asli, M. 2017. “Etude des transferts couplés de chaleur et de masse dans les matériaux bio-sourcés : Approches numérique et expérimentale.” Ph.D. thesis, Dept. of Civil Engineering, Université d’Artois.
Beck, K. 2006. “Étude des propriétés hydriques et des mécanismes d’altération de pierres calcaires à forte porosité.” Ph.D. thesis, Science of Materials, Université d’Orléans.
Blahovec, J., and S. Yanniotis. 2010. “‘GAB’ generalised equation as a basis for sorption spectral analysis.” Czech J. Food Sci. 28 (5): 345–354. https://doi.org/10.17221/146/2009-CJFS.
Cagnon, H., J. E. Aubert, M. Coutand, and C. Magniont. 2014. “Hygrothermal properties of earth bricks.” Energy Build. 80 (Sep): 208–217. https://doi.org/10.1016/j.enbuild.2014.05.024.
Çanakci, H., R. Demirboğa, M. Burhan Karakoç, and O. Şirin. 2007. “Thermal conductivity of limestone from Gaziantep (Turkey).” Build. Environ. 42 (4): 1777–1782. https://doi.org/10.1016/j.buildenv.2006.01.011.
CEN (European Committee for Standardization). 2001. Thermal performance of building materials and product—Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Dry and moist products of medium and low thermal resistance. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2006. Natural stone test methods. Determination of real density and apparent density, and of total and open porosity. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2008. Natural stone test methods. Determination of water absorption at atmospheric pressure. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2011. Methods of test for masonry units - Determination of water absorption of aggregate concrete, autoclaved aerated concrete, manufactured stone and natural stone masonry units due to capillary action and the initial rate of water absorption of clay masonry units. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2015. Specification for masonry units - Part 6: Natural stone masonry units. Brussels, Belgium: CEN.
Chabriac, P. A. 2014. “Mesure du comportement hygrothermique du pisé.” Ph.D. thesis, Dept. of Civil Engineering, National School of Public Works of the State.
Chikhi, A. 2016. “Etude du Comportement Thermo-Hydrique des Parois des Bâtiments. Influence des Effets de l’Etat Hygrothermique et des Propriétés Thermo-Physiques.” Ph.D. thesis, Dept. of Climatic Engineering, Université de Constantine—Université de Bretagne Sud.
Colinart, T., P. Glouannec, M. Bendouma, and P. Chauvelon. 2017. “Temperature dependence of sorption isotherm of hygroscopic building materials. Part 2: Influence on hygrothermal behavior of hemp concrete.” Energy Build. 152 (Oct): 42–51. https://doi.org/10.1016/j.enbuild.2017.07.016.
CTMNC (Technical Center for Natural Construction Materials). 2021. “Lithoscope, la lithothèque du CTMNC.” Accessed January 1, 2021. https://lithoscopectmnc.com/.
De Kock, T., A. Turmel, G. Fronteau, and V. Cnudde. 2017. “Rock fabric heterogeneity and its influence on the petrophysical properties of a building limestone: Lede Stone (Belgium) as an example.” Eng. Geol. 216 (Jan): 31–41. https://doi.org/10.1016/j.enggeo.2016.11.007.
Derbal, R. 2014. “Développement d’une méthode inverse de caractérisation thermique. Application à l’estimation des propriétés thermophysiques et hydriques des matériaux de construction.” Ph.D. thesis, Dept. of Civil Engineering, Université d’Artois.
Dessandier, D., J. Benharrous, F. Michel, and D. Pallix. 2014. Mémento sur l’industrie française des roches ornementales et de construction. Orléans, France: Geological and Mining Research Office.
Dunham, R. J. 1962. “Classification of carbonate rocks according to depositional texture.” In Proc., Classification of Carbonate Rocks - A Symp. Tulsa, OK: American Association of Petroleum Geologists. https://doi.org/10.1306/M1357.
Folk, R. L. 1959. “Practical petrographic classification of limestones.” AAPG Bull. 43 (1): 1–38. https://doi.org/10.1306/0BDA5C36-16BD-11D7-8645000102C1865D.
French Republic. 2018. LOI n°2018-1021 du 23 novembre 2018 portant évolution du logement, de l’aménagement et du numérique (1). Paris: Official Journal of the French Republic.
French Republic. 2021. “Projets de décret et arrêtés relatifs aux exigences de performance énergétique et environnementale, et à la méthode de calcul associée, pour la réglementation environnementale 2020 (RE2020).” Accessed February 15, 2021. https://www.consultations-publiques.developpement-durable.gouv.fr/projets-de-decret-et-arretes-relatifs-aux-a2330.html.
Genova, E., and G. Fatta. 2018. “The thermal performances of historic masonry: In-situ measurements of thermal conductance on calcarenite stone walls in Palermo.” Energy Build. 168 (Jun): 363–373. https://doi.org/10.1016/j.enbuild.2018.03.009.
Iosif Stylianou, I., S. Tassou, P. Christodoulides, I. Panayides, and G. Florides. 2016. “Measurement and analysis of thermal properties of rocks for the compilation of geothermal maps of Cyprus.” Renewable Energy 88 (Apr): 418–429. https://doi.org/10.1016/j.renene.2015.10.058.
ISO. 2007. Building materials and products—Hygrothermal properties—Tabulated design values and procedures for determining declared and design thermal values. Geneva: ISO.
ISO. 2013. Hygrothermal performance of building materials and products—Determination of hygroscopic sorption properties. Geneva: ISO.
ISO. 2016. Hygrothermal performance of building materials and products—Determination of water vapour transmission properties—Cup method. Geneva: ISO.
Issaadi, N., A. Nouviaire, R. Belarbi, and A. Aït-Mokhtar. 2015. “Moisture characterization of cementitious material properties: Assessment of water vapor sorption isotherm and permeability variation with ages.” Constr. Build. Mater. 83 (May): 237–247. https://doi.org/10.1016/j.conbuildmat.2015.03.030.
Jannot, Y., A. Kanmogne, A. Talla, and L. Monkam. 2006. “Experimental determination and modelling of water desorption isotherms of tropical woods: afzelia, ebony, iroko, moabi and obeche.” Holz Roh Werkst. 64 (2): 121–124. https://doi.org/10.1007/s00107-005-0051-2.
Kourkoulis, S. K. 2006. “Fracture and failure of natural building stones: Applications in the restoration of ancient monuments.” In Proc., 16th European Conf. on Fracture Symp. Was Organized in the Frame of the Took Place in Alexandroupolis. Berlin: Springer.
Künzel, H. M. 1995. Simultaneous heat and moisture transport in building components: One- and two-dimensional calculation using simple parameters. Germany: Fraunhofer Institute of Building Physics.
Litti, G., S. Khoshdel, A. Audenaert, and J. Braet. 2015. “Hygrothermal performance evaluation of traditional brick masonry in historic buildings.” Energy Build. 105 (Oct): 393–411. https://doi.org/10.1016/j.enbuild.2015.07.049.
Liu, S., C. Feng, L. Wang, and C. Li. 2011. “Measurement and analysis of thermal conductivity of rocks in the Tarim Basin, Northwest China.” Acta Geol. Sin. 85 (3): 598–609. https://doi.org/10.1111/j.1755-6724.2011.00454.x.
Lucchi, E. 2017. “Thermal transmittance of historical stone masonries: A comparison among standard, calculated and measured data.” Energy Build. 151 (Sep): 393–405. https://doi.org/10.1016/j.enbuild.2017.07.002.
Martinet, G., and B. Quénée. 2008. Pierres de construction - Utilisation, études et diagnostics. Saint-Denis, France: Techniques de l'Ingénieur.
Mendell, M. J., J. M. Macher, and K. Kumagai. 2018. “Measured moisture in buildings and adverse health effects: A review.” Indoor Air 28 (4): 488–499. https://doi.org/10.1111/ina.12464.
Ortiz, M., L. Itard, and P. M. Bluyssen. 2020. “Indoor environmental quality related risk factors with energy-efficient retrofitting of housing: A literature review.” Energy Build. 221 (Aug): 110102. https://doi.org/10.1016/j.enbuild.2020.110102.
Pascucci, M., and E. Lucchi. 2016. “2D-Hygrothermal Simulation of Historical Solid Walls.” In Proc., Int. Conf. on Computer Aided Architectural Design—CAADence in architecture. Bolzano, Italy: Institute for Renewable Energy. https://doi.org/10.3311/CAADence.1640.
Popielski, A. C., Z. Heidari, and C. Torres-Verdín. 2012. Rock classification from conventional well logs in hydrocarbon-bearing shale. San Antonio: Society of Petroleum Engineers.
Poyet, S. 2009. “Experimental investigation of the effect of temperature on the first desorption isotherm of concrete.” Cem. Concr. Res. 39 (11): 1052–1059. https://doi.org/10.1016/j.cemconres.2009.06.019.
Poyet, S., and S. Charles. 2009. “Temperature dependence of the sorption isotherms of cement-based materials: Heat of sorption and Clausius–Clapeyron formula.” Cem. Concr. Res. 39 (11): 1060–1067. https://doi.org/10.1016/j.cemconres.2009.07.018.
Rode, C., R. H. Peuhkuri, L. H. Mortensen, K. K. Hansen, B. Time, A. Gustavsen, and T. Ojanen. 2005. Moisture buffering of building materials. Lyngby, Denmark: Technical University of Denmark.
Rousset Tournier, B., Y. Geraud, and D. Jeannette. 2001. “Transferts par capillarité et évaporation dans des roches - rôle des structures de porosité.” Ph.D. thesis, Dept. of Petrophysics, Université Louis Pasteur.
Sing, K. S. W. 1985. “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.” Int. Union Pure Appl. Chem. 57 (4): 603–619. https://doi.org/10.1351/pac198557040603.
UNFCCC (United Nations Framework Convention on Climate Change). 2021. Nationally determined contributions under the Paris agreement. Bonn, Germany: UNFCCC.
Vigroux, M. 2020. “Influence de la microstructure et de la minéralogie sur l’endommagement mécanique des pierres de construction utilisées dans le patrimoine bâti sous l’effet de conditions environnementales sévères.” Ph.D. thesis, Dept. of Civil Engineering, Université de Cergy-Pontoise.
Wu, T. 2011. “Formalisme des impédances thermiques généralisées.” Ph.D. thesis, Dept. of Civil Engineering, Université d’Artois.
Zhao, J., and R. Plagge. 2015. “Characterization of hygrothermal properties of sandstones—Impact of anisotropy on their thermal and moisture behaviors.” Energy Build. 107 (Nov): 479–494. https://doi.org/10.1016/j.enbuild.2015.08.033.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 4April 2022

History

Received: May 19, 2021
Accepted: Aug 23, 2021
Published online: Jan 21, 2022
Published in print: Apr 1, 2022
Discussion open until: Jun 21, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Research Engineer, Univ. Artois, Univ. Lille, Institut Mines-Télécom, Junia, ULR 4515–LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-62400 Béthune, France (corresponding author). ORCID: https://orcid.org/0000-0003-0104-2280. Email: [email protected]
Emmanuel Antczak [email protected]
Professor, Univ. Artois, Univ. Lille, Institut Mines-Télécom, Junia, ULR 4515–LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-62400 Béthune, France. Email: [email protected]
Franck Brachelet, Ph.D. [email protected]
Research Engineer, Univ. Artois, Univ. Lille, Institut Mines-Télécom, Junia, ULR 4515–LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-62400 Béthune, France. Email: [email protected]
Didier Pallix [email protected]
Deputy Managing Director, Technical Center for Natural Building Materials, 17 Letellier St., 75015 Paris, France. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share