Abstract

This paper presents the results of an experimental investigation on the interface bond strength between reinforcing fibers embedded in a calcium sulfoaluminate (CSA) cement matrix, utilizing the single-fiber pullout test. Bonding at the fiber–matrix interface plays an important role in controlling the mechanical performance of cementitious composites. To examine the fiber–matrix bond within the CSA and portland cement system, fibers with differing elastic modulus strengths were selected, including polyvinyl-alcohol (PVA), polypropylene, coated steel, and plain steel. The fibers were embedded in three different matrices: two sulfate-based cements including a commercially available CSA cement and a CSA cement fabricated from coal-combustion byproducts. The third matrix was a silicate-based ordinary portland cement. In this study, the single-fiber pullout test was employed to examine the fiber–matrix interface and the effect of cement type on interfacial bond strength. Experiments show the more rigid-dense morphology of the CSA cement paste related to the ettringite crystal structure yielded higher shear-bond strengths for both steel and synthetic fibers. Results suggest the primary way to increase the effectiveness of reinforcing fibers is to decrease the modulus of elasticity ratio of fiber to matrix.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The work reported in this study was supported by the University of Kentucky Center for Applied Energy Research and the National Institute for Hometown Security.

References

Arjunan, P., M. R. Silsbee, and M. R. Della. 1999. “Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products.” Cem. Concr. Res. 29 (8): 1305–1311. https://doi.org/10.1016/S0008-8846(99)00072-1.
Atkins, A. G. 1975. “Intermittent bonding for high toughness/high strength composites.” J. Mater. Sci. 10 (5): 819–832. https://doi.org/10.1007/BF01163077.
Bartos, P. 1981. “Review paper: Bond in fibre reinforced cements and concretes.” Int. J. Cem. Compos. Lightweight Concr. 3 (3): 159–177. https://doi.org/10.1016/0262-5075(81)90049-X.
Becher, P. F., C. H. Hsueh, P. Angelini, and T. N. Tiegs. 1988. “Toughening behavior in whisker-reinforced ceramic matrix composites.” J. Am. Ceram. Soc. 71 (12): 1050–1061. https://doi.org/10.1111/j.1151-2916.1988.tb05791.x.
Bentur, A., S. Mindess, and G. Vondran. 1989. “Bonding in polypropylene fibre reinforced concretes.” Int. J. Cem. Compos. Lightweight Concr. 11 (3): 153–158. https://doi.org/10.1016/0262-5075(89)90087-0.
Betterman, L. R., C. Ouyang, and S. P. Shah. 1995. “Fiber-matrix interaction in microfiber-reinforced mortar.” Adv. Cem. Based Mater. 2 (2): 53–61. https://doi.org/10.1016/1065-7355(95)90025-X.
Bin, Y., M. Mine, A. Koganemaru, X. Jiang, and M. Matsuo. 2006. “Morphology and mechanical and electrical properties of oriented PVA-VGCF and PVA-MWNT composites.” Polymer 47 (4): 1308–1317. https://doi.org/10.1016/j.polymer.2005.12.032.
Box, G. E., and D. R. Cox. 1964. “An analysis of transformations.” J. R. Stat. Soc. Ser. B 26 (2): 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.
Brown, R., A. Shukla, and K. R. Natarajan. 2002. Fiber reinforcement of concrete structures. Kingston, RI: Univ. of Rhode Island.
Cadek, M., J. N. Coleman, V. Barron, K. Hedicke, and W. J. Blau. 2002. “Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites.” Appl. Phys. Lett. 81 (27): 5123–5125. https://doi.org/10.1063/1.1533118.
Chu, T. J., R. E. Robertson, H. Najm, and A. E. Naaman. 1994. “Effects of poly(vinyl alcohol) on fiber cement interfaces. Part II: Microstructures.” Adv. Cem. Based Mater. 1 (3): 122–130. https://doi.org/10.1016/1065-7355(94)90043-4.
Cox, D. R., and P. McCullagh. 1982. “A biometrics invited paper with discussion. Some aspects of analysis of covariance.” Biometrics 38 (3): 541–561. https://doi.org/10.2307/2530040.
Cox, H. L. 1952. “The elasticity and strength of paper and other fibrous materials.” Br. J. Appl. Phys. 3 (3): 72. https://doi.org/10.1088/0508-3443/3/3/302.
Evans, A. G., and R. M. McMeeking. 1986. “On the toughening of ceramics by strong reinforcements.” Acta Metall. 34 (12): 2435–2441. https://doi.org/10.1016/0001-6160(86)90146-X.
Gray, R. J. 1984. “Analysis of the effect of embedded fibre length on fibre debonding and pull-out from an elastic matrix.” J. Mater. Sci. 19 (3): 861–870. https://doi.org/10.1007/BF00540456.
Greszczuk, L. 1969. “Theoretical studies of the mechanics of the fiber-matrix interface in composites.” In Vol. 452 of Interfaces in composites, 42–58. West Conshohocken, PA: ASTM.
Hannant, D. J. 2000. “4.11—Cement-based composites.” In Comprehensive composite materials, edited by C. H. Zweben and P. Beaumont, 323–362. Oxford, UK: Pergamon.
Herrera-Franco, P. J., and L. T. Drzal. 1992. “Comparison of methods for the measurement of fibre/matrix adhesion in composites.” Composites 23 (1): 2–27. https://doi.org/10.1016/0010-4361(92)90282-Y.
Hsueh, C.-H. 1988. “Elastic load transfer from partially embedded axially loaded fibre to matrix.” J. Mater. Sci. Lett. 7 (5): 497–500. https://doi.org/10.1007/BF01730704.
Hsueh, C.-H. 1990. “Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites.” Mater. Sci. Eng., A 123 (1): 1–11. https://doi.org/10.1016/0921-5093(90)90203-F.
Janotka, I., L. Krajci, A. Ray, and S. C. Mojumdar. 2003. “The hydration phase and pore structure formation in the blends of sulfoaluminate-belite cement with portland cement.” Cem. Concr. Res. 33 (4): 489–497. https://doi.org/10.1016/S0008-8846(02)00994-8.
Jewell, R. B., K. C. Mahboub, T. L. Robl, and A. C. Bathke. 2015. “Interfacial bond between reinforcing fibers and calcium sulfoaluminate cements: Fiber pullout characteristics.” ACI Mater. J. 112 (1): 39–48. https://doi.org/10.14359/51687234.
Johnston, C. D. 2001. Fiber-reinforced cements and concretes. Calgary, Canada: Gordon and Breach.
Kanda, T., and V. C. Li. 1998. “Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix.” J. Mater. Civ. Eng. 10 (1): 5–13. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:1(5).
Kim, J., and Y. Mai. 1998. Engineered interfaces in fiber reinforced composites. New York: Elsevier.
Kim, J.-K., J.-S. Kim, G. J. Ha, and Y. Y. Kim. 2007. “Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag.” Cem. Concr. Res. 37 (7): 1096–1105. https://doi.org/10.1016/j.cemconres.2007.04.006.
Kim, J.-K., and Y.-W. Mai. 1991. “High strength, high fracture toughness fibre composites with interface control: A review.” Compos. Sci. Technol. 41 (4): 333–378. https://doi.org/10.1016/0266-3538(91)90072-W.
Komatsu, R., N. Mizukoshi, K. Makida, and K. Tsukamoto. 2009. “In-situ observation of ettringite crystals.” J. Cryst. Growth 311 (3): 1005–1008. https://doi.org/10.1016/j.jcrysgro.2008.09.124.
Leung, C. K. Y., and V. C. Li. 1990. “Applications of a two-way debonding theory to short fibre composites.” Composites 21 (4): 305–317. https://doi.org/10.1016/0010-4361(90)90345-W.
Li, V. C., T. Kanda, and Z. Lin. 1998. “The influence of fiber/matrix interface properties on complementary energy and composite damage tolerance.” Key Eng. Mater. 145–149: 465–472.
Li, V. C., and H. Stang. 1997. “Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites.” Adv. Cem. Based Mater. 6 (1): 1–20. https://doi.org/10.1016/S1065-7355(97)90001-8.
Li, Y., W. Li, D. Deng, K. Wang, and W. H. Duan. 2018. “Reinforcement effects of polyvinyl alcohol and polypropylene fibers on flexural behaviors of sulfoaluminate cement matrices.” Cem. Concr. Compos. 88 (Apr): 139–149. https://doi.org/10.1016/j.cemconcomp.2018.02.004.
Li, Z.-F., and D. T. Grubb. 1994. “Single-fibre polymer composites.” J. Mater. Sci. 29 (1): 189–202. https://doi.org/10.1007/BF00356593.
Lin, Z., and V. C. Li. 1997. “Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces.” J. Mech. Phys. Solids 45 (5): 763–787. https://doi.org/10.1016/S0022-5096(96)00095-6.
Marroccoli, M., M. Nobili, A. Telesca, and G. L. Valenti. 2007. Early hydration of calcium sulfoaluminate-based cements for structural applications. London: Taylor & Francis.
Marshall, D. B., and B. N. Cox. 1988. “A J-integral method for calculating steady-state matrix cracking stresses in composites.” Mech. Mater. 7 (2): 127–133. https://doi.org/10.1016/0167-6636(88)90011-7.
Marshall, D. B., B. N. Cox, and A. G. Evans. 1985. “The mechanics of matrix cracking in brittle-matrix fiber composites.” Acta Metall. 33 (11): 2013–2021. https://doi.org/10.1016/0001-6160(85)90124-5.
Marston, T. U., A. G. Atkins, and D. K. Felbeck. 1974. “Interfacial fracture energy and the toughness of composites.” J. Mater. Sci. 9 (3): 447–455. https://doi.org/10.1007/BF00737846.
McDonald, J. H. 2009. Handbook of biological statistics. Baltimore, MD: Sparky House.
Mehta, P. K., and P. J. M. Monteiro. 2006. Concrete, microstructure, properties and materials. New York: McGraw-Hill.
Mobasher, B., and L. Cheng Yu. 1996. “Effect of interfacial properties on the crack propagation in cementitious composites.” Adv. Cem. Based Mater. 4 (3–4): 93–105. https://doi.org/10.1016/S1065-7355(96)90078-4.
Naaman, A. E., G. G. Namur, J. M. Alwan, and H. S. Najm. 1991. “Fiber pullout and bond slip. I: Analytical study.” J. Struct. Eng. 117 (9): 2769–2790. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2769).
Naebe, M., T. Lin, M. P. Staiger, L. Dai, and X. Wang. 2008. “Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: Structure-property relationships.” Nanotechnology 19 (30): 305702. https://doi.org/10.1088/0957-4484/19/30/305702.
Nairn, J. A. 1992. “A variational mechanics analysis of the stresses around breaks in embedded fibers.” Mech. Mater. 13 (2): 131–154. https://doi.org/10.1016/0167-6636(92)90042-C.
Nairn, J. A., C.-H. Liu, D. A. Mendels, and S. Zhandarov. 2001. “Fracture mechanics analysis of the single-fiber pull-out test and the microbond test including the effects of friction and thermal stresses.” In Proc., 16th Annual Technology Conf. of the American Society of Composites. Alexandria, VA: National Science Foundation.
Pan, N. 1993. “Theoretical modeling and analysis of fiber-pull-out behaviour from a bonded fibrous matrix: The elastic-bond case.” J. Text. Inst. 84 (3): 472–485. https://doi.org/10.1080/00405009308658979.
Richardson, I. G. 1999. “The nature of C-S-H in hardened cements.” Cem. Concr. Res. 29 (8): 1131–1147. https://doi.org/10.1016/S0008-8846(99)00168-4.
Silknitter, K. O., J. W. Wisnowski, and D. C. Montgomery. 1999. “The analysis of covariance: A useful technique for analysing quality improvement experiments.” Qual. Reliab. Eng. Int. 15 (4): 303–316. https://doi.org/10.1002/(SICI)1099-1638(199907/08)15:4%3C303::AID-QRE253%3E3.0.CO;2-G.
Smith, J., G. Cusatis, D. Pelessone, E. Landis, J. O’Daniel, and J. Baylot. 2014. “Discrete modeling of ultra-high-performance concrete with application to projectile penetration.” Int. J. Impact Eng. 65 (Mar): 13–32. https://doi.org/10.1016/j.ijimpeng.2013.10.008.
Stang, H., Z. Li, and S. P. Shah. 1990. “Pullout problem: Stress versus fracture mechanical approach.” J. Eng. Mech. 116 (10): 2136–2150. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:10(2136).
Subramani, S., and N. Gaurav. 2012. “Fiber-matrix interface characterization through the microbond test.” Int. J. Aeronaut. Space Sci. 13 (3): 282–295. https://doi.org/10.5139/IJASS.2012.13.3.282.
Surendra, P. S. 1992. “Do fibers increase the tensile strength of cement-based matrix?” ACI Mater. J. 88 (6): 595–602.
Takaku, A., and R. G. C. Arridge. 1973. “The effect of interfacial radial and shear stress on fibre pull-out in composite materials.” J. Phys. D: Appl. Phys. 6 (17): 2038. https://doi.org/10.1088/0022-3727/6/17/310.
Vano, M., C. Goracci, F. Monticelli, F. Tognini, M. Gabriele, F. Tay, and M. Ferrari. 2006. “The adhesion between fibre posts and composite resin cores: The evaluation of microtensile bond strength following various surface chemical treatments to posts.” Int. Endodontic J. 39 (1): 31–39. https://doi.org/10.1111/j.1365-2591.2005.01044.x.
Wang, Y., V. C. Li, and S. Backer. 1988. “Modelling of fibre pull-out from a cement matrix.” Int. J. Cem. Compos. Lightweight Concr. 10 (3): 143–149. https://doi.org/10.1016/0262-5075(88)90002-4.
Woodson, R. D. 2012. “Concrete materials.” Chap. 2 in Concrete portable handbook, 5–18. Boston: Butterworth-Heinemann.
Yamazaki, T., S. R. Schricker, W. A. Brantley, B. M. Culbertson, and W. Johnston. 2006. “Viscoelastic behavior and fracture toughness of six glass-ionomer cements.” J. Prosthetic Dent. 96 (4): 266–272. https://doi.org/10.1016/j.prosdent.2006.08.011.
Zhou, L.-M., J.-K. Kim, and Y.-W. Mai. 1993. “Micromechanical characterisation of fibre/matrix interfaces.” Compos. Sci. Technol. 48 (1–4): 227–236. https://doi.org/10.1016/0266-3538(93)90140-C.
Zucchini, A., and C. Y. Hui. 1996. “Detailed analysis of the fibre pull-out test.” J. Mater. Sci. 31 (21): 5631–5641. https://doi.org/10.1007/BF01160808.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 4April 2022

History

Received: Feb 9, 2021
Accepted: Aug 12, 2021
Published online: Jan 17, 2022
Published in print: Apr 1, 2022
Discussion open until: Jun 17, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Director, Center for Applied Energy Research, Univ. of Kentucky, 2540 Research Park Dr., Lexington, KY 40511 (corresponding author). ORCID: https://orcid.org/0000-0002-8611-9744. Email: [email protected]
P.E.
Professor of Civil Engineering, Dept. of Civil Engineering, Univ. of Kentucky, 351 Ralph G. Anderson Bldg., Lexington, KY 40506. ORCID: https://orcid.org/0000-0003-1668-4585. Email: [email protected]
Thomas L. Robl, Ph.D. [email protected]
Senior Advisor, Center for Applied Energy Research, Univ. of Kentucky, 2540 Research Park Dr., Lexington, KY 40511. Email: [email protected]
Constance L. Wood, Ph.D. [email protected]
Associate Professor of Statistics, Dept. of Statistics, Univ. of Kentucky, 313 Multidisciplinary Science Bldg., 725 Rose St., Lexington, KY 40536. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share