State-of-the-Art Reviews
Dec 16, 2021

Nanomodified Cement-Based Materials: Review (2015–2020) of Molecular Dynamics Studies

Publication: Journal of Materials in Civil Engineering
Volume 34, Issue 3

Abstract

The addition of nanomodifiers is an effective method to improve the performance of cementitious materials. However, the strengthening mechanism is still not fully understood. Molecular dynamics (MD) simulation is an effective research tool that makes it possible to understand the genome of cement-based materials and, thus, their interactions with nanomodifiers at the nanometer scale. Therefore, MD would serve as an aid to design composite materials toward improved performance, reduced material cost, and enhanced ecoefficiency. This article briefly overviews the progress in MD simulations of nanomodified cement-based materials over the past five years. It mainly includes the application of MD simulation methods in understanding the structure, properties, and microstructure evolution of C–S–H toughened by aluminum phase doping, graphene oxide, polymers, and new nanomaterials. In particular, the research on the ion curing ability and transmission properties of the toughened composite materials are reviewed. Challenges related to nanomodified concrete, as revealed by MD simulations, are also discussed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

Financial support from the National Natural science foundation of China under Grant U2006224, 51978352, 51908308, Natural science foundation of Shandong Province under Grant ZR201910210098, and Qingdao Research Program 16-5-1-96-jch is gratefully acknowledged.

References

Abdolhosseini Qomi, M. J., F.-J. Ulm, and R. J.-M. Pellenq. 2012. “Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations.” J. Am. Ceram. Soc. 95 (3): 1128–1137. https://doi.org/10.1111/j.1551-2916.2011.05058.
Alizadeh, R., J. J. Beaudoin, V. S. Ramachandran, and L. Raki. 2009. “Applicability of the Hedvall effect to study the reactivity of calcium silicate hydrates.” Adv. Cem. Res. 21 (2): 59–66. https://doi.org/10.1680/adcr.2008.00008.
Alkhateb, H., A. Al-Ostaz, A. H. D. Cheng, and X. Li. 2013. “Materials genome for graphene-cement nanocomposites.” J. Nanomech. Micromech. 3 (3): 67–77. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000055.
Al-Muhit, B., and F. Sanchez. 2020. “Nano-engineering of the mechanical properties of tobermorite 14 Å with graphene via molecular dynamics simulations.” Constr. Build. Mater 233 (Feb): 117237. https://doi.org/10.1016/j.conbuildmat.2019.117237.
Anagnostopoulos, C. A., G. Sapidis, and E. Papastergiadis. 2016. “Fundamental properties of epoxy resin-modified cement grouts.” Constr. Build. Mater. 125 (Oct): 184–195. https://doi.org/10.1016/j.conbuildmat.2016.08.050.
Andersen, M., H. J. Jakobsen, and J. Skibsted. 2003. “Incorporation of aluminum in the calcium silicate hydrate (C–S–H) of hydrated portland cements: A high-field Al27 and Si29 MAS NMR investigation.” InCh 42 (7): 2280–2287. https://doi.org/10.1021/ic020607b.
Asensio, J. L. M.-P., and J. Jimenez-Barbero. 1995. “The use of CVFF and CFF91 force fields in conformational analysis of carbohydrate molecules: Comparison with AMBER molecular mechanics and dynamics calculations for Methyl α-Lactoside.” Int. J. Biol. Macromol. 17 (3–4): 137–148. https://doi.org/10.1016/0141-8130(95)92680-O.
Askarinejad, S., and N. Rahbar. 2017. “Effects of cement–polymer interface properties on mechanical response of fiber-reinforced cement composites.” J. Nanomech. Micromech. 7 (2): 04017002. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000119.
Baltisberger, J. H., Z. Xu, J. F. St Eb Bins, S. H. Wang, and A. Pines. 1996. “Triple-quantum two-dimensional 27Al magic-angle spinning nuclear magnetic resonance spectroscopic study of aluminosilicate and aluminate crystals and glasses.” J. Am. Chem. Soc. 118 (30): 7209–7214. https://doi.org/10.1021/ja9606586.
Bauchy, M., M. J. Abdolhosseini Qomi, C. Bichara, F.-J. Ulm, and R. J. M. Pellenq. 2014a. “Nanoscale structure of cement: Viewpoint of rigidity theory.” J. Phys. Chem. C 118 (23): 12485–12493. https://doi.org/10.1021/jp502550z.
Bauchy, M., H. Laubie, M. A. Qomi, C. Hoover, F.-J. Ulm, and R.-M. Pellenq. 2015. “Fracture toughness of calcium–silicate–hydrate from molecular dynamics simulations.” J. Non-Cryst. Solids 419 (Jul): 58–64. https://doi.org/10.1016/j.jnoncrysol.2015.03.031.
Bauchy, M., M. Qomi, F. J. Ulm, and J. M. Pellenq. 2014b. “Order and disorder in calcium-silicate-hydrate.” J.Chem. Phys. 140 (21): 214503. https://doi.org/10.1063/1.4878656.
Bernal, S. A., J. L. Provis, B. Walkley, R. S. Nicolas, and J. Deventer. 2013. “Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation.” Cem. Concr. Res. 53 (Nov): 127–144. https://doi.org/10.1016/j.cemconres.2013.06.007.
Bonaccorsi, E., S. Merlino, and A. R. Kampf. 2005. “The crystal structure of tobermorite 14 Å (plombierite), a C–S–H phase.” J. Am. Ceram. Soc. 88 (3): 505–512. https://doi.org/10.1111/j.1551-2916.2005.00116.x.
Bonaccorsi, E., S. Merlino, and H. Taylor. 2004. “The crystal structure of jennite, Ca9Si6O18(OH)6·8H2O.” Cem. Concr. Res. 34 (9): 1481–1488. https://doi.org/10.1016/j.cemconres.2003.12.033.
Bonnaud, P. A., Q. Ji, B. Coasne, R. J. M. Pellenq, and K. J. Van Vliet. 2012. “Thermodynamics of water confined in porous calcium-silicate-hydrates.” Langmuir 28 (31): 11422–11432. https://doi.org/10.1021/la301738p.
Brough, A. R., and A. Atkinson. 2002. “Sodium silicate-based, alkali-activated slag mortars. Part I: Strength, hydration and microstructure.” Cem. Concr. Res. 32 (6): 865–879. https://doi.org/10.1016/S0008-8846(02)00717-2.
Büyüköztürk, O., M. J. Buehler, D. Lau, and C. Tuakta. 2011. “Structural solution using molecular dynamics: Fundamentals and a case study of epoxy-silica interface.” Int. J. Solids Struct. 48 (14–15): 2131–2140. https://doi.org/10.1016/j.ijsolstr.2011.03.018.
Cao, Q., Y. Xu, J. Fang, Y. Song, Y. Wang, and W. You. 2020. “Influence of pore size and fatigue loading on NaCl transport properties in C-S-H nanopores: A molecular dynamics simulation.” Materials (Basel) 13 (3): 700. https://doi.org/10.3390/ma13030700.
Chen, B., G. Qiao, D. Hou, M. Wang, and Z. Li. 2020. “Cement-based material modified by in-situ polymerization: From experiments to molecular dynamics investigation.” Composites, Part B 194 (Aug): 108036. https://doi.org/10.1016/j.compositesb.2020.108036.
Chen, S. J., C. Y. Li, Q. Wang, and W. H. Duan. 2017. “Reinforcing mechanism of graphene at atomic level: Friction, crack surface adhesion and 2D geometry.” Carbon 114 (Apr): 557–565. https://doi.org/10.1016/j.carbon.2016.12.034.
Chen, W.-C., C.-P. Ju, J.-C. Wang, C.-C. Hung, and J.-H. Chern Lin. 2008. “Brittle and ductile adjustable cement derived from calcium phosphate cement/polyacrylic acid composites.” Dent. Mater. 24 (12): 1616–1622. https://doi.org/10.1016/j.dental.2008.03.032.
Chenoweth, K., A. C. Van Duin, and W. A. Goddard. 2008. “ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation.” J. Phys. Chem. A 112 (5): 1040–1053. https://doi.org/10.1021/jp709896w.
Cornell, W. D., et al. 1995. “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules.” J. Am. Chem. Soc. 117 (19): 5179–5197. https://doi.org/10.1021/ja00124a002.
Cygan, R. T., J. J. Liang, and A. G. Kalinichev. 2004. “Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field.” J. Phys. Chem. B 108 (4): 1255–1266. https://doi.org/10.1021/jp0363287.
Ding, Q., J. Yang, D. Hou, and G. Zhang. 2018. “Insight on the mechanism of sulfate attacking on the cement paste with granulated blast furnace slag: An experimental and molecular dynamics study.” Constr. Build. Mater. 169 (Apr): 601–611. https://doi.org/10.1016/j.conbuildmat.2018.02.148.
Drexler, K. E. 2004. “Nanotechnology: From Feynman to funding.” Bul. Sci. Tech. Soc. 24 (1): 21–27. https://doi.org/10.1177/0270467604263113.
Du, H., and S. D. Pang. 2015. “Enhancement of barrier properties of cement mortar with graphene nanoplatelet.” Cem. Concr. Res. 76 (Oct): 10–19. https://doi.org/10.1016/j.cemconres.2015.05.007.
Du, J., and J. M. Rimsza. 2017. “Atomistic computer simulations of water interactions and dissolution of inorganic glasses.” NPJ Mater. Degrad. 1 (1): 16. https://doi.org/10.1038/s41529-017-0017-y.
Eftekhari, A. M., and B. S. Mohammadi. 2016a. “Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading.” Int. J. Impact Eng. 87 (Jan): 55–64. https://doi.org/10.1016/j.ijimpeng.2015.06.023.
Eftekhari, M., S. Hatefi Ardakani, and S. Mohammadi. 2014. “An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete.” Theor. Appl. Fract. Mech. 72 (Aug): 64–75. https://doi.org/10.1016/j.tafmec.2014.06.005.
Eftekhari, M., and S. Mohammadi. 2016c. “Molecular dynamics simulation of the nonlinear behavior of the CNT-reinforced calcium silicate hydrate (C–S–H) composite.” Composites, Part A 82 (Mar): 78–87. https://doi.org/10.1016/j.compositesa.2015.11.039.
Fan, D., L. Lue, and S. Yang. 2017. “Molecular dynamics study of interfacial stress transfer in graphene-oxide cementitious composites.” Comput. Mater. Sci. 139 (Nov): 56–64. https://doi.org/10.1016/j.commatsci.2017.07.034.
Faucon, P., T. Charpentier, D. Bertrandie, A. Nonat, J. Virlet, and J. C. Petit. 1998. “Characterization of calcium aluminate hydrates and related hydrates of cement pastes by (27)Al MQ-MAS NMR.” Inorg. Chem. 37 (15): 3726–3733. https://doi.org/10.1021/ic9800076.
Faucon, P., J. C. Petit, T. Charpentier, J. F. Jacquinot, and F. Adenot. 2004. “Silicon substitution for aluminum in calcium silicate hydrates.” J. Am. Ceram. Soc. 82 (5): 1307–1312. https://doi.org/10.1111/j.1151-2916.1999.tb01912.x.
Fernández-Jiménez, A., F. Puertas, I. Sobrados, and J. Sanz. 2010. “Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator.” J. Am. Ceram. Soc. 86 (8): 1389–1394. https://doi.org/10.1111/j.1151-2916.2003.tb03481.
Fonseca, P. C., H. M. Jennings, and J. E. Andrade. 2011. “A nanoscale numerical model of calcium silicate hydrate.” Mech. Mater. 43 (8): 408–419. https://doi.org/10.1016/j.mechmat.2011.05.004.
Fu, J., F. Bernard, and S. Kamali-Bernard. 2018. “Assessment of the elastic properties of amorphous calcium silicates hydrates (I) and (II) structures by molecular dynamics simulation.” Mol. Simul. 44 (4): 285–299. https://doi.org/10.1080/08927022.2017.1373191.
Gaedt, K., and H. Höltje. 1998. “Consistent valence force-field parameterization of bond lengths and angles with quantum chemical ab initio methods applied to some heterocyclic dopamine D3-receptor agonists.” JCoCh 19 (8) 935–946. https://doi.org/10.1002/(SICI)1096-987X(199806)19:8.
Geng, G., R. J. Myers, J. Li, R. Maboudian, C. Carraro, D. A. Shapiro, and P. Monteiro. 2017. “Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate.” Sci. Rep. 7 (23): 44032. https://doi.org/10.1038/srep44032.
Ghazizadeh, S., P. Duffour, N. T. Skipper, and Y. Bai. 2018. “Understanding the behaviour of graphene oxide in Portland cement paste.” Cem. Concr. Res. 111 (Sep): 169–182. https://doi.org/10.1016/j.cemconres.2018.05.016.
Gong, K., Z. Pan, A. H. Korayem, L. Qiu, D. Li, F. Collins, C. M. Wang, and W. H. Duan. 2015. “Reinforcing effects of graphene oxide on portland cement paste.” J. Mater. Civ. Eng. 27 (2): A4014010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125.
Guo, Y., B. Ma, Z. Zhi, H. Tan, M. Liu, S. Jian, and Y. Guo. 2017. “Effect of polyacrylic acid emulsion on fluidity of cement paste.” Colloids Surf., A 535 (Dec): 139–148. https://doi.org/10.1016/j.colsurfa.2017.09.039.
Gupta, S., B. McDonald, S. B. Carrizosa, and C. Price. 2016. “Microstructure, residual stress, and intermolecular force distribution maps of graphene/polymer hybrid composites: Nanoscale morphology-promoted synergistic effects.” Composites, Part B 92 (May): 175–192. https://doi.org/10.1016/j.compositesb.2016.02.049.
Hakamy, A., F. U. A. Shaikh, and I. M. Low. 2016. “Effect of calcined nanoclay on the durability of NaOH treated hemp fabric-reinforced cement nanocomposites.” Mater. Des. 92 (Feb): 659–666. https://doi.org/10.1016/j.matdes.2015.12.097.
Hamid, S. A. 1981. “The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]1H2O.” Z. Krist-Cryst. Mater. 154 (2): 3–4. https://doi.org/10.1524/zkri.1981.154.3-4.189.
Heinz, H., T.-J. Lin, R. Kishore Mishra, and F. S. Emami. 2013. “Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field.” Langmuir 29 (6): 1754–1765. https://doi.org/10.1021/la3038846.
Higgins, D. D., and J. E. Bailey. 1976. “Fracture measurements on cement paste.” J. Mater. Sci. 11 (8): 1995–2003. https://doi.org/10.1007/PL00020325.
Hillemeier, B., and H. K. Hilsdorf. 1977. “Fracture mechanics studies on concrete compounds.” Cem. Concr. Res. 7 (5): 523–535. https://doi.org/10.1016/0008-8846(77)90114-4.
Hou, D., Y. Jia, J. Yu, P. Wang, and Q. Liu. 2018a. “Transport properties of sulfate and chloride ions confined between calcium silicate hydrate surfaces: A molecular dynamics study.” J. Phys. Chem. C 122 (49): 28021–28032. https://doi.org/10.1021/acs.jpcc.8b07484.
Hou, D., D. Li, J. Yu, and P. Zhang. 2017a. “Insights on capillary adsorption of aqueous sodium chloride solution in the nanometer calcium silicate channel: A molecular dynamics study.” J. Phys. Chem. C 121 (25): 13786–13797. https://doi.org/10.1021/acs.jpcc.7b04367.
Hou, D., T. Li, and P. Wang. 2018b. “Molecular dynamics study on the structure and dynamics of NaCl solution transport in the nanometer channel of CASH gel.” ACS Sustainable Chem. Eng. 6 (7): 9498–9509. https://doi.org/10.1021/acssuschemeng.8b02126.
Hou, D., and Z. Li. 2014. “Molecular dynamics study of water and ions transport in nano-pore of layered structure: A case study of tobermorite.” Microporous Mesoporous Mater. 195 (Sep): 9–20. https://doi.org/10.1016/j.micromeso.2014.04.011.
Hou, D., Z. Li, and T. Zhao. 2015a. “Reactive force field simulation on polymerization and hydrolytic reactions in calcium aluminate silicate hydrate (C–A–S–H) gel: Structure, dynamics and mechanical properties.” RSC Adv. 5 (1): 448–461. https://doi.org/10.1039/C4RA10645H.
Hou, D., Z. Lu, X. Li, H. Ma, and Z. Li. 2017b. “Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms.” Carbon 115 (May): 188–208. https://doi.org/10.1016/j.carbon.2017.01.013.
Hou, D., H. Ma, Y. Zhu, and Z. Li. 2014a. “Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties.” Acta Mater. 67 (Apr): 81–94. https://doi.org/10.1016/j.actamat.2013.12.016.
Hou, D., T. Yang, J. Tang, and S. Li. 2018c. “Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: Functional group de-protonation, interfacial bonding and strengthening mechanism.” Phys. Chem. Chem. Phys. 20 (13): 8773–8789. https://doi.org/10.1039/C8CP00006A.
Hou, D., J. Yu, Q.-f. Liu, B. Dong, X. Wang, P. Wang, and M. Wang. 2020. “Nanoscale insight on the epoxy-cement interface in salt solution: A molecular dynamics study.” Appl. Surf. Sci. 509 (Apr): 145322. https://doi.org/10.1016/j.apsusc.2020.145322.
Hou, D., J. Yu, and P. Wang. 2019a. “Molecular dynamics modeling of the structure, dynamics, energetics and mechanical properties of cement-polymer nanocomposite.” Composites, Part B 162 (Apr): 433–444. https://doi.org/10.1016/j.compositesb.2018.12.142.
Hou, D., Q. Zhang, M. Wang, J. Zhang, P. Wang, and Y. Ge. 2019b. “Molecular dynamics study onwater and ions on the surface of graphene oxide sheet: Effects of functional groups.” Comput. Mater. Sci. 167 (23): 237–247. https://doi.org/10.1016/j.commatsci.2019.05.038.
Hou, D., Q. Zhang, X. Xu, J. Zhang, W. Li, and P. Wang. 2019c. “Insights on ions migration in the nanometer channel of calcium silicate hydrate under external electric field.” Electrochim. Acta 320 (Oct): 134637. https://doi.org/10.1016/j.electacta.2019.134637.
Hou, D., T. Zhao, H. Ma, and Z. Li. 2015b. “Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: Structure, reactivity, and mechanical properties.” J. Phys. Chem. C 119 (3): 1346–1358. https://doi.org/10.1021/jp509292q.
Hou, D., T. Zhao, P. Wang, Z. Li, and J. Zhang. 2014b. “Molecular dynamics study on the mode I fracture of calcium silicate hydrate under tensile loading.” Eng. Fract. Mech. 131 (Nov): 557–569. https://doi.org/10.1016/j.engfracmech.2014.09.011.
Hou, D. S., Q. E. Zhang, J. H. Zhang, and P. Wang. 2019d. “Molecular modeling of capillary transport in the nanometer pore of nanocomposite of cement hydrate and graphene/GO.” J. Phys. Chem. C 123 (25): 15557–15568. https://doi.org/10.1021/acs.jpcc.9b02539.
Hu, Y., and J. Ding. 2016. “Effects of morphologies of carbon nanofillers on the interfacial and deformation behavior of polymer nanocomposites—A molecular dynamics study.” Carbon 107 (Oct): 510–524. https://doi.org/10.1016/j.carbon.2016.06.031.
Jackson, M. D., J. Moon, E. Gotti, R. Taylor, S. Chae, M. Kunz, A. Emwas, C. Meral, P. Guttmann, and P. Levitz. 2013. “Material and elastic properties of Al-tobermorite in ancient roman seawater concrete.” J. Am. Ceram. Soc. 96 (8): 2598–2606. https://doi.org/10.1111/jace.12407.
Ji, Q., R. J. M. Pellenq, and K. J. Van Vliet. 2012. “Comparison of computational water models for simulation of calcium–silicate–hydrate.” Comput. Mater. Sci. 53 (1): 234–240. https://doi.org/10.1016/j.commatsci.2011.08.024.
Jorgensen, W. L., D. S. Maxwell, and J. Tirado-Rives. 1996. “Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids.” J. Am. Chem. Soc. 118 (45): 11225–11236. https://doi.org/10.1021/ja9621760.
Kai, M. F., L. W. Zhang, and K. M. Liew. 2019. “Graphene and graphene oxide in calcium silicate hydrates: Chemical reactions, mechanical behavior and interfacial sliding.” Carbon 146: 181–193. https://doi.org/10.1016/j.carbon.2019.01.097.
Kalinichev, A. G., and R. J. Kirkpatrick. 2002. “Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases.” Chem. Mater. 14 (8): 3539–3549. https://doi.org/10.1021/cm0107070.
Kalinichev, A. G., J. Wang, and R. J. Kirkpatrick. 2007. “Molecular dynamics modeling of the structure, dynamics and energetics of mineral–water interfaces: Application to cement materials.” Cem. Concr. Res. 37 (3): 337–347. https://doi.org/10.1016/j.cemconres.2006.07.004.
Komarneni, S., R. Roy, D. M. Roy, C. A. Fyfe, and A. S. Chesnick. 1985. “Al27 and Si29 magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites.” J. Mater. Sci. 20 (11): 4209–4214. https://doi.org/10.1007/BF00552416.
Konsta-Gdoutos, M. S., G. Batis, P. A. Danoglidis, A. K. Zacharopoulou, E. K. Zacharopoulou, M. G. Falara, and S. P. Shah. 2017. “Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodified OPC mortars.” Constr. Build. Mater. 147 (Aug): 48–57. https://doi.org/10.1016/j.conbuildmat.2017.04.112.
Konsta-Gdoutos, M. S., Z. S. Metaxa, and S. P. Shah. 2010. “Highly dispersed carbon nanotube reinforced cement based materials.” Cem. Concr. Res. 40 (7): 1052–1059. https://doi.org/10.1016/j.cemconres.2010.02.015.
Kumar, A., B. J. Walder, A. Kunhi Mohamed, A. Hofstetter, B. Srinivasan, A. J. Rossini, K. Scrivener, L. Emsley, and P. Bowen. 2017. “The atomic-level structure of cementitious calcium silicate hydrate.” J. Phys. Chem. C 121 (32): 17188–17196. https://doi.org/10.1021/acs.jpcc.7b02439.
Kumar, R., J. Schmidt, and J. Skinner. 2007. “Hydrogen bonding definitions and dynamics in liquid water.” J. Chem. Phys. 126 (20): 05B611. https://doi.org/10.1063/1.2742385.
Lee, C., X. Wei, J. W. Kysar, and J. Hone. 2008. “Measurement of the elastic properties and intrinsic strength of monolayer graphene.” Science 321 (5887): 385–388. https://doi.org/10.1126/science.1157996.
Li, D., W. Zhao, D. Hou, and T. Zhao. 2017. “Molecular dynamics study on the chemical bound, physical adsorbed and ultra-confined water molecules in the nano-pore of calcium silicate hydrate.” Constr. Build. Mater. 151 (Oct): 563–574. https://doi.org/10.1016/j.conbuildmat.2017.06.053.
Li, G. Y., P. M. Wang, and X. Zhao. 2007. “Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites.” Cem. Concr. Compos. 29 (5): 377–382. https://doi.org/10.1016/j.cemconcomp.2006.12.011.
Li, Y., H. Li, Z. Wang, and C. Jin. 2020. “Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on C-S-H gel.” Cem. Concr. Res. 128 (Feb): 105955. https://doi.org/10.1016/j.cemconres.2019.105955.
Liu, L., A. Jaramillo-Botero, W. Goddard, and H. Sun. 2012. “Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations.” J. Phys. Chem. A 116 (15): 3918–3925. https://doi.org/10.1021/jp210135j.
Liu, M., Z. Zhou, X. Zhang, X. Yang, and X. Cheng. 2016. “The synergistic effect of nano-silica with blast furnace slag in cement based materials.” Constr. Build. Mater. 126 (Nov): 624–631. https://doi.org/10.1016/j.conbuildmat.2016.09.078.
Lothenbach, B., and M. Zajac. 2019. “Application of thermodynamic modelling to hydrated cements.” Cem. Concr. Res. 123 (Sep): 105779. https://doi.org/10.1016/j.cemconres.2019.105779.
Lu, Z., and M. L. Dunn. 2010. “van der Waals adhesion of graphene membranes.” J. Appl. Phys. 107 (4): 044301. https://doi.org/10.1063/1.3270425.
Lu, Z., J. Yu, J. Yao, and D. Hou. 2020. “Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide.” Cem. Concr. Compos. 112 (Sep): 103676. https://doi.org/10.1016/j.cemconcomp.2020.103676.
Lv, S., J. Liu, T. Sun, Y. Ma, and Q. Zhou. 2014. “Effect of GO nanosheets on shapes of cement hydration crystals and their formation process.” Constr. Build.Mater. 64 (8): 231–239. https://doi.org/10.1016/j.conbuildmat.2014.04.061.
Mackerell, A. D., J. Wiorkiewicz-Kuczera, and M. Karplus. 1995. “An all-atom empirical energy function for the simulation of nucleic acids.” J. Am. Chem. Soc. 117 (48): 11946–11975. https://doi.org/10.1021/ja00153a017.
Manzano, H., J. S. Dolado, M. Griebel, and J. Hamaekers. 2008. “A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C–S–H) gels.” Phys. Status Solidi A 205 (6): 1324–1329. https://doi.org/10.1002/pssa.200778175.
Manzano, H., J. S. Dolado, A. Guerrero, and A. Ayuela. 2010. “Mechanical properties of crystalline calcium-silicate-hydrates: Comparison with cementitious C-S-H gels.” Phys. Status Solidi 204 (6): 1775–1780. https://doi.org/10.1002/pssa.200675359.
Manzano, H., E. Durgun, F. J. Ulm, R. Pellenq, and J. C. Grossman. 2011. “Impact of chemical impurities on the crystalline cement clinker phases determined by atomistic simulations.” Independent 51 (24): 12609–12612. https://doi.org/10.1039/c5cc03752b.
Manzano, H., E. Masoero, I. Lopez-Arbeloa, and H. M. Jennings. 2013. “Shear deformations in calcium silicate hydrates.” Soft Matter 9 (30): 7333–7341. https://doi.org/10.1039/c3sm50442e.
Manzano, H., S. Moeini, F. Marinelli, A. C. Van Duin, F.-J. Ulm, and R. J.-M. Pellenq. 2012a. “Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties.” J. Am. Chem. Soc. 134 (4): 2208–2215. https://doi.org/10.1021/ja209152n.
Manzano, H., R. J. Pellenq, F.-J. Ulm, M. J. Buehler, and A. C. van Duin. 2012b. “Hydration of calcium oxide surface predicted by reactive force field molecular dynamics.” Langmuir 28 (9): 4187–4197. https://doi.org/10.1021/la204338m.
Masoero, E., E. Del Gado, R.-M. Pellenq, F.-J. Ulm, and S. Yip. 2012. “Nanostructure and nanomechanics of cement: Polydisperse colloidal packing.” Phys. Rev. Lett. 109 (15): 155503. https://doi.org/10.1103/PhysRevLett.109.155503.
Merlino, S., E. Bonaccorsi, and T. Armbruster. 1999. “Tobermorites: Their real structure and order-disorder (OD) character.” AmMin 84 (10): 1613–1621. https://doi.org/10.2138/am-1999-1015.
Merlino, S., E. Bonaccorsi, and T. Armbruster. 2000. “The real structures of clinotobermorite and tobermorite 9 Å: OD character, polytypes, and structural relationships.” Eur. J. Mineral. 12 (2): 411–429. https://doi.org/10.1127/0935-1221/2000/0012-0411.
Metaxa, Z. S., M. S. Konsta-Gdoutos, and S. P. Shah. 2013. “Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency.” Cem. Concr. Compos. 36 (Feb): 25–32. https://doi.org/10.1016/j.cemconcomp.2012.10.009.
Mishra, R. K., et al. 2017. “cemff: A force field database for cementitious materials including validations, applications and opportunities.” Cem. Concr. Res. 102 (Dec): 68–89. https://doi.org/10.1016/j.cemconres.2017.09.003.
Mishra, R. K., R. J. Flatt, and H. Heinz. 2013. “Force field for tricalcium silicate and insight into nanoscale properties: Cleavage, initial hydration, and adsorption of organic molecules.” J. Phys. Chem. C 117 (20): 10417–10432. https://doi.org/10.1021/jp312815g.
Mo, Y., K. T. Turner, and I. Szlufarska. 2009. “Friction laws at the nanoscale.” Nature 457 (7233): 1116–1119. https://doi.org/10.1038/nature07748.
Mokhtar, M. M., S. A. Abo-El-Enein, M. Y. Hassaan, M. S. Morsy, and M. H. Khalil. 2017. “Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement.” Constr. Build. Mater. 138 (May): 333–339. https://doi.org/10.1016/j.conbuildmat.2017.02.021.
Moosavi, M., and N. Baw De. 2003. “Shear strength of Portland cement grout.” Cem. Concr. Compos. 25 (7): 729–735. https://doi.org/10.1016/S0958-9465(02)00101-4.
Morshedifard, A., S. Masoumi, and M. A. Qomi. 2018. “Nanoscale origins of creep in calcium silicate hydrates.” Nat. Commun. 9 (1): 1–10. https://doi.org/10.1038/s41467-018-04174-z.
Myers, R. J., S. A. Bernal, R. S. Nicolas, and J. L. Provis. 2013. “Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model.” Langmuir 29 (17): 5294–5306. https://doi.org/10.1021/la4000473.
Nadeau, J. S., S. Mindess, and J. M. Hay. 1974. “Slow crack growth in cement paste.” J. Am. Ceram. Soc. 57 (2): 51–54. https://doi.org/10.1111/j.1151-2916.1974.tb10811.x.
Nonat, A. 2004. “The structure and stoichiometry of C-S-H.” Cem. Concr. Res. 34 (9): 1521–1528. https://doi.org/10.1016/j.cemconres.2004.04.035.
Pardal, X., F. Brunet, T. Charpentier, I. Pochard, and A. Nonat. 2012. “Al27 and Si29 solid-state NMR characterization of calcium-aluminosilicate-hydrate.” Inorg. Chem. 51 (3): 1827–1836. https://doi.org/10.1021/ic202124x.
Pardal, X., I. Pochard, and A. Nonat. 2009. “Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions.” Cem. Concr. Res. 39 (8): 637–643. https://doi.org/10.1016/j.cemconres.2009.05.001.
Pellenq, R. J., A. Kushima, R. Shahsavari, K. J. Van Vliet, M. J. Buehler, S. Yip, and F. J. Ulm. 2009. “A realistic molecular model of cement hydrates.” Proc. Natl. Acad. Sci. 106 (38): 16102–16107. https://doi.org/10.1073/pnas.0902180106.
Peyvandi, A., L. A. Sbia, P. Soroushian, and K. Sobolev. 2013. “Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite.” Constr. Build. Mater. 48 (Nov): 265–269. https://doi.org/10.1016/j.conbuildmat.2013.06.094.
Puertas, F., M. Palacios, H. Manzano, J. S. Dolado, A. Rico, and J. Rodriguez. 2011. “A model for the C-A-S-H gel formed in alkali-activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Qomi, M., F. J. Ulm, and J. M. Pellenq. 2012. “Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations.” J. Am. Ceram. Soc. 95 (3): 1128–1137. https://doi.org/10.1111/j.1551-2916.2011.05058.
Qomi, M. A., et al. 2014a. “Combinatorial molecular optimization of cement hydrates.” Nat. Commun. 5 (1): 1–10. https://doi.org/10.1038/ncomms5960.
Qomi, M. J., M. Bauchy, F. J. Ulm, and R. J. Pellenq. 2014b. “Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates.” J. Chem. Phys. 140 (5): 054515. https://doi.org/10.1063/1.4864118.
Raki, L., J. Beaudoin, R. Alizadeh, J. Makar, and T. Sato. 2010. “Cement and concrete nanoscience and nanotechnology.” Materials (Basel) 3 (2): 918–942. https://doi.org/10.3390/ma3020918.
Ray, S. S., and M. Okamoto. 2003. “Polymer/layered silicate nanocomposites: A review from preparation to processing.” Prog. Polym. Sci. 28 (11): 1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002.
Richardson, I. G. 2004. “Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume.” Cem. Concr. Res. 34 (9): 1733–1777. https://doi.org/10.1016/j.cemconres.2004.05.034.
Richardson, I. G. 2008. “The calcium silicate hydrates.” Cem. Concr. Res. 38 (2): 137–158. https://doi.org/10.1016/j.cemconres.2007.11.005.
Richardson, I. G., A. R. Brough, R. Brydson, G. W. Groves, and C. M. Dobson. 2010. “Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS.” J. Am. Ceram. Soc. 76 (9): 2285–2288. https://doi.org/10.1111/j.1151-2916.1993.tb07765.x.
Richardson, I. G., and G. W. Groves. 1992. “Models for the composition and structure of calcium silicate hydrate (C-S-H) gel in hardened cement pastes.” Cem. Concr. Res. 22 (6): 1001–1010. https://doi.org/10.1016/0008-8846(92)90030-Y.
Ritschl, F., M. Fait, K. Fiedler, J. E. Köhler, B. Kubias, and M. Meisel. 2002. “An extension of the consistent valence force field (CVFF) with the aim to simulate the structures of vanadium phosphorus oxides and the adsorption of n-butane and of 1-butene on their crystal planes.” Zeitschrift für anorganische und allgemeine Chemie 628 (6): 1385–1396. https://doi.org/10.1002/1521-3749(200206)628:6%3C1385::AID-ZAAC1385%3E3.0.CO;2-1.
Sanchez, F., and K. Sobolev. 2010. “Nanotechnology in concrete—A review.” Constr. Build. Mater. 24 (11): 2060–2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014.
Sanchez, F., and L. Zhang. 2008. “Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium-silicate-hydrate: Interaction energies, structure, and dynamics.” J. Colloid Interface Sci. 323 (2): 349–358. https://doi.org/10.1016/j.jcis.2008.04.023.
Schneider, J., M. A. Cincotto, and H. Panepucci. 2001. “Si29 and Al27 high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes.” Cem. Concr. Res. 31 (7): 993–1001. https://doi.org/10.1016/S0008-8846(01)00530-0.
Shahsavari, R., M. J. Buehler, J. M. Pellenq, and F. J. Ulm. 2009. “First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite.” J. Am. Ceram. Soc. 92 (10): 2323–2330. https://doi.org/10.1111/j.1551-2916.2009.03199.
Shahsavari, R., R. J. M. Pellenq, and F.-J. Ulm. 2011. “Empirical force fields for complex hydrated calcio-silicate layered materials.” Phys. Chem. Chem. Phys. 13 (3): 1002–1011. https://doi.org/10.1039/C0CP00516A.
Shalchy, F., and N. Rahbar. 2015. “Nanostructural characteristics and interfacial properties of polymer fibers in cement matrix.” ACS Appl. Mater. Interfaces 7 (31): 17278–17286. https://doi.org/10.1021/acsami.5b04344.
Shokrieh, M. M., A. R. Kefayati, and M. Chitsazzadeh. 2012. “Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete.” Mater. Des. 40 (Sep): 443–452. https://doi.org/10.1016/j.matdes.2012.03.008.
Shukla, D. K., S. V. Kasisomayajula, and V. Parameswaran. 2008. “Epoxy composites using functionalized alumina platelets as reinforcements.” Compos. Sci. Technol. 68 (14): 3055–3063. https://doi.org/10.1016/j.compscitech.2008.06.025.
Sindu, B. S., and S. Sasmal. 2020. “Molecular dynamics simulations for evaluation of surfactant compatibility and mechanical characteristics of carbon nanotubes incorporated cementitious composite.” Constr. Build. Mater. 253 (Aug): 119190. https://doi.org/10.1016/j.conbuildmat.2020.119190.
Sun, G. K., J. F. Young, and R. J. Kirkpatrick. 2006. “The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples.” Cem. Concr. Res. 36 (1): 18–29. https://doi.org/10.1016/j.cemconres.2005.03.002.
Sun, H. 1998. “COMPASS: An ab initio force-field optimized for condensed-phase applications.” J. Phys. Chem. 102 (8): 7338–7364. https://doi.org/10.1021/jp980939v.
Tang, S., J. Chen, W. Yu, P. Yu, E. Chen, H. Deng, and Z. He. 2019. “The interactions between water molecules and C-S-H surfaces in loads-induced nanopores: A molecular dynamics study.” Appl. Surface Sci. 496 (Dec): 143744. https://doi.org/10.1016/j.apsusc.2019.143744.
Taylor, H. F. 1986. “Proposed structure for calcium silicate hydrate gel.” J. Am. Ceram. Soc. 69 (6): 464–467. https://doi.org/10.1111/j.1151-2916.1986.tb07446.x.
Taylor, H. F. 1997. Cement chemistry. London: Thomas Telford.
Thomas, J. J., H. M. Jennings, and A. J. Allen. 2010. “Relationships between composition and density of tobermorite, jennite, and nanoscale CaOSiO2H2O.” J. Phys. Chem. C 114 (17): 7594–7601. https://doi.org/10.1021/jp910733x.
Tirado-Rives, W. L. J. J. 2005. “Potential energy functions for atomic-level simulations of water and organic and biomolecular systems.” Proc. Natl. Acad. Sci. 102 (19): 6665–6670. https://doi.org/10.1073/pnas.0408037102.
Tong, T., Z. Fan, Q. Liu, S. Wang, S. Tan, and Q. Yu. 2016. “Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro-and macro-properties of cementitious materials.” Constr. Build. Mater. 106 (Mar): 102–114. https://doi.org/10.1016/j.conbuildmat.2015.12.092.
Van Duin, A. C., S. Dasgupta, F. Lorant, and W. A. Goddard. 2001. “ReaxFF: A reactive force field for hydrocarbons.” J. Phys. Chem. A 105 (41): 9396–9409. https://doi.org/10.1021/jp004368u.
Van Duin, A. C., A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W. A. Goddard. 2003. “ReaxFFSiO reactive force field for silicon and silicon oxide systems.” J. Phys. Chem. A 107 (19): 3803–3811. https://doi.org/10.1021/jp0276303.
Vanommeslaeghe, K., and A. D. MacKerell. 2012. “Automation of the CHARMM general force field (CGenFF). Part I: Bond perception and atom typing.” J. Chem. Inf. Model. 52 (12): 3144–3154. https://doi.org/10.1021/ci300363c.
Wan, H., and Y. Zhang. 2020. “Interfacial bonding between graphene oxide and calcium silicate hydrate gel of ultra-high performance concrete.” Mater. Struct. 53 (2): 42. https://doi.org/10.1617/s11527-020-01467-y.
Wan, X., D. Hou, T. Zhao, and L. Wang. 2017. “Insights on molecular structure and micro-properties of alkali-activated slag materials: A reactive molecular dynamics study.” Constr. Build. Mater. 139 (May): 430–437. https://doi.org/10.1016/j.conbuildmat.2017.02.049.
Wang, P., G. Qiao, Y. Guo, Y. Zhang, D. Hou, Z. Jin, J. Zhang, M. Wang, and X. Hu. 2020a. “Molecular dynamics simulation of the interfacial bonding properties between graphene oxide and calcium silicate hydrate.” Constr. Build. Mater. 260 (Nov): 119927. https://doi.org/10.1016/j.conbuildmat.2020.119927.
Wang, P., G. Qiao, Y. Zhang, D. Hou, J. Zhang, M. Wang, X. Wang, and X. Hu. 2020b. “Molecular dynamics simulation study on interfacial shear strength between calcium-silicate-hydrate and polymer fibers.” Constr. Build. Mater. 257 (Oct): 119557. https://doi.org/10.1016/j.conbuildmat.2020.119557.
Wang, P., Q. Zhang, M. Wang, B. Yin, D. Hou, and Y. Zhang. 2019. “Atomistic insights into cesium chloride solution transport through the ultra-confined calcium–silicate–hydrate channel.” Phys. Chem. Chem. Phys. 21 (22): 11892–11902. https://doi.org/10.1039/C8CP07676F.
Yang, J., D. Hou, and Q. Ding. 2018. “Structure, dynamics, and mechanical properties of cross-linked calcium aluminosilicate hydrate: A molecular dynamics study.” ACS Sustainable Chem. Eng. 6 (7): 9403–9417. https://doi.org/10.1021/acssuschemeng.8b01749.
Yang, J., Y. Jia, D. Hou, P. Wang, Z. Jin, H. Shang, S. Li, and T. Zhao. 2019. “Na and Cl immobilization by size controlled calcium silicate hydrate nanometer pores.” Constr. Build. Mater. 202 (Mar): 622–635. https://doi.org/10.1016/j.conbuildmat.2019.01.066.
Yang, S., F. Gao, and J. Qu. 2013. “A molecular dynamics study of tensile strength between a highly-crosslinked epoxy molding compound and a copper substrate.” Polymer 54 (18): 5064–5074. https://doi.org/10.1016/j.polymer.2013.07.019.
Yip, C. K., G. C. Lukey, and J. Deventer. 2005. “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Youssef, M., R. J. M. Pellenq, and B. Yildiz. 2011. “Glassy nature of water in an ultraconfining disordered material: The case of calcium−silicate−hydrate.” J. Am. Chem. Soc. 133 (8): 2499–2510. https://doi.org/10.1021/ja107003a.
Yu, J., S. Gao, D. Hou, P. Wang, and G. Sun. 2020. “Water transport mechanisms of Poly(acrylic acid), Poly(vinyl alcohol), and Poly(ethylene glycol) in C–S–H nanochannels: A molecular dynamics study.” J. Phys. Chem. B 124 (28): 6095–6104. https://doi.org/10.1021/acs.jpcb.0c03017.
Yu, J., S. C. Li, D. S. Hou, Z. Q. Jin, and Q. F. Liu. 2019a. “Hydrophobic silane coating films for the inhibition of water ingress into the nanometer pore of calcium silicate hydrate gels.” Phys. Chem. Chem. Phys. 21 (35): 19026–19038. https://doi.org/10.1039/C9CP03266E.
Yu, J., Q. Zheng, D. Hou, J. Zhang, S. Li, Z. Jin, P. Wang, B. Yin, and X. Wang. 2019b. “Insights on the capillary transport mechanism in the sustainable cement hydrate impregnated with graphene oxide and epoxy composite.” Composites, Part B 173 (Sep): 106907. https://doi.org/10.1016/j.compositesb.2019.106907.
Zhang, Y., T. Yang, Y. Jia, D. Hou, H. Li, J. Jiang, and J. Zhang. 2018. “Molecular dynamics study on the weakening effect of moisture content on graphene oxide reinforced cement composite.” Chem. Phys. Lett. 708 (Sep): 177–182. https://doi.org/10.1016/j.cplett.2018.08.023.
Zheng, Q., J. Jiang, C. Chen, J. Yu, X. Li, L. Tang, and S. Li. 2020a. “Nanoengineering microstructure of hybrid C–S–H/silicene gel.” ACS Appl. Mater. Interfaces 12 (15): 17806–17814. https://doi.org/10.1021/acsami.9b22833.
Zheng, Q., J. Jiang, G. Xu, J. Yu, L. Tang, and S. Li. 2020b. “New insights into the role of portlandite in the cement system: Elastic anisotropy, thermal stability, and structural compatibility with C-S-H.” Cryst. Growth Des. 20 (4): 2477–2488. https://doi.org/10.1021/acs.cgd.9b01644.
Zheng, Q., J. Jiang, J. Yu, X. Li, and S. Li. 2020c. “Aluminum-Induced interfacial strengthening in calcium silicate hydrates: Structure, bonding, and mechanical properties.” ACS Sustainable Chem. Eng. 8 (7): 2622–2631. https://doi.org/10.1021/acssuschemeng.9b04862.
Zhou, T., K. Ioannidou, F. J. Ulm, M. Z. Bazant, and J. M. Pellenq. 2019a. “Multiscale poromechanics of wet cement paste.” Proc. Natl. Acad. Sci 116 (22): 10652. https://doi.org/10.1073/pnas.1901160116.
Zhou, Y., J. Cai, R. Chen, D. Hou, J. Xu, K. Lv, and Q. Zheng. 2020. “The design and evaluation of a smart polymer-based fluids transport inhibitor.” J. Cleaner. Prod 257 (Jun): 120528. https://doi.org/10.1016/j.jclepro.2020.120528.
Zhou, Y., D. Hou, G. Geng, P. Feng, J. Yu, and J. Jiang. 2018a. “Insights into the interfacial strengthening mechanisms of calcium-silicate-hydrate/polymer nanocomposites.” Phys. Chem. Chem. Phys. 20 (12): 8247–8266. https://doi.org/10.1039/C8CP00328A.
Zhou, Y., D. Hou, J. Jiang, L. Liu, W. She, and J. Yu. 2018b. “Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: The influence of calcium to silicate ratios.” Microporous Mesoporous Mater. 255 (Jan): 23–35. https://doi.org/10.1016/j.micromeso.2017.07.024.
Zhou, Y., D. Hou, H. Manzano, C. Orozco, G. Geng, P. Monteiro, and J. Liu. 2017. “Interfacial connection mechanisms in calcium-silicate-hydrates/polymer nanocomposites: A molecular dynamics study.” ACS Appl. Mater. Interfaces 9 (46): 41014–41025. https://doi.org/10.1021/acsami.7b12795.
Zhou, Y., D. Hou, H. Manzano, C. Orozco, G. Geng, P. Monteiro, and J. Liu. 2019b. “Interaction mechanisms between organic and inorganic phases in calcium silicate hydrates/poly(vinyl alcohol) composites” Cem. Concr. Res. 125 (Nov): 105891. https://doi.org/10.1016/j.cemconres.2019.105891.
Zhu, X., Y. Gao, Z. Dai, D. J. Corr, and S. P. Shah. 2018. “Effect of interfacial transition zone on the Young’s modulus of carbon nanofiber reinforced cement concrete.” Cem. Concr. Res. 107 (May): 49–63. https://doi.org/10.1016/j.cemconres.2018.02.014.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 34Issue 3March 2022

History

Published online: Dec 16, 2021
Published in print: Mar 1, 2022
Discussion open until: May 16, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Jiao Yu, Ph.D. [email protected]
Dept. of Civil Engineering, Qingdao Univ. of Technology, Qingdao 266000, China. Email: [email protected]
Dongshuai Hou [email protected]
Professor, Dept. of Civil Engineering, Qingdao Univ. of Technology, Qingdao 266000, China (corresponding author). Email: [email protected]
Hongyan Ma, M.ASCE [email protected]
Professor, Dept. of Civil, Architectural and Environmental Engineering, Missouri Univ. of Science and Technology, Rolla, MO 65401. Email: [email protected]
Professor, Dept. of Civil Engineering, Qingdao Univ. of Technology, Qingdao 266000, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Shock Wave–Induced Dynamic Mechanical Behavior of Calcium Silicate Aluminate Hydrate at the Molecular Scale, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-15003, 35, 8, (2023).
  • Effect of Synthetic Ettringite on the Hydration of Sulfoaluminate Cement-Based Grouting Materials, Journal of Materials in Civil Engineering, 10.1061/(ASCE)MT.1943-5533.0004625, 35, 3, (2023).
  • Recent progress on graphene oxide for next-generation concrete: Characterizations, applications and challenges, Journal of Building Engineering, 10.1016/j.jobe.2023.106192, 69, (106192), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share