State-of-the-Art Reviews
Sep 27, 2021

Biochar as a Partial Cement Replacement Material for Developing Sustainable Concrete: An Overview

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 12

Abstract

Biochar (BC) is a porous carbon formed by pyrolysis of biomass at high temperatures under anoxic conditions. The use of pulverized BC as a cementitious materials mixture has recently gained research momentum because this usage can lock BC in inert materials and reduce cement consumption simultaneously. This paper presents a review on the use BC particles as an additive or cement replacement in cementitious composites over the last few decades. It comprehensively reviews and discusses the physicochemical properties of BC, as well as the influence of BC on the hydration kinetics, workability, physical properties, mechanical properties, and durability of mortar or concrete. The replacement of cement with 1%–3% BC, in weight, decreases the permeability and increases the mechanism strength of cementitious composites. The properties of the BC-cement composites is closely related to the carbonaceous particle fineness, feedstock, pyrolysis temperature, and treatment method of the BC. Further research is expected to discover BC-based cementitious material for preparing a specific BC for a specific use as cementitious mixture.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work is jointly supported by the high-level innovation team and outstanding scholar program in Guangxi colleges (granted to Dr. Yinghong Qin), the National Natural Science Foundation of China (Nos. 41561015 and 51678164), and Innovation Project of Guangxi Graduate Education (YCBZ2021022).

References

Abdul Rahim, M., N. M. Ibrahim, Z. Idris, Z. M. Ghazaly, S. Shahidan, N. L. Rahim, L. A. Sofri, and N. F. Isa. 2015. “Properties of concrete with different percentange of the rice husk ash (RHA) as partial cement replacement.” Mater. Sci. Forum 803 (Jan): 288–293. https://doi.org/10.4028/www.scientific.net/MSF.803.288.
Abood, H. G., and M. H. Bin. 2010. “Study on properties of rice husk ash and its use as cement replacement material.” Mater. Res. 13 (2): 185–190. https://doi.org/10.1590/S1516-14392010000200011.
Abu Bakar, B. H., P. J. Ramadhansyah, and M. J. Megat Azmi. 2011. “Effect of rice husk ash fineness on the chemical and physical properties of concrete.” Mag. Concr. Res. 63 (5): 313–320. https://doi.org/10.1680/macr.10.00019.
Ahmad, S., R. A. Khushnood, P. Jagdale, J. M. Tulliani, and G. A. Ferro. 2015. “High performance self-consolidating cementitious composites by using micro carbonized bamboo particles.” Mater. Des. 76 (Jul): 223–229. https://doi.org/10.1016/j.matdes.2015.03.048.
Akhtar, A., and A. K. Sarmah. 2018. “Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties.” Sci. Total Environ. 616-617 (Mar): 408–416. https://doi.org/10.1016/j.scitotenv.2017.10.319.
Akinyemi, B. A., and A. Adesina. 2020. “Recent advancements in the use of biochar for cementitious applications: A review.” J. Build. Eng. 32 (Nov): 101705. https://doi.org/10.1016/j.jobe.2020.101705.
Alhashimi, H. A., and C. B. Aktas. 2017. “Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis.” Resour. Conserv. Recycl. 118 (Mar): 13–26. https://doi.org/10.1016/j.resconrec.2016.11.016.
ASTM. 2019. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618. West Conshohocken, PA: ASTM.
Atkinson, C. J., J. D. Fitzgerald, and N. A. Hipps. 2010. “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review.” Plant Soil 337 (1): 1–18. https://doi.org/10.1007/s11104-010-0464-5.
Azargohar, R., S. Nanda, J. A. Kozinski, A. K. Dalai, and R. Sutarto. 2014. “Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass.” Fuel 125 (Jun): 90–100. https://doi.org/10.1016/j.fuel.2014.01.083.
Bendapudi, S., and P. Saha. 2011. “Contribution of fly ash to the properties of mortar and concrete.” Int. J. Earth Sci. Eng. 4 (6): 1017–1023.
Berardi, U., and M. Naldi. 2017. “The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance.” Energy Build. 144 (Jun): 262–275. https://doi.org/10.1016/j.enbuild.2017.03.052.
Berodier, E., and K. Scrivener. 2014. “Understanding the filler effect on the nucleation and growth of C-S-H.” J. Am. Ceram. Soc. 97 (12): 3764–3773. https://doi.org/10.1111/jace.13177.
Bridgwater, A. V. 2003. “Renewable fuels and chemicals by thermal processing of biomass.” Chem. Eng. J. 91 (2): 87–102. https://doi.org/10.1016/S1385-8947(02)00142-0.
Canedamartinez, L., C. Medina, M. I. S. de Rojas, and M. Frías. 2019. “Water transport in binary eco-cements containing coal mining waste.” Cem. Concr. Compos. 104 (Nov): 103373. https://doi.org/10.1016/j.cemconcomp.2019.103373.
Carmi, I., J. Kronfeld, and M. Moinester. 2019. “Sequestration of atmospheric carbon dioxide as inorganic carbon in the unsaturated zone under semi-arid forests.” Catena 173 (Feb): 93–98. https://doi.org/10.1016/j.catena.2018.09.042.
Choi, W. C., H. D. Yun, and J. Y. Lee. 2012. “Mechanical properties of mortar containing bio-char from pyrolysis.” J. Korea Inst. Struct. Maint. Inspection 16 (3): 67–74. https://doi.org/10.11112/jksmi.2012.16.3.067.
Cuthbertson, D., U. Berardi, C. Briens, and F. Berruti. 2019. “Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties.” Biomass Bioenergy 120 (Jan): 77–83. https://doi.org/10.1016/j.biombioe.2018.11.007.
Deschner, F., F. Winnefeld, B. Lothenbach, S. Seufert, P. Schwesig, S. Dittrich, F. Goetz-Neunhoeffer, and J. Neubauer. 2012. “Hydration of Portland cement with high replacement by siliceous fly ash.” Cem. Concr. Res. 42 (10): 1389–1400. https://doi.org/10.1016/j.cemconres.2012.06.009.
Dixit, A., S. Gupta, S. Dai Pang, and H. W. Kua. 2019. “Waste Valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete.” J. Cleaner Prod. 238 (Nov): 117876. https://doi.org/10.1016/j.jclepro.2019.117876.
Eloka-Eboka, A. C., J. K. Bwapwa, and S. Maroa. 2019. “Biomass for CO2 sequestration.” In Encyclopedia of renewable and sustainable materials, edited by S. Hashmi, and I. A. Choudhury, 277–290. Oxford, UK: Elsevier.
Foo, K. Y., and B. H. Hameed. 2011. “Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation.” Bioresour. Technol. 102 (20): 9814–9817. https://doi.org/10.1016/j.biortech.2011.07.102.
Fu, P., S. Hu, J. Xiang, L. Sun, S. Su, and J. Wang. 2012. “Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate.” J. Anal. Appl. Pyrolysis 98 (Nov): 177–183. https://doi.org/10.1016/j.jaap.2012.08.005.
Gupta, S., and H. W. Kua. 2017. “Factors determining the potential of biochar as a carbon capturing and sequestering construction material: Critical review.” J. Mater. Civ. Eng. 29 (9): 04017086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001924.
Gupta, S., and H. W. Kua. 2018. “Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar.” Constr. Build. Mater. 159 (Jan): 107–125. https://doi.org/10.1016/j.conbuildmat.2017.10.095.
Gupta, S., and H. W. Kua. 2019. “Carbonaceous micro-filler for cement: Effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar.” Sci. Total Environ. 662 (Apr): 952–962. https://doi.org/10.1016/j.scitotenv.2019.01.269.
Gupta, S., and H. W. Kua. 2020. “Combination of biochar and silica fume as partial cement replacement in mortar: Performance evaluation under normal and elevated temperature.” Waste Biomass Valorization 11 (6): 2807–2824. https://doi.org/10.1007/s12649-018-00573-x.
Gupta, S., H. W. Kua, and H. J. Koh. 2018a. “Application of biochar from food and wood waste as green admixture for cement mortar.” Sci. Total Environ. 619–620 (Apr): 419–435. https://doi.org/10.1016/j.scitotenv.2017.11.044.
Gupta, S., H. W. Kua, and C. Y. Low. 2018b. “Use of biochar as carbon sequestering additive in cement mortar.” Cem. Concr. Compos. 87 (Mar): 110–129. https://doi.org/10.1016/j.cemconcomp.2017.12.009.
Gupta, S., H. W. Kua, and S. D. Pang. 2018c. “Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability.” Constr. Build. Mater. 167 (Apr): 874–889. https://doi.org/10.1016/j.conbuildmat.2018.02.104.
Gupta, S., K. N. Palansooriya, P. D. Dissanayake, Y. S. Ok, and H. W. Kua. 2020. “Carbonaceous inserts from lignocellulosic and non-lignocellulosic sources in cement mortar: Preparation conditions and its effect on hydration kinetics and physical properties.” Constr. Build. Mater. 264 (Dec): 120214. https://doi.org/10.1016/j.conbuildmat.2020.120214.
Hemalatha, T., and A. Ramaswamy. 2017. “A review on fly ash characteristics—Towards promoting high volume utilization in developing sustainable concrete.” J. Cleaner Prod. 147 (Mar): 546–559. https://doi.org/10.1016/j.jclepro.2017.01.114.
Hidalgo Lopez, A., J. L. García Calvo, J. García Olmo, S. Petit, and M. C. Alonso. 2008. “Microstructural evolution of calcium aluminate cements hydration with silica fume and fly ash additions by scanning electron microscopy, and mid and near-infrared spectroscopy.” J. Am. Ceram. Soc. 91 (4): 1258–1265. https://doi.org/10.1111/j.1551-2916.2008.02283.x.
Jamil, M., M. N. N. Khan, M. R. Karim, A. B. M. A. Kaish, and M. F. M. Zain. 2016. “Physical and chemical contributions of rice husk ash on the properties of mortar.” Constr. Build. Mater. 128 (Dec): 185–198. https://doi.org/10.1016/j.conbuildmat.2016.10.029.
Jones, D. L., D. V. Murphy, M. Khalid, W. Ahmad, G. Edwards-Jones, and T. H. DeLuca. 2011. “Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated.” Soil Biol. Biochem. 43 (8): 1723–1731. https://doi.org/10.1016/j.soilbio.2011.04.018.
Juenger, M. C. G., and H. M. Jennings. 2002. “New insights into the effects of sugar on the hydration and microstructure of cement pastes.” Cem. Concr. Res. 32 (3): 393–399. https://doi.org/10.1016/S0008-8846(01)00689-5.
Kercher, A. K., and D. C. Nagle. 2003. “Microstructural evolution during charcoal carbonization by X-ray diffraction analysis.” Carbon 41 (1): 15–27. https://doi.org/10.1016/S0008-6223(02)00261-0.
Kheshgi, H. S. 1995. “Sequestering atmospheric carbon dioxide by increasing ocean alkalinity.” Energy 20 (9): 915–922. https://doi.org/10.1016/0360-5442(95)00035-F.
Khoukhi, M. 2018. “The combined effect of heat and moisture transfer dependent thermal conductivity of polystyrene insulation material: Impact on building energy performance.” Energy Build. 169 (Jun): 228–235. https://doi.org/10.1016/j.enbuild.2018.03.055.
Khushnood, R. A., S. Ahmad, L. Restuccia, C. Spoto, P. Jagdale, J. M. Tulliani, and G. A. Ferro. 2016. “Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials.” Front. Struct. Civ. Eng. 10 (2): 209–213. https://doi.org/10.1007/s11709-016-0330-5.
Kochova, K., K. Schollbach, F. Gauvin, and H. J. H. Brouwers. 2017. “Effect of saccharides on the hydration of ordinary Portland cement.” Constr. Build. Mater. 150 (Sep): 268–275. https://doi.org/10.1016/j.conbuildmat.2017.05.149.
Kolani, B., L. Buffo-Lacarrière, A. Sellier, G. Escadeillas, L. Boutillon, and L. Linger. 2012. “Hydration of slag-blended cements.” Cem. Concr. Compos. 34 (9): 1009–1018. https://doi.org/10.1016/j.cemconcomp.2012.05.007.
Kourounis, S., S. Sundaram, E. Gnansounou, C. Larroche, and I. S. Thakur. 2007. “Properties and hydration of blended cements with steelmaking slag.” Cem. Concr. Res. 37 (6): 815–822. https://doi.org/10.1016/j.cemconres.2007.03.008.
Kumar, M., S. Sundaram, E. Gnansounou, C. Larroche, and I. S. Thakur. 2018. “Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review.” Bioresour. Technol. 247 (Jan): 1059–1068. https://doi.org/10.1016/j.biortech.2017.09.050.
Lawrence, P., M. Cyr, and E. Ringot. 2003. “Mineral admixtures in mortars: Effect of inert materials on short-term hydration.” Cem. Concr. Res. 33 (12): 1939–1947. https://doi.org/10.1016/S0008-8846(03)00183-2.
Lee, H., S. Yang, S. Wi, and S. Kim. 2019. “Thermal transfer behavior of biochar-natural inorganic clay composite for building envelope insulation.” Constr. Build. Mater. 223 (Oct): 668–678. https://doi.org/10.1016/j.conbuildmat.2019.06.215.
Lee, Y., J. Park, C. Ryu, K. S. Gang, W. Yang, Y. K. Park, J. Jung, and S. Hyun. 2013. “Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C.” Bioresour. Technol. 148 (Nov): 196–201. https://doi.org/10.1016/j.biortech.2013.08.135.
Lehmann, J. 2009. “Biological carbon sequestration must and can be a win-win approach.” Clim. Change 97 (3–4): 459–463. https://doi.org/10.1007/s10584-009-9695-y.
Lehmann, J., J. Gaunt, and M. Rondon. 2006. “Bio-char sequestration in terrestrial ecosystems—A review.” Mitigation Adapt. Strategies Global Change 11 (2): 403–427. https://doi.org/10.1007/s11027-005-9006-5.
Li, B., C. H. Fan, H. Zhang, Z. Z. Chen, L. Y. Sun, and Z. Q. Xiong. 2015. “Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China.” Atmos. Environ. 100 (Jan): 10–19. https://doi.org/10.1016/j.atmosenv.2014.10.034.
Li, G., Y. Yu, J. Li, C. Li, and Y. Wang. 2004. “Research on adaptability between crop-stalk fibers and cement.” Cem. Concr. Res. 34 (7): 1081–1085. https://doi.org/10.1016/j.cemconres.2003.11.026.
Li, G., and X. Zhao. 2003. “Properties of concrete incorporating fly ash and ground granulated blast-furnace slag.” Cem. Concr. Compos. 25 (3): 293–299. https://doi.org/10.1016/S0958-9465(02)00058-6.
Liang, B., et al. 2006. “Black carbon increases cation exchange capacity in soils.” Soil Sci. Soc. Am. J. 70 (5): 1719–1730. https://doi.org/10.2136/sssaj2005.0383.
Liu, Z., F. S. Zhang, and J. Wu. 2010. “Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment.” Fuel 89 (2): 510–514. https://doi.org/10.1016/j.fuel.2009.08.042.
Mahoutian, M., and Y. Shao. 2016. “Production of cement-free construction blocks from industry wastes.” J. Cleaner Prod. 137 (Nov): 1339–1346. https://doi.org/10.1016/j.jclepro.2016.08.012.
Makul, N. 2019. “Combined use of untreated-waste rice husk ash and foundry sand waste in high-performance self-consolidating concrete.” Results Mater. 1 (Aug): 100014. https://doi.org/10.1016/j.rinma.2019.100014.
Mašek, O., P. Brownsort, A. Cross, and S. Sohi. 2013. “Influence of production conditions on the yield and environmental stability of biochar.” Fuel 103 (Jan): 151–155. https://doi.org/10.1016/j.fuel.2011.08.044.
Massazza, F. 2003. “Pozzolana and pozzolanic cements.” Chap. 10 in Vol. 5 of Leas chemistry of cement and concrete. 4th ed., 471–635. Oxford, UK: Butterworth-Heinemann.
Mosaberpanah, M. A., and S. A. Umar. 2020. “Utilizing rice husk ash as supplement to cementitious materials on performance of ultra high performance concrete: A review.” Mater. Today Sustainability 7–8 (Mar): 100030. https://doi.org/10.1016/j.mtsust.2019.100030.
Muthukrishnan, S., S. Gupta, and H. W. Kua. 2019. “Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar.” Theor. Appl. Fract. Mech. 104 (Dec): 102376. https://doi.org/10.1016/j.tafmec.2019.102376.
Olajire, A. A. 2013. “A review of mineral carbonation technology in sequestration of CO2.” J. Pet. Sci. Eng. 109 (Sep): 364–392. https://doi.org/10.1016/j.petrol.2013.03.013.
Ornstein, L., I. Aleinov, and D. Rind. 2009. “Irrigated afforestation of the Sahara and Australian Outback to end global warming.” Clim. Change 97 (3): 409. https://doi.org/10.1007/s10584-009-9626-y.
Paris, J. M., J. G. Roessler, C. C. Ferraro, H. D. DeFord, and T. G. Townsend. 2016. “A review of waste products utilized as supplements to Portland cement in concrete.” J. Cleaner Prod. 121 (May): 1–18. https://doi.org/10.1016/j.jclepro.2016.02.013.
Ponnusamy, V. K., S. Nagappan, R. R. Bhosale, C. H. Lay, D. D. Nguyen, A. Pugazhendhi, C. S. Woong, and G. Kumar. 2020. “Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications.” Bioresour. Technol. 310 (Aug): 123414. https://doi.org/10.1016/j.biortech.2020.123414.
Praneeth, S., R. Guo, T. Wang, B. K. Dubey, and A. K. Sarmah. 2020. “Accelerated carbonation of biochar reinforced cement-fly ash composites: Enhancing and sequestering CO2 in building materials.” Constr. Build. Mater. 244 (May): 118363. https://doi.org/10.1016/j.conbuildmat.2020.118363.
Pratt, K., and D. Moran. 2010. “Evaluating the cost-effectiveness of global biochar mitigation potential.” Biomass Bioenergy 34 (8): 1149–1158. https://doi.org/10.1016/j.biombioe.2010.03.004.
Restuccia, L., and G. A. Ferro. 2016a. “Nanoparticles from food waste: A ‘green’ future for traditional building materials.” In Proc., 9th Int. Conf. on Fracture Mechanics of Concrete and Concrete Structures. Paris: RILEM.
Restuccia, L., and G. A. Ferro. 2016b. “Promising low cost carbon-based materials to improve strength and toughness in cement composites.” Constr. Build. Mater. 126 (Nov): 1034–1043. https://doi.org/10.1016/j.conbuildmat.2016.09.101.
Restuccia, L., A. Reggio, G. A. Ferro, and R. Kamranirad. 2017. “Fractal analysis of crack paths into innovative carbon-based cementitious composites.” Theor. Appl. Fract. Mech. 90 (Aug): 133–141. https://doi.org/10.1016/j.tafmec.2017.03.016.
Roberts, K. G., B. A. Gloy, S. Joseph, N. R. Scott, and J. Lehmann. 2010. “Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential.” Environ. Sci. Technol. 44 (2): 827–833. https://doi.org/10.1021/es902266r.
Rukzon, S., P. Chindaprasirt, and R. Mahachai. 2009. “Effect of grinding on chemical and physical properties of rice husk ash.” Int. J. Miner. Metall. Mater. 16 (2): 242–247. https://doi.org/10.1016/S1674-4799(09)60041-8.
Sadaka, S., M. A. Sharara, A. Ashworth, P. Keyser, F. Allen, and A. Wright. 2014. “Characterization of biochar from switchgrass carbonization.” Energies 7 (2): 548–567. https://doi.org/10.3390/en7020548.
Saint Akadiri, S., A. A. Alola, G. Olasehinde-Williams, and M. U. Etokakpan. 2020. “The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets.” Sci. Total Environ. 708 (Mar): 134653. https://doi.org/10.1016/j.scitotenv.2019.134653.
Sakai, E., S. Miyahara, S. Ohsawa, S. H. Lee, and M. Daimon. 2005. “Hydration of fly ash cement.” Cem. Concr. Res. 35 (6): 1135–1140. https://doi.org/10.1016/j.cemconres.2004.09.008.
Scheer, C., P. R. Grace, D. W. Rowlings, S. Kimber, and L. Van Zwieten. 2011. “Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia.” Plant Soil 345 (1): 47–58. https://doi.org/10.1007/s11104-011-0759-1.
Shaaban, A., S. M. Se, N. M. M. Mitan, and M. F. Dimin. 2013. “Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups.” Procedia Eng. 68: 365–371. https://doi.org/10.1016/j.proeng.2013.12.193.
Singh, B., B. P. Singh, and A. L. Cowie. 2010. “Characterisation and evaluation of biochars for their application as a soil amendment.” Aust. J. Soil Res. 48 (7): 516–525. https://doi.org/10.1071/SR10058.
Sirico, A., P. Bernardi, B. Belletti, A. Malcevschi, E. Dalcanale, I. Domenichelli, P. Fornoni, and E. Moretti. 2020. “Mechanical characterization of cement-based materials containing biochar from gasification.” Constr. Build. Mater. 246 (Jun): 118490. https://doi.org/10.1016/j.conbuildmat.2020.118490.
Tan, K., X. Pang, Y. Qin, and J. Wang. 2020. “Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures.” Constr. Build. Mater. 263 (Dec): 120616. https://doi.org/10.1016/j.conbuildmat.2020.120616.
Thomas, M., R. D. Hooton, C. Rogers, and B. Fournier. 2012. “50 years old and still going strong.” Concr. Int. 34 (1): 35–40.
Tsang, C. F., J. Birkholzer, and J. Rutqvist. 2008. “A comparative review of hydrologic issues involved in geologic storage of CO2 and injection disposal of liquid waste.” Environ. Geol. 54 (8): 1723–1737. https://doi.org/10.1007/s00254-007-0949-6.
Varadharajan, S., A. Jaiswal, and S. Verma. 2020. “Assessment of mechanical properties and environmental benefits of using rice husk ash and marble dust in concrete.” Structures 28 (Dec): 389–406. https://doi.org/10.1016/j.istruc.2020.09.005.
Wahi, R., N. F. Q. A. Zuhaidi, Y. Yusof, J. Jamel, D. Kanakaraju, and Z. Ngaini. 2017. “Chemically treated microwave-derived biochar: An overview.” Biomass Bioenergy 107 (Dec): 411–421. https://doi.org/10.1016/j.biombioe.2017.08.007.
Weber, K., and P. Quicker. 2018. “Properties of biochar.” Fuel 217 (Apr): 240–261. https://doi.org/10.1016/j.fuel.2017.12.054.
Wei, H., S. Deng, B. Hu, Z. Chen, B. Wang, J. Huang, and G. Yu. 2012. “Granular bamboo-derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores.” ChemSusChem 5 (12): 2354–2360. https://doi.org/10.1002/cssc.201200570.
Worrell, E., L. Price, N. Martin, C. Hendriks, and L. O. Meida. 2001. “Carbon dioxide emissions from the global cement industry.” Annu. Rev. Energy Env. 26 (1): 303–329. https://doi.org/10.1146/annurev.energy.26.1.303.
Xi, F., et al. 2016. “Substantial global carbon uptake by cement carbonation.” Nat. Geosci. 9 (12): 880–883. https://doi.org/10.1038/ngeo2840.
Yu, K. L., B. F. Lau, P. L. Show, H. C. Ong, T. C. Ling, W. H. Chen, E. P. Ng, and J. S. Chang. 2017. “Recent developments on algal biochar production and characterization.” Bioresour. Technol. 246 (Dec): 2–11. https://doi.org/10.1016/j.biortech.2017.08.009.
Zeidabadi, Z. A., S. Bakhtiari, H. Abbaslou, and A. R. Ghanizadeh. 2018. “Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials.” Constr. Build. Mater. 181 (Aug): 301–308. https://doi.org/10.1016/j.conbuildmat.2018.05.271.
Zeng, N. 2008. “Carbon sequestration via wood burial.” Carbon Balance Manage. 3 (1): 1–12. https://doi.org/10.1186/1750-0680-3-1.
Zhang, Z., F. Yang, J. C. Liu, and S. Wang. 2020. “Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash.” Cem. Concr. Res. 137 (Nov): 106200. https://doi.org/10.1016/j.cemconres.2020.106200.
Zubin, X. 2010. “Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage.” Soil Environ. Sci. 19 (11): 2713–2717.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 12December 2021

History

Published online: Sep 27, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 27, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Research Student, College of Civil Engineering and Architecture, Guangxi Univ., 100 Univ. Rd., Nanning, Guangxi 530004, China. ORCID: https://orcid.org/0000-0002-8922-9084. Email: [email protected]
Tian-Yu Wang [email protected]
Research Student, College of Civil Engineering and Architecture, Guangxi Univ., 100 Univ. Rd., Nanning, Guangxi 530004, China. Email: [email protected]
Zu-Heng Zhou [email protected]
Research Student, College of Civil Engineering and Architecture, Guangxi Univ., 100 Univ. Rd., Nanning, Guangxi 530004, China. Email: [email protected]
Ying-Hong Qin, M.ASCE [email protected]
Professor, College of Civil Engineering and Architecture, Guangxi Univ., 100 Univ. Rd., Nanning, Guangxi 530004, China; Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Nanning, Guangxi 530004, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Carbon sequestration and storage in concrete: A state-of-the-art review of compositions, methods, and developments, Journal of CO2 Utilization, 10.1016/j.jcou.2023.102443, 70, (102443), (2023).
  • Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites: A Critical Review, Sustainability, 10.3390/su14084633, 14, 8, (4633), (2022).
  • Biochar as Cement Replacement to Enhance Concrete Composite Properties: A Review, Energies, 10.3390/en15207662, 15, 20, (7662), (2022).
  • Crystallization nuclei obtained from biowaste enables the production of concrete in accordance with the principles of circular economy, 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), 10.23919/SpliTech55088.2022.9854337, (1-4), (2022).
  • Immobilization and recycling of contaminated marine sediments in cement-based materials incorporating iron-biochar composites, Journal of Hazardous Materials, 10.1016/j.jhazmat.2022.128971, 435, (128971), (2022).
  • A systematic experimental study on biochar-cementitious composites: Towards carbon sequestration, Industrial Crops and Products, 10.1016/j.indcrop.2022.115103, 184, (115103), (2022).
  • Application potential analysis of biochar as a carbon capture material in cementitious composites: A review, Construction and Building Materials, 10.1016/j.conbuildmat.2022.128715, 350, (128715), (2022).
  • Utilizing bamboo biochar in cement mortar as a bio-modifier to improve the compressive strength and crack-resistance fracture ability, Construction and Building Materials, 10.1016/j.conbuildmat.2022.126917, 327, (126917), (2022).
  • Recycling waste materials to produce self-sensing concretes for smart and sustainable structures: A review, Construction and Building Materials, 10.1016/j.conbuildmat.2022.126658, 325, (126658), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share