Technical Papers
Jun 22, 2021

Effect of Dolomite Filler on the Sulfuric Acid Resistance of Alkali-Activated Slag Binders

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 9

Abstract

In this work, the influence of a dolomite filler, in combination with pulverized fly ash, on the sulfuric acid (H2SO4) resistance of alkali-activated slag (AAS) is studied. The evolution of compressive strength and mass loss, as well as mineralogical, compositional, and molecular structural alteration of hardened AAS binders containing 0%, 20%, and 40% dolomite filler, or a combination of 20% dolomite and 20% fly ash, exposed to 0% (deionized water), 1%, 2.5%, and 5% H2SO4 solutions, are investigated. The results show that the dolomite and fly ash incorporation in AAS pastes exacerbates the alkalis leaching and alkalinity loss and tends to enhance the strength loss in the H2SO4 solutions, likely due to a coarsened pore structure and, thus, enlarged permeability. Under the H2SO4 attack, AAS is decomposed into gypsum, glauberite, and amorphous calcium-magnesium aluminosilicate hydrates, with little thaumasite, ettringite, or magnesium-bearing mineral formations. While decalcification and the silica polymerization of gel products take place in AAS upon an acid attack, it has strong dealumination resistance. In low and intermediate acid concentrations, the dolomite incorporation reduces the amount of gypsum and glauberite formed in AAS due to the dilution effect, while in strong acid media, dolomite dissolution occurs and contributes to the deleterious sulfate minerals formation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. The items include the raw datasets of XRD and FTIR spectra and the TG/DTG curves.

Acknowledgments

The financial support from Hong Kong Research Grants Council (Project No. 17200719) is greatly appreciated. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.

References

Aiken, T. A., J. Kwasny, W. Sha, and M. N. Soutsos. 2018. “Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack.” Cem. Concr. Res. 111 (Sep): 23–40. https://doi.org/10.1016/j.cemconres.2018.06.011.
Aiken, T. A., W. Sha, J. Kwasny, and M. N. Soutsos. 2017. “Resistance of geopolymer and Portland cement based systems to silage effluent attack.” Cem. Concr. Res. 92 (Feb): 56–65. https://doi.org/10.1016/j.cemconres.2016.11.015.
Bakharev, T., J. Sanjayan, and Y.-B. Cheng. 2003. “Resistance of alkali-activated slag concrete to acid attack.” Cem. Concr. Res. 33 (10): 1607–1611. https://doi.org/10.1016/S0008-8846(03)00125-X.
Barbosa, V. F. F., and K. J. D. MacKenzie. 2003. “Synthesis and thermal behaviour of potassium sialate geopolymers.” Mater. Lett. 57 (9–10): 1477–1482. https://doi.org/10.1016/S0167-577X(02)01009-1.
Bassuoni, M. T., M. Nehdi, and M. Amin. 2007. “Self-compacting concrete: Using limestone to resist sulfuric acid.” Proc. Inst. Civ. Eng. Constr. Mater. 160 (3): 113–123. https://doi.org/10.1680/coma.2007.160.3.113.
Bernal, S. A., J. L. Provis, R. J. Myers, R. San Nicolas, and J. S. J. van Deventer. 2015. “Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders.” Mater. Struct. 48 (3): 517–529. https://doi.org/10.1617/s11527-014-0412-6.
Brew, D. R. M., and F. P. Glasser. 2005. “Synthesis and characterisation of magnesium silicate hydrate gels.” Cem. Concr. Res. 35 (1): 85–98. https://doi.org/10.1016/j.cemconres.2004.06.022.
Davidovits, J. 2005. Geopolymer, green chemistry and sustainable development solutions: Proceedings of the world congress geopolymer 2005. Saint-Quentin, France: Geopolymer Institute.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Galı, S., C. Ayora, P. Alfonso, E. Tauler, and M. Labrador. 2001. “Kinetics of dolomite–Portlandite reaction: Application to Portland cement concrete.” Cem. Concr. Res. 31 (6): 933–939. https://doi.org/10.1016/S0008-8846(01)00499-9.
Gao, X., Q. L. Yu, and H. J. H. Brouwers. 2015. “Properties of alkali activated slag–fly ash blends with limestone addition.” Cem. Concr. Compos. 59 (May): 119–128. https://doi.org/10.1016/j.cemconcomp.2015.01.007.
Garcıa, E., P. Alfonso, E. Tauler, and S. Galı. 2003. “Surface alteration of dolomite in dedolomitization reaction in alkaline media.” Cem. Concr. Res. 33 (9): 1449–1456. https://doi.org/10.1016/S0008-8846(03)00096-6.
Ghosh, S. N., and S. K. Handoo. 1980. “Infrared and Raman spectral studies in cement and concrete.” Cem. Concr. Res. 10 (6): 771–782. https://doi.org/10.1016/0008-8846(80)90005-8.
Ghrici, M., S. Kenai, and M. Said-Mansour. 2007. “Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements.” Cem. Concr. Compos. 29 (7): 542–549. https://doi.org/10.1016/j.cemconcomp.2007.04.009.
Gong, K., and C. E. White. 2018. “Nanoscale chemical degradation mechanisms of sulfate attack in alkali-activated slag.” J. Phys. Chemis. 122 (11): 5992–6004. https://doi.org/10.1021/acs.jpcc.7b11270.
Grengg, C., F. Mittermayr, N. Ukrainczyk, G. Koraimann, S. Kienesberger, and M. Dietzel. 2018. “Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review.” Water Res. 134 (May): 341–352. https://doi.org/10.1016/j.watres.2018.01.043.
Gutiérrez-Padilla, M. G. D., A. Bielefeldt, S. Ovtchinnikov, M. Hernandez, and J. Silverstein. 2010. “Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes.” Cem. Concr. Res. 40 (2): 293–301. https://doi.org/10.1016/j.cemconres.2009.10.002.
Haha, M., G. Le Saout, F. Winnefeld, and B. Lothenbach. 2011. “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res. 41 (3): 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016.
Halliwell, M., N. Crammond, and A. Barker. 1996. The thaumasite form of sulfate attack in limestone-filled cement mortars. Glasgow, UK: Building Research Establishment.
Hojati, M., and A. Radlińska. 2017. “Shrinkage and strength development of alkali-activated fly ash-slag binary cements.” Constr. Build. Mater. 150 (Sep): 808–816. https://doi.org/10.1016/j.conbuildmat.2017.06.040.
Huang, Y., M. Han, and R. Yi. 2012. “Microstructure and properties of fly ash-based geopolymeric material with 5A zeolite as a filler.” Constr. Build. Mater. 33 (Aug): 84–89. https://doi.org/10.1016/j.conbuildmat.2012.01.014.
Hughes, T. L., C. M. Methven, T. G. J. Jones, S. E. Pelham, P. Fletcher, and C. Hall. 1995. “Determining cement composition by Fourier transform infrared spectroscopy.” Adv. Cem. Based Mater. 2 (3): 91–104. https://doi.org/10.1016/1065-7355(94)00031-X.
Jiang, G., M. Zhou, T. H. Chiu, X. Sun, J. Keller, and P. L. Bond. 2016. “Wastewater-enhanced microbial corrosion of concrete sewers.” Environ. Sci. Technol. 50 (15): 8084–8092. https://doi.org/10.1021/acs.est.6b02093.
Jiang, M., X. Chen, F. Rajabipour, and C. T. Hendrickson. 2014. “Comparative life cycle assessment of conventional, glass powder, and alkali-activated slag concrete and mortar.” J. Infrastruct. Syst. 20 (4): 4014020. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000211.
John, V. M., B. L. Damineli, M. Quattrone, and R. G. Pileggi. 2018. “Fillers in cementitious materials—Experience, recent advances and future potential.” Cem. Concr. Res. 114 (Dec): 65–78. https://doi.org/10.1016/j.cemconres.2017.09.013.
Johnson, D. R., and W. A. Robb. 1973. “Gaylussite: Thermal properties by simultaneous thermal analysis.” Am. Mineral 58 (7–8): 778–784.
Krishnan, S., and S. Bishnoi. 2018. “Understanding the hydration of dolomite in cementitious systems with reactive aluminosilicates such as calcined clay.” Cem. Concr. Res. 108 (Jun): 116–128. https://doi.org/10.1016/j.cemconres.2018.03.010.
Lane, M. D. 2007. “Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals.” Mineral. Soc. Am. 92 (1): 1–18. https://doi.org/10.2138/am.2007.2170.
Lee, N. K., and H. K. Lee. 2016. “Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste.” Cem. Concr. Compos. 72 (Sep): 168–179. https://doi.org/10.1016/j.cemconcomp.2016.06.004.
Lloyd, R. R., J. L. Provis, and J. S. J. van Deventer. 2012. “Acid resistance of inorganic polymer binders. 1. Corrosion rate.” Mater. Struct. 45 (1–2): 1–14. https://doi.org/10.1617/s11527-011-9744-7.
Lodeiro, I. G., D. E. Macphee, A. Palomo, and A. Fernández-Jiménez. 2009. “Effect of alkalis on fresh C–S–H gels. FTIR analysis.” Cem. Concr. Res. 39 (3): 147–153. https://doi.org/10.1016/j.cemconres.2009.01.003.
Lothenbach, B., D. Nied, E. L’Hôpital, G. Achiedo, and A. Dauzères. 2015. “Magnesium and calcium silicate hydrates.” Cem. Concr. Res. 77 (Nov): 60–68. https://doi.org/10.1016/j.cemconres.2015.06.007.
Pacheco-Torgal, F., Z. Abdollahnejad, A. F. Camões, M. Jamshidi, and Y. Ding. 2012. “Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?” Constr. Build. Mater. 30 (Nov): 400–405. https://doi.org/10.1016/j.conbuildmat.2011.12.017.
Puertas, F., S. Martínez-Ramírez, S. Alonso, and T. Vazquez. 2000. “Alkali-activated fly ash/slag cements: Strength behavior and hydration products.” Cem. Concr. Res. 30 (10): 1625–1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
Rakhimova, N. R., R. Z. Rakhimov, N. I. Naumkina, A. F. Khuzin, and Y. N. Osin. 2016. “Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement.” Cem. Concr. Compos. 72 (Sep): 268–274. https://doi.org/10.1016/j.cemconcomp.2016.06.015.
Roberts, D., D. Nica, G. Zuo, and J. Davis. 2002. “Quantifying microbially induced deterioration of concrete: Initial studies.” Int. Biodeterior. Biodegrad. 49 (4): 227–234. https://doi.org/10.1016/S0964-8305(02)00049-5.
Sakulich, A. R., E. Anderson, C. Schauer, and M. W. Barsoum. 2009. “Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete.” Constr. Build. Mater. 23 (8): 2951–2957. https://doi.org/10.1016/j.conbuildmat.2009.02.022.
Scrivener, K., R. Snellings, and B. Lothenbach. 2018b. A practical guide to microstructural analysis of cementitious materials. Boca Raton, FL: CRC Press.
Scrivener, K. L., V. M. John, and E. M. Gartner. 2018a. “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry.” Cem. Concr. Res. 114 (Dec): 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
Sposito, G. 1995. The environmental chemistry of aluminum. Boca Raton, FL: CRC Press.
Thomas, R. J., H. Ye, A. Radlinska, and S. Peethamparan. 2016. “Alkali-activated slag cement concrete.” Concr. Int. 38 (1): 33–38.
Wang, S.-D., and K. L. Scrivener. 1995. “Hydration products of alkali activated slag cement.” Cem. Concr. Res. 25 (3): 561–571. https://doi.org/10.1016/0008-8846(95)00045-E.
Warren, C. J., and E. J. Reardon. 1994. “The solubility of ettringite at 25°C.” Cem. Concr. Res. 24 (8): 1515–1524. https://doi.org/10.1016/0008-8846(94)90166-X.
Xiang, J., L. Liu, X. Cui, Y. He, G. Zheng, and C. Shi. 2018. “Effect of limestone on rheological, shrinkage and mechanical properties of alkali–activated slag/fly ash grouting materials.” Constr. Build. Mater. 191 (Dec): 1285–1292. https://doi.org/10.1016/j.conbuildmat.2018.09.209.
Ye, H., and Z. Chen. 2019. “Influence of nitrate corrosion inhibitors on phase stability of alkali-activated slag against chloride binding and natural carbonation.” J. Mater. Civ. Eng. 31 (8): 4019160. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002830.
Ye, H., Z. Chen, and L. Huang. 2019a. “Mechanism of sulfate attack on alkali-activated slag: The role of activator composition.” Cem. Concr. Res. 125 (Nov): 105868. https://doi.org/10.1016/j.cemconres.2019.105868.
Ye, H., C. Fu, and G. Yang. 2019b. “Influence of dolomite on the properties and microstructure of alkali-activated slag with and without pulverized fly ash.” Cem. Concr. Compos. 103 (Oct): 224–232. https://doi.org/10.1016/j.cemconcomp.2019.05.011.
Ye, H., and L. Huang. 2020. “Degradation mechanisms of alkali-activated binders in sulfuric acid: The role of calcium and aluminum availability.” Constr. Build. Mater. 246 (Jun): 118477. https://doi.org/10.1016/j.conbuildmat.2020.118477.
Ye, H., and A. Radlińska. 2016. “Quantitative analysis of phase assemblage and chemical shrinkage of alkali-activated slag.” J. Adv. Concr. Technol. 14 (5): 245–260. https://doi.org/10.3151/jact.14.245.
Zhou, Q., J. Hill, E. A. Byars, J. C. Cripps, C. J. Lynsdale, and J. H. Sharp. 2006. “The role of pH in thaumasite sulfate attack.” Cem. Concr. Res. 36 (1): 160–170. https://doi.org/10.1016/j.cemconres.2005.01.003.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 9September 2021

History

Received: Dec 9, 2019
Accepted: Feb 17, 2021
Published online: Jun 22, 2021
Published in print: Sep 1, 2021
Discussion open until: Nov 22, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil Engineering, Univ. of Hong Kong, Pokfulam, Hong Kong, China (corresponding author). ORCID: https://orcid.org/0000-0003-2665-3942. Email: [email protected]
Guojun Yang
Graduate Student, College of Civil Engineering and Architecture, Zhejiang Univ. of Technology, Hangzhou 310014, China.
Chuanqing Fu
Professor, College of Civil Engineering and Architecture, Zhejiang Univ. of Technology, Hangzhou 310014, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Sulfate Resistance of Novel Alkali-Activated Filling Grout for Shield Tunnels: Comparison with Typical OPC-Based Filling Grout, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-16300, 35, 12, (2023).
  • In Situ Spectroscopic Insights into the Setting Performance of Alkali-Activated Slag, Journal of Materials in Civil Engineering, 10.1061/(ASCE)MT.1943-5533.0004582, 35, 2, (2023).
  • Phase Analysis of Alkali-Activated Slag Hybridized with Low-Calcium and High-Calcium Fly Ash, Sustainability, 10.3390/su14073767, 14, 7, (3767), (2022).
  • Resistance of alkali-activated slag mixed with wastewater towards biogenic sulfuric acid attack, Case Studies in Construction Materials, 10.1016/j.cscm.2022.e01164, 17, (e01164), (2022).
  • A state-of-the-art review on the utilization of calcareous fillers in the alkali activated cement, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129348, 357, (129348), (2022).
  • Antimicrobial performance and biodeterioration mechanisms of alkali-activated slag, Cement and Concrete Research, 10.1016/j.cemconres.2022.106844, 158, (106844), (2022).
  • Antimicrobial alkali-activated slag through self-intercalation of benzoate in layered double hydroxides, Cement and Concrete Composites, 10.1016/j.cemconcomp.2022.104533, 130, (104533), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share