Technical Papers
Jul 19, 2021

Cracking Resistance of Hot-Mix Asphalt Mixtures Containing Terminal Blend Rubberized Asphalt Nanocomposite at Intermediate Temperature

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 10

Abstract

There is a general trend toward improving the terminal blend process of producing rubberized asphalt mixtures. Recently, the addition of nanosized materials to strengthen the performance-related properties of terminal blend rubberized asphalt (TBRA) has gained popularity. In this study, the TBRAs were prepared using 8% and 15% crumb rubber and then modified using 2% and 4% of an organophilic nanoclay. The structures of the TBRA nanocomposite were evaluated by X-ray diffraction and scanning electron microscopy. Conventional physical properties, storage stability, rheological properties, and aging resistance were also assessed. Furthermore, the Glover-Rowe (G-R) cracking parameter for each asphalt binder was determined from the rheological properties. Finally, the semicircular bending test was implemented to determine J-integral (JC) and flexibility index (FI) parameters and characterize the cracking resistance of TBRA and TBRA nanocomposite mixtures. The results indicate that the use of the TBRA and its modification by nanoclay leads to an increase in asphalt mixture cracking resistance during the initiation cracking phase but increases the asphalt mixture’s brittleness during the crack propagation phase. There was a significant correlation between the G-R parameter for the asphalt binders and the FI parameters of the respective TBRA mixtures. Moreover, it was observed that TBRA modification by an organophilic nanoclay decreased the temperature susceptibility and phase separation, increased the viscosity, penetration, softening point, aging resistance, and elasticity, and improved high-temperature performance.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

AASHTO. 2016. Standard method of test for determining the fracture potential of asphalt mixtures using semicircular bend geometry (SCB) at intermediate temperature. Washington, DC: AASHTO.
Abdullah, M. E., K. Ahmad Zamhari, N. Nayan, M. Hermadi, and M. R. Hainin. 2012. “Storage stability and physical properties of asphalt modified with nanoclay and warm asphalt additives.” World J. Eng. 9 (2): 155–160.
Airey, G. D. 2003. “Rheological properties of styrene butadiene styrene polymer modified road bitumens.” Fuel 82 (14): 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7.
Al-Qadi, I. L., H. Ozer, J. Lambros, A. Khatib, P. Singhvi, T. Khan, J. Rivera-Perez, and B. Doll. 2015. Testing protocols to ensure performance of high asphalt binder replacement mixes using RAP and RAS. Champaign, IL: Illinois Center for Transportation Series.
Anderson, R. M., G. N. King, D. I. Hanson, and P. B. Blankenship. 2011. “Evaluation of the relationship between asphalt binder properties and non-load related cracking.” J. Assoc. Asphalt Paving Technol. 80: 615–664.
Asphalt Institute. 2014. Asphalt mix design methods. Manual series No. 2 (MS-2). Lexington, KY: Asphalt Institute.
ASTM. 1996. Standard specification for type IV polymer-modified asphalt cement for use in pavement construction. West Conshohocken, PA: ASTM.
ASTM. 1998. Test method for resistance of plastic flow of bituminous mixtures using Marshall apparatus. West Conshohocken, PA: ASTM.
ASTM. 2006. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). West Conshohocken, PA: ASTM.
ASTM. 2013a. Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). West Conshohocken, PA: ASTM.
ASTM. 2013b. Standard test method for penetration of bituminous materials. West Conshohocken, PA: ASTM.
ASTM. 2014a. Standard test method for effects of heat and air on asphaltic materials (thin-film oven test). West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test method for sand equivalent value of soils and fine aggregate. West Conshohocken, PA: ASTM.
ASTM. 2014c. Standard test method for softening point of bitumen (ring-and-ball apparatus). West Conshohocken, PA: ASTM.
ASTM. 2015a. Standard test method for relative density (specific gravity) and absorption of coarse aggregate. West Conshohocken, PA: ASTM.
ASTM. 2015b. Standard test method for relative density (specific gravity) and absorption of fine aggregate. West Conshohocken, PA: ASTM.
ASTM. 2015c. Standard test method for solubility of asphalt materials in trichloroethylene. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for evaluation of asphalt mixture cracking resistance using the semi-circular bend test (SCB) at intermediate temperatures. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test method for determining the percentage of fractured particles in coarse aggregate. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for ductility of asphalt materials. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape). West Conshohocken, PA: ASTM.
ASTM. 2018a. Standard test method for density of semi-solid asphalt binder (pycnometer method). West Conshohocken, PA: ASTM.
ASTM. 2018b. Standard test method for flash and fire points by Cleveland open cup tester. West Conshohocken, PA: ASTM.
ASTM. 2018c. Standard test method for kinematic viscosity of asphalts. West Conshohocken, PA: ASTM.
ASTM. 2018d. Standard test method for rubber compounding materials—Determination of particle size distribution of recycled vulcanizate particulate rubber. West Conshohocken, PA: ASTM.
ASTM. 2018e. Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. West Conshohocken, PA: ASTM.
ASTM. 2019a. Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate. West Conshohocken, PA: ASTM.
ASTM. 2019b. Standard test methods for rubber from synthetic sources—Volatile matter. West Conshohocken, PA: ASTM.
ASTM. 2019c. Standard test methods for rubber products—Chemical analysis. West Conshohocken, PA: ASTM.
ASTM. 2020a. Standard practice for determining the separation tendency of polymer from polymer-modified. West Conshohocken, PA: ASTM.
ASTM. 2020b. Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. West Conshohocken, PA: ASTM.
Atai, M., L. Solhi, A. Nodehi, S. M. Mirabedini, S. Kasraei, K. Akbari, and S. Babanzadeh. 2009. “PMMA-grafted nanoclay as novel filler for dental adhesives.” Dent. Mater. 25 (3): 339–347. https://doi.org/10.1016/j.dental.2008.08.005.
Bagshaw, S. A., T. Kemmitt, M. Waterland, and S. Brooke. 2018. “Effect of blending conditions on nano-clay bitumen nanocomposite properties.” Road Mater. Pavement Des. 20 (8): 1–22. https://doi.org/10.1080/14680629.2018.1468802.
Bayomy, F., M. A. Mull-Aglan, A. A. Abdo, and M. J. Santi. 2006. Evaluation of hot mix asphalt (HMA) fracture resistance using the critical strain energy release rate, JC. Washington, DC: National Research Council.
Bhagabati, P., T. K. Chaki, and D. Khastgir. 2015. “Panoptically exfoliated morphology of chlorinated polyethylene (CPE)/ethylene methacrylate copolymer (EMA)/layered silicate nanocomposites by novel in situ covalent modification using poly (ε-caprolactone).” RSC Adv. 5 (48): 38209–38222. https://doi.org/10.1039/C4RA15723K.
Cao, W., Y. Wang, and C. Wang. 2019. “Fatigue characterization of bio-modified asphalt binders under various laboratory aging conditions.” Constr. Build. Mater. 208 (May): 686–696. https://doi.org/10.1016/j.conbuildmat.2019.03.069.
Chavez, F., J. Marcobal, and J. Gallego. 2019. “Laboratory evaluation of the mechanical properties of asphalt mixtures with rubber incorporated by the wet, dry, and semi-wet process.” Constr. Build. Mater. 205 (Apr): 164–174. https://doi.org/10.1016/j.conbuildmat.2019.01.159.
Chen, J.-S., C.-T. Lee, and Y.-Y. Lin. 2018. “Characterization of a recycling agent for restoring aged bitumen.” J. Mater. Civ. Eng. 30 (8): 05018003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002388.
Chen, X. 2019. “Use of semi-circular bend test to characterize fracture properties of asphalt concrete with virgin and recycled materials.” Ph.D. thesis, College of Engineering, Pennsylvania State Univ.
Chen, X., and M. Solaimanian. 2019a. “Effect of test temperature and displacement rate on semicircular bend test.” J. Mater. Civ. Eng. 31 (7): 04019104. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002753.
Chen, X., and M. Solaimanian. 2019b. “Evaluating fracture properties of crumb rubber modified asphalt mixes.” Int. J. Pavement Res. Technol. 12 (4): 407–415. https://doi.org/10.1007/s42947-019-0048-6.
Chinese National Standard. 2008. Ground vulcanized rubber. Beijing: Standardization Administration of China.
Christensen, D. W., and D. A. Anderson. 1992. “Interpretation of dynamic mechanical test data for paving grade asphalt cements.” J. Assoc. Asphalt Paving 61: 67–116.
Crucho, J., L. Picado-Santos, J. Neves, and S. Capitão. 2019. “A review of nanomaterials’ effect on mechanical performance and aging of asphalt mixtures.” J. Appl. Sci. 9 (18): 3657. https://doi.org/10.3390/app9183657.
Di Benedetto, H., C. Sauzeat, K. Bilodeau, M. Buannic, S. Mangiafico, Q. T. Nguyen, S. Pouget, N. Tapsoba, and J. Van Rompu. 2011. “General overview of the time-temperature superposition principle validity for materials containing bituminous binder.” Int. J. Roads Airports 1 (1): 35–52. https://doi.org/10.5568/ijra.2011-01-03.3552.
Duleba, B., E. Spišák, and F. Greškovič. 2014. “Mechanical properties of PA6/MMT polymer nanocomposites and prediction based on content of nanofiller.” Procedia Eng. 96 (Jan): 75–80. https://doi.org/10.1016/j.proeng.2014.12.100.
Ehinola, O. A., O. A. Falode, and G. Jonathan. 2012. “Softening point and penetration index of bitumen from parts of southwestern Nigeria.” Nafta 63 (9–10): 319–323.
Elkashef, M., R. C. Williams, and E. Cochran. 2018. “Investigation of fatigue and thermal cracking behavior of rejuvenated reclaimed asphalt pavement binders and mixtures.” Int. J. Fatigue 108 (Mar): 90–95. https://doi.org/10.1016/j.ijfatigue.2017.11.013.
Elseifi, M. A., L. N. Mohammad, H. Ying, and S. Cooper. 2012. “Modeling and evaluation of the cracking resistance of asphalt mixtures using the semi-circular bending test at intermediate temperatures.” Road Mater. Pavement Des. 13 (1): 124–139. https://doi.org/10.1080/14680629.2012.657035.
Ferjani, A., A. Carter, M. Vaillancourt, A. Dardeau, and A. Gandi. 2019. “Effect of cement content on cracking resistance of full-depth reclamation materials using the semicircular bending test.” Adv. Civ. Eng. 8 (1): 411–422. https://doi.org/10.1520/ACEM20190062.
Galooyak, S. S., B. Dabir, A. E. Nazarbeygi, and A. Moeini. 2010. “Rheological properties and storage stability of bitumen/SBS/montmorillonite composites.” Constr. Build. Mater. 24 (3): 300–307. https://doi.org/10.1016/j.conbuildmat.2009.08.032.
Gama, D. A., Y. Yan, J. K. G. Rodrigues, and R. Roque. 2018. “Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance.” Constr. Build. Mater. 169 (Apr): 522–529. https://doi.org/10.1016/j.conbuildmat.2018.02.206.
Ghaly, N. F. 2008. “Effect of sulfur on the storage stability of tire rubber modified asphalt.” World J. Chem. 3 (2): 42–50.
Glover, C. J., et al. 2000. A comprehensive laboratory and field study of high-cure crumb-rubber modified asphalt materials. College Station, TX: Texas Transportation Institute.
Hajj, E. Y., N. Morian, P. E. Sebaaly, H. Nabizadeh, and S. Pournoman. 2016. “Evaluation of adaptive Glover-Rowe parameter on aging of select modified binders.” In Proc., 95th Annual Meeting of the Transportation Research Board. Washington, DC: Transportation Research Board.
Han, L., M. Zheng, J. Li, Y. Li, Y. Zhu, and Q. Ma. 2017. “Effect of nano silica and pretreated rubber on the properties of terminal blend crumb rubber modified asphalt.” Constr. Build. Mater. 157: 277–291. https://doi.org/10.1016/j.conbuildmat.2017.08.187.
Han, L., M. Zheng, and C. Wang. 2016. “Current status and development of terminal blend tyre rubber modified asphalt.” Constr. Build. Mater. 128 (Dec): 399–409. https://doi.org/10.1016/j.conbuildmat.2016.10.080.
Hassan, N. A., G. D. Airey, R. P. Jaya, N. Mashros, and M. M. A. Aziz. 2014. “A review of crumb rubber modification in dry mixed rubberised asphalt mixtures.” J. Teknol. 70 (4): 127–134. https://doi.org/10.11113/jt.v70.3501.
Hicks, R., D. Cheng, and T. Duffy. 2010. Evaluation of terminal blend rubberized asphalt in paving applications. Chico, CA: California Pavement Preservation Center.
Huang, Q., Z. Qian, M. Zhang, and Y. Xue. 2019. “Experimental investigation of the road performance of terminal blend rubber asphalt mixture with different dry-way additives.” In Proc., IOP Conf. Series: Materials Science Engineering. Bristol, UK: IOP Publishing.
IHAP (Iran Highway Asphalt Paving). 2011. Iran highway asphalt paving code No. 234. Tehran, Iran: Ministry of Road and Urban Development.
Jamal, M., and F. Giustozzi. 2020. “Low-content crumb rubber modified bitumen for improving Australian local roads condition.” J. Cleaner Prod. 271 (Oct): 122484. https://doi.org/10.1016/j.jclepro.2020.122484.
Kaseer, F., F. Yin, E. Arámbula-Mercado, A. E. Martin, J. S. Daniel, and S. Salari. 2018. “Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test.” Constr. Build. Mater. 167 (Apr): 286–298. https://doi.org/10.1016/j.conbuildmat.2018.02.014.
Khodary Moalla Hamed, F. 2010. Evaluation of fatigue resistance for modified asphalt concrete mixtures based on dissipated energy concept. Dresden, Germany: Technische Universität.
Kumar, V. V., and S. Saride. 2018. “Evaluation of cracking resistance potential of geosynthetic reinforced asphalt overlays using direct tensile strength test.” Constr. Build. Mater. 162 (Feb): 37–47. https://doi.org/10.1016/j.conbuildmat.2017.11.158.
Kumar, V. V., and S. Sireesh. 2018. “Fatigue performance of geosynthetic reinforced two-layered asphalt concrete beams.” J. Geotech. Eng. 49 (4): 6–12.
Lamontagne, J., P. Dumas, V. Mouillet, and J. Kister. 2001. “Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens.” Fuel 80 (4): 483–488. https://doi.org/10.1016/S0016-2361(00)00121-6.
Leite, L., M. Cravo, L. Dantas, and M. Araujo. 2018. Evaluation of the UV aging tests effect on asphalt binders using Glover Rowe parameter. Fortaleza, Brazil: International Society for Asphalt Pavements.
Li, X.-J., and M. Marasteanu. 2010. “Using semi circular bending test to evaluate low temperature fracture resistance for asphalt concrete.” J. Exp. Mech. 50 (7): 867–876. https://doi.org/10.1007/s11340-009-9303-0.
Li, Y., Y. Lyu, M. Xu, L. Fan, and Y. Zhang. 2019. “Determination of construction temperatures of crumb rubber modified bitumen mixture based on CRMB mastic.” Materials 12 (23): 3851. https://doi.org/10.3390/ma12233851.
Liang, Y., J. T. Harvey, R. Wu, L. Jiao, and D. Jones. 2020. “Fatigue and fracture properties of asphalt mixes containing low content of crumb-rubber modifier.” J. Mater. Civ. Eng. 32 (10): 04020280. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003371.
Liu, W., X. Xiao, and Y. Yan. 2015. “Properties and aging mechanism of layered double hydroxides/crumb rubber modified asphalt.” Polym. Mater. Sci. Eng. 31 (2): 72–76.
Lo, A. A., and P. G. Airey. 2020. “Thermo-rheological analysis of WMA-additive modified binders.” Mater. Struct. 53 (Jun): 1–13. https://doi.org/10.1617/s11527-020-01480-1.
Mahdi, L., R. Muniandy, R. B. Yunus, S. Hasham, and E. Aburkaba. 2013. “Effect of short term aging on organic montmorillonite nanoclay modified asphalt.” Indian J. Sci. Technol. 6 (10): 5434–5442. https://doi.org/10.17485/ijst/2013/v6i11.13.
Mahmoud, E., S. Saadeh, H. Hakimelahi, and J. Harvey. 2014. “Extended finite-element modelling of asphalt mixtures fracture properties using the semi-circular bending test.” Road Mater. Pavement Des. 15 (1): 153–166. https://doi.org/10.1080/14680629.2013.863737.
Mandal, T., C. Ling, P. Chaturabong, and H. U. Bahia. 2019. “Evaluation of analysis methods of the semi-circular bend (SCB) test results for measuring cracking resistance of asphalt mixtures.” Int. J. Pavement Res. Technol. 12 (5): 456–463. https://doi.org/10.1007/s42947-019-0055-7.
Marasteanu, M., and D. Anderson. 1999. “Improved model for bitumen rheological characterization.” In Proc., Eurobitume workshop on performance related properties for bituminous binders. Belgium, Brussels: European Bitumen Association Brussels.
Martinho, F. C., and J. P. S. Farinha. 2019. “An overview of the use of nanoclay modified bitumen in asphalt mixtures for enhanced flexible pavement performances.” Road Mater. Pavement Des. 20 (3): 671–701. https://doi.org/10.1080/14680629.2017.1408482.
Mensching, D. J., N. H. Gibson, A. Andriescu, G. M. Rowe, and J. Sias. 2016. “Assessing the applicability of rheological parameters to evaluate modified binders.” In Proc., Int. Society for Asphalt Pavements Symposium and 53rd Petersen Asphalt Research Conf. Laramie, WY: Western Research Institute.
Minhajuddin, M., G. Saha, and K. P. Biligiri. 2015. “Crack propagation parametric assessment of modified asphalt mixtures using linear elastic fracture mechanics approach.” J. Test. Eval. 44 (1): 471–483. https://doi.org/10.1520/JTE20140510.
Moreno-Navarro, F., M. C. Rubio-Gámez, and A. Jiménez Del Barco-Carrión. 2016. “Tire crumb rubber effect on hot bituminous mixtures fatigue-cracking behaviour.” J. Civ. Eng. Manage. 22 (1): 65–72. https://doi.org/10.3846/13923730.2014.897982.
Mturi, G. A., J. O’Connell, S. E. Zoorob, and M. De Beer. 2014. “A study of crumb rubber modified bitumen used in South Africa.” Road Mater. Pavement Des. 15 (4): 774–790. https://doi.org/10.1080/14680629.2014.910130.
Mull, M., K. Stuart, and A. Yehia. 2002. “Fracture resistance characterization of chemically modified crumb rubber asphalt pavement.” J. Mater. Sci. 37 (3): 557–566. https://doi.org/10.1023/A:1013721708572.
Nazari, H., K. Naderi, and F. Moghadas Nejad. 2018. “Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles.” Constr. Build. Mater. 170 (May): 591–602. https://doi.org/10.1016/j.conbuildmat.2018.03.107.
Nsengiyumva, G. 2015. “Development of semi-circular bending (SCB) fracture test for bituminous mixtures.” Master’s thesis, Faculty of the Graduate College, Univ. of Nebraska.
Ogbo, C., F. Kaseer, M. Oshone, J. E. Sias, and A. E. Martin. 2019. “Mixture-based rheological evaluation tool for cracking in asphalt pavements.” Road Mater. Pavement Des. 20 (1): 299–314. https://doi.org/10.1080/14680629.2019.1592010.
Ozer, H., I. Al-Qadi, P. Singhvi, T. Khan, J. Rivera-Perez, and A. El-Khatib. 2016a. “Fracture characterization of asphalt mixture with RAP and RAS using the Illinois semi-circular bending test method and flexibility index.” Transp. Res. Rec. 2575 (1): 130–137. https://doi.org/10.3141/2575-14.
Ozer, H., I. L. Al-Qadi, J. Lambros, A. El-Khatib, P. Singhvi, and B. Doll. 2016b. “Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters.” Constr. Build. Mater. 115 (Jul): 390–401. https://doi.org/10.1016/j.conbuildmat.2016.03.144.
Pamplona, T. F., B. D. C. Amoni, A. E. V. D. Alencar, A. P. D. Lima, N. M. Ricardo, J. B. Soares, and S. D. A. Soares. 2012. “Asphalt binders modified by SBS and SBS/nanoclays: Effect on rheological properties.” J. Braz. Chem. Soc. 23 (4): 639–647. https://doi.org/10.1590/S0103-50532012000400008.
Pérez-Lepe, A., F. Martínez-Boza, and C. Gallegos. 2007. “High temperature stability of different polymer-modified bitumens: A rheological evaluation.” J. Appl. 103 (2): 1166–1174. https://doi.org/10.1002/app.25336.
Presti, D. L. 2013. “Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review.” Constr. Build. Mater. 49 (Dec): 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007.
Presti, D. L., G. Airey, and P. Partal. 2012. “Manufacturing terminal and field bitumen-tyre rubber blends: The importance of processing conditions.” Procedia. Social Behav. Sci. 53 (Oct): 485–494. https://doi.org/10.1016/j.sbspro.2012.09.899.
Purves, R. D. 1992. “Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC).” J. Pharmacokinet. Biopharm. 20 (3): 211–226. https://doi.org/10.1007/BF01062525.
Ray, S. S., and M. Okamoto. 2003. “Polymer/layered silicate nanocomposites: A review from preparation to processing.” Prog. Polym. Sci. 28 (11): 1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002.
Read, J., and D. Whiteoak. 2003. The shell bitumen handbook. Westerkirk, UK: Thomas Telford.
Rivera-Perez, J., H. Ozer, and I. L. Al-Qadi. 2018. “Impact of specimen configuration and characteristics on Illinois flexibility index.” Transp. Res. Rec. 2672 (28): 383–393. https://doi.org/10.1177/0361198118792114.
Roberts, F. L., P. S. Kandhal, E. R. Brown, and R. L. Dunning. 1989. Investigation and evaluation of ground tire rubber in hot mix asphalt. Auburn, AL: National Center for Asphalt Technology.
Rowe, G., G. King, and M. Anderson. 2014. “The influence of binder rheology on the cracking of asphalt mixes in airport and highway projects.” J. Test. Eval. 42 (5): 1063–1072. https://doi.org/10.1520/JTE20130245.
Safaei, F. 2017. “Characterization and modeling of asphalt binder fatigue.” Ph.D. thesis, Dept. of Civil Engineering, North Carolina State Univ.
Santagata, F. A., F. Canestrari, and E. Pasquini. 2007. “Mechanical characterization of asphalt rubber-wet process.” In Proc., 4th Int. SIIV Congress. Catania, Italy: Univ. of Catania.
Scofield, L. 1989. The history, development, and performance of asphalt rubber at ADOT. Phoenix: Arizona Dept. of Transportation.
Sharma, B. K., J. Ma, B. Kunwar, P. Singhvi, H. Ozer, and N. Rajagopalan. 2017. Modeling the performance properties of RAS and RAP blended asphalt mixes using chemical compositional information. Rantoul, IL: Illinois Center for Transportation.
Shuvo, S. N., and K. M. Shorowordi. 2015. “Processing and mechanical characterization of graded and non-graded nanoclay composites.” Procedia Eng. 105 (Jan): 928–932. https://doi.org/10.1016/j.proeng.2015.05.117.
Sun, L., X. Xin, and J. Ren. 2017. “Inorganic nanoparticle-modified asphalt with enhanced performance at high temperature.” J. Mater. Civ. Eng. 29 (3): 04016227. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001750.
Sun, L., H.-R. Zhu, X.-T. Xin, H.-Y. Wang, and W.-J. Gu. 2013. “Preparation of nano-modified asphalt and its road performance evaluation.” China J. High. Transp. 26 (1): 15–22.
Tang, N., Q. Lv, W. Huang, P. Lin, and C. Yan. 2019. “Chemical and rheological evaluation of aging characteristics of terminal blend rubberized asphalt binder.” Constr. Build. Mater. 205 (Apr): 87–96. https://doi.org/10.1016/j.conbuildmat.2019.02.008.
Uddin, F. 2008. “Clays, nanoclays, and montmorillonite minerals.” Metall. Mater. Trans. A 39 (12): 2804–2814. https://doi.org/10.1007/s11661-008-9603-5.
Van den Bergh, W. 2011. “The effect of ageing on the fatigue and healing properties of bituminous mortars.” Ph.D. thesis, Dept. of Design and Construction, Delft Univ. of Technology.
Vargas, M., L. Moreno, R. Montiel, O. Manero, and H. Vázquez. 2017. “Effects of montmorillonite (Mt) and two different organo-Mt additives on the performance of asphalt.” Appl. Clay Sci. 139 (Apr): 20–27. https://doi.org/10.1016/j.clay.2017.01.009.
Walters, R. C., E. H. Fini, and T. Abu-Lebdeh. 2014. “Enhancing asphalt rheological behavior and aging susceptibility using bio-char and nano-clay.” Am. J. Eng. Appl. Sci. 7 (1): 66–76. https://doi.org/10.3844/ajeassp.2014.66.76.
Wang, H., Z. Dang, L. Li, and Z. You. 2013. “Analysis on fatigue crack growth laws for crumb rubber modified (CRM) asphalt mixture.” Constr. Build. Mater. 47 (Oct): 1342–1349. https://doi.org/10.1016/j.conbuildmat.2013.06.014.
Wang, H., X. Liu, P. Apostolidis, and T. Scarpas. 2018. “Rheological behavior and its chemical interpretation of crumb rubber modified asphalt containing warm-mix additives.” Transp. Res. Rec. 2672 (28): 337–348. https://doi.org/10.1177/0361198118781376.
Wang, H., X. Liu, M. van de Ven, G. Lu, S. Erkens, and A. Skarpas. 2020. “Fatigue performance of long-term aged crumb rubber modified bitumen containing warm-mix additives.” Constr. Build. Mater. 239 (Apr): 117824. https://doi.org/10.1016/j.conbuildmat.2019.117824.
Wang, H., C. Zhang, L. Li, Z. You, and A. Diab. 2016. “Characterization of low temperature crack resistance of crumb rubber modified asphalt mixtures using semi-circular bending tests.” J. Test. Eval. 44 (2): 847–855. https://doi.org/10.1520/JTE20150145.
Wang, Q., S. Li, X. Wu, S. Wang, and C. Ouyang. 2016. “Weather aging resistance of different rubber modified asphalts.” Constr. Build. Mater. 106 (Mar): 443–448. https://doi.org/10.1016/j.conbuildmat.2015.12.138.
Williams, M. L., R. F. Landel, and J. D. Ferry. 1955. “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids.” J. Am. Chem. Soc. 77 (14): 3701–3707. https://doi.org/10.1021/ja01619a008.
Witczak, M. W. 2002. Simple performance test for superpave mix design. Washington, DC: Transportation Research Board.
Wu, Z., L. N. Mohammad, L. Wang, and M. A. Mull. 2005. “Fracture resistance characterization of superpave mixtures using the semi-circular bending test.” J. ASTM Int. 2 (3): 12264. https://doi.org/10.1520/JAI12264.
Xiao, X. Y., and Z. Q. Yang. 2013. “Properties of organic montmorillonite/crumb rubber compound modified asphalt.” J. Nat. Sci. 41 (6): 116–120.
Xu, S., L. Li, J. Yu, C. Zhang, J. Zhou, and Y. Sun. 2015. “Investigation of the ultraviolet aging resistance of organic layered double hydroxides modified bitumen.” Constr. Build. Mater. 96 (Oct): 127–134. https://doi.org/10.1016/j.conbuildmat.2015.08.019.
Yan, K., Y. Peng, and L. You. 2020. “Use of tung oil as a rejuvenating agent in aged asphalt: Laboratory evaluations.” Constr. Build. Mater. 239 (Apr): 117783. https://doi.org/10.1016/j.conbuildmat.2019.117783.
Yang, J., and S. Tighe. 2013. “A review of advances of nanotechnology in asphalt mixtures.” Procedia. Social Behav. Sci. 96 (Nov): 1269–1276. https://doi.org/10.1016/j.sbspro.2013.08.144.
Yao, H., Z. You, L. Li, S. W. Goh, C. H. Lee, Y. K. Yap, and X. Shi. 2013. “Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy.” Constr. Build. Mater. 38 (Jan): 327–337. https://doi.org/10.1016/j.conbuildmat.2012.08.004.
Yao, H., Z. You, L. Li, C. H. Lee, D. Wingard, Y. K. Yap, X. Shi, and S. W. Goh. 2012. “Rheological properties and chemical bonding of asphalt modified with nanosilica.” J. Mater. Civ. Eng. 25 (11): 1619–1630. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690.
You, L., Z. You, Q. Dai, and L. Zhang. 2018. “Assessment of nanoparticles dispersion in asphalt during bubble escaping and bursting: Nano hydrated lime modified foamed asphalt.” Constr. Build. Mater. 184 (Sep): 391–399. https://doi.org/10.1016/j.conbuildmat.2018.06.234.
You, Z., J. Mills-Beale, J. M. Foley, S. Roy, G. M. Odegard, Q. Dai, and S. W. Goh. 2011. “Nanoclay-modified asphalt materials: Preparation and characterization.” Constr. Build. Mater. 25 (2): 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070.
Yusoff, N. I. M., G. D. Airey, and M. R. Hainin. 2010. “Predictability of complex modulus using rheological models.” Asian J. Sci. Res. 3 (1): 18–30. https://doi.org/10.3923/ajsr.2010.18.30.
Zanetti, M., S. Fiore, B. Ruffino, E. Santagata, D. Dalmazzo, and M. Lanotte. 2015. “Characterization of crumb rubber from end-of-life tyres for paving applications.” J. Waste Manage. 45 (Nov): 161–170. https://doi.org/10.1016/j.wasman.2015.05.003.
Zeng, M., H. H. Bahia, H. Zhai, M. R. Anderson, and P. Turner. 2001. “Rheological modeling of modified asphalt binders and mixtures (with discussion).” J. Assoc. Asphalt Paving 70: 403–441.
Zhang, H., G. Xu, X. Chen, R. Wang, and K. Shen. 2019. “Effect of long-term laboratory aging on rheological properties and cracking resistance of polymer-modified asphalt binders at intermediate and low temperature range.” Constr. Build. Mater. 226 (Nov): 767–777. https://doi.org/10.1016/j.conbuildmat.2019.07.206.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 10October 2021

History

Received: Jul 27, 2020
Accepted: Feb 9, 2021
Published online: Jul 19, 2021
Published in print: Oct 1, 2021
Discussion open until: Dec 19, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

M.Sc. Student, Dept. of Civil Engineering, Faculty of Engineering, Payame Noor Univ., Artesh Hwy., Nakhl St., Tehran 19395-3697, Iran (corresponding author). ORCID: https://orcid.org/0000-0001-9106-3821. Email: [email protected]
Research Assistant, Dept. of Civil and Environmental Engineering, Amirkabir Univ. of Technology, Tehran 15875-4413, Iran. ORCID: https://orcid.org/0000-0003-4829-9681. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Amirkabir Univ. of Technology, Tehran 15875-4413, Iran. ORCID: https://orcid.org/0000-0003-3830-4555. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Research progress and performance evaluation of crumb-rubber-modified asphalts and their mixtures, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129687, 361, (129687), (2022).
  • A comprehensive review on the usage of nanomaterials in asphalt mixes, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129634, 361, (129634), (2022).
  • Development of terminal blend rubber and SBS modified asphalt: A case study, Construction and Building Materials, 10.1016/j.conbuildmat.2022.127459, 334, (127459), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share