Technical Papers
May 26, 2021

Postfire Properties of a Sigma Phase Containing Duplex Stainless Steel: Problems for Construction Use

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 8

Abstract

The present paper looks into the postfire residual mechanical and corrosion behavior of the 2205 duplex stainless steel (DSS) after exposure to 800°C and 700°C (about and under the nose temperature of precipitation, respectively). The discussion focuses on the problems caused by intermetallic precipitation and a comparison of the 2205 DSS with an ordinary constructional steel. Very small amounts of intermetallics may already cause noticeable embrittlement (over 10% reduction of the strain at failure) and degradation of corrosion resistance of the 2205 DSS. Therefore, the reusability of the 2205 DSS, even just after short-time exposure to the intermetallics-formation temperature range, may be compromised. Unlike ordinary constructional steels, the intermetallics-induced problems of 2205 DSS cannot be avoided even when the cooling rate is low.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work reported was mainly funded by the Science and Technology Development Fund, Macau SAR (057/2015/A2). The corrosion experiments were funded by the University of Macau through a Multi-Year Research Grant (MYRG2018-00030-FST).

References

Ahn, Y. S., and J. P. Kang. 2000. “Effect of aging treatments on microstructure and impact properties of tungsten substituted 2205 duplex stainless steel.” Mater. Sci. Technol. 16 (4): 382–388. https://doi.org/10.1179/026708300101507965.
Akisanya, A. R., U. Obi, and R. C. Renton. 2012. “Effect of ageing on phase evolution and mechanical properties of a high tungsten super-duplex stainless steel.” Mater. Sci. Eng. 535 (Feb): 281–289. https://doi.org/10.1016/j.msea.2011.12.087.
Alonso, M. C., F. J. Luna, and M. Criado. 2019. “Corrosion behavior of duplex stainless steel reinforcement in ternary binder concrete exposed to natural chloride penetration.” Constr. Build. Mater. 199 (Feb): 385–395. https://doi.org/10.1016/j.conbuildmat.2018.12.036.
ASTM. 2021. Standard test methods for tension testing of metallic materials. ASTM E 8. West Conshohocken, PA: ASTM.
Aziz, E. M., and V. K. Kodur. 2016. “Effect of temperature and cooling regime on mechanical properties of high-strength low-alloy steel.” Fire Mater. 40 (7): 926–939. https://doi.org/10.1002/fam.2352.
Ba, G., J. Miao, W. Zhang, and J. Liu. 2019. “Influence of reinforcement corrosion on fire performance of reinforced concrete beams.” Constr. Build. Mater. 213 (Jul): 738–747. https://doi.org/10.1016/j.conbuildmat.2019.04.065.
Baddoo, N. R. 2008. “Stainless steel in construction: A review of research, applications, challenges and opportunities.” J. Constr. Steel Res. 64 (11): 1199–1206. https://doi.org/10.1016/j.jcsr.2008.07.011.
Bertolini, L., and M. Gastaldi. 2011. “Corrosion resistance of low-nickel duplex stainless steel rebars.” Mater. Corros. 62 (2): 120–129. https://doi.org/10.1002/maco.201005774.
Cai, Y., and B. Young. 2019. “Structural behavior of cold-formed stainless steel bolted connections at post-fire condition.” J. Constr. Steel Res. 152 (Jan): 312–321. https://doi.org/10.1016/j.jcsr.2018.03.024.
Calliari, I., E. Ramous, and P. Bassani. 2010. “Phase transformation in duplex stainless steels after isothermal treatments, continuous cooling and cold working.” Mater. Sci. Forums. 638 (2): 2986–2991. https://doi.org/10.4028/www.scientific.net/MSF.638-642.2986.
Canale, L. C. F., R. N. Penha, G. E. Totten, A. C. Canale, and M. R. Gasparini. 2007. “Overview of factors contributing to steel spring performance and failure.” Intl. J. Microstruct. Mater. Prop. 2 (3): 262–309. https://doi.org/10.1504/IJMMP.2007.015310.
Chen, Y., X. Chen, X. Dai, Y. You, and B. Yang. 2018. “Effect of spinodal decomposition on the pitting corrosion resistance of Z3CN20.09M duplex stainless steel.” Mater. Corros. 69 (4): 527–535. https://doi.org/10.1002/maco.201709738.
Corradi, M., A. Di Schino, A. Borri, and R. Rufini. 2018. “A review of the use of stainless steel for masonry repair and reinforcement.” Constr. Build. Mater. 181 (Aug): 335–346. https://doi.org/10.1016/j.conbuildmat.2018.06.034.
de Souza, V. B., R. Lopes Junior, P. F. S. Filho, and H. S. da Costa Mattos. 2020. “Strain rate sensitivity analysis of duplex and superduplex steels in tensile tests.” Mater. Res. 23 (3): e20190482. https://doi.org/10.1590/1980-5373-mr-2019-0482.
dos Santos, D. C., R. Magnabosco, and C. de Moura-Neto. 2013. “Influence of sigma phase formation on pitting corrosion of an aged UNS S31803 duplex stainless steel.” Corrosion 69 (9): 900–911. https://doi.org/10.5006/0768.
Eichelman, G. H., and F. C. Hull. 1953. “The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18-8 type stainless steel.” Trans. Amer. Soc. Metal. 45: 77–104.
Farrell, K., T. S. Byun, and N. Hashimoto. 2004. “Deformation mode maps for tensile deformation of neutron-irradiated structural alloys.” J. Nucl. Mater. 335 (3): 471–486. https://doi.org/10.1016/j.jnucmat.2004.08.006.
Francois, R., I. Khan, and V. H. Dang. 2013. “Impact of corrosion on mechanical properties of steel embedded in 27-year-old corroded reinforced concrete beams.” Mater. Struct. 46 (6): 899–910. https://doi.org/10.1617/s11527-012-9941-z.
Gholami, M., M. Hoseinpoor, and M. H. Moayed. 2015. “A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel.” Corro. Sci. 94 (May): 156–164. https://doi.org/10.1016/j.corsci.2015.01.054.
Gunn, R. N. 1997. Duplex stainless steels: Microstructure, properties and applications. Cambridge, UK: Woodhead.
Gutierrez-Vargas, G., A. Ruiz, J. Y. Kim, V. H. Lopez-Morelos, and R. R. Ambriz. 2019. “Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power.” Nucl. Eng. Technol. 51 (7): 1816–1821. https://doi.org/10.1016/j.net.2019.05.017.
Hosseini, V. A., L. Karlsson, S. Wessman, and N. Fuertes. 2018. “Effect of sigma phase morphology on the degradation of properties in a super duplex stainless steel.” Materials 11 (6): 933. https://doi.org/10.3390/ma11060933.
Hsieh, C. C., and W. Wu. 2012. “Overview of intermetallic sigma (σ) phase precipitation in stainless steels.” Int. Sch. Res. Network Metall. 2012: 732471. https://doi.org/10.5402/2012/732471.
Huang, Y., C. Wei, L. Chen, and P. Li. 2014. “Quantitative correlation between geometric parameters and stress concentration of corrosion pits.” Eng. Fail. Anal. 44 (Sep): 168–178. https://doi.org/10.1016/j.engfailanal.2014.05.020.
Huang, Y., and B. Young. 2017. “Post-fire behavior of ferritic stainless steel material.” Constr. Build. Mater. 157 (Dec): 654–667. https://doi.org/10.1016/j.conbuildmat.2017.09.082.
Iacoviello, F., V. Di Cocco, E. Franzese, and S. Natali. 2017. “High temperature embrittled duplex stainless steels: Influence of the chemical composition on the fatigue crack propagation.” Procedia Struct. Integrity 3 (Jan): 308–315. https://doi.org/10.1016/j.prostr.2017.04.055.
Ji, J., C. Zhang, J. Kodikara, and S. Q. Yang. 2015. “Prediction of stress concentration factor of corrosion pits on buried pipes by least squares support vector machine.” Eng. Fail. Anal. 55 (Sep): 131–138. https://doi.org/10.1016/j.engfailanal.2015.05.010.
Kesawan, K., and M. Mahendran. 2018. “Post-fire mechanical properties of cold-formed steel hollow sections.” Constr. Build. Mater. 161 (Feb): 26–36. https://doi.org/10.1016/j.conbuildmat.2017.11.077.
Kim, M. T., O. Y. Oh, and S. Y. Chang. 2008. “Analysis of degradation of a super-austenitic stainless steel for flue gas desulfurization system after a fire accident.” Eng. Fail. Anal. 15 (5): 575–581. https://doi.org/10.1016/j.engfailanal.2007.04.006.
Lee, K. M., H. S. Cho, and D. C. Choi. 1999. “Effect of isothermal treatment of SAF 2205 duplex stainless steel on migration of δ/γ interface boundary and growth of austenite.” J. Alloy. Compd. 285 (1–2): 156–161. https://doi.org/10.1016/S0925-8388(99)00014-6.
Li, G. Q., H. Lyu, and C. Zhang. 2017. “Post-fire mechanical properties of high strength Q690 structural steel.” J. Constr. Steel. Res. 132 (May): 108–116. https://doi.org/10.1016/j.jcsr.2016.12.027.
Liu, Y., H. Liu, and Z. Chen. 2019. “Post-fire mechanical properties of aluminum alloy 6082-T6.” Constr. Build. Mater. 196 (Jan): 256–266. https://doi.org/10.1016/j.conbuildmat.2018.10.237.
Llorca-Isern, N., H. Lopez-Luque, I. Lopez-Jimenez, and M. V. Biezma. 2016. “Identification of sigma and chi phases in duplex stainless steels.” Mater. Charact. 112 (Feb): 20–29. https://doi.org/10.1016/j.matchar.2015.12.004.
Lord, J. D., and R. M. Morrell. 2010. “Elastic modulus measurements—Obtaining reliable data from the tensile tests.” Metrologia 47 (2): 41–49. https://doi.org/10.1088/0026-1394/47/2/S05.
Malik, A., J. Odqvist, L. Hoglund, S. Hertzman, and J. Agren. 2017. “Phase-field modeling of sigma-phase precipitation in 25Cr7Ni4Mo duplex stainless steel.” Metall. Mater. Trans. A 48 (10): 4914–4928. https://doi.org/10.1007/s11661-017-4214-7.
Mameng, S. H., A. Backhouse, J. McCray, and G. Gedge. 2018. “Experience of duplex stainless steels as structural materials for bridges: Results of seven inspections in European environment.” IOP Conf. Ser.: Mater. Sci. Eng. 419 (1): 012018.
Maraveas, C., Z. Fsaoulakis, and K. D. Tsavdaridis. 2017. “Post-fire assessment and reinstatement of steel structures.” J. Struct. Fire Eng. 8 (2): 181–201. https://doi.org/10.1108/JSFE-03-2017-0028.
Michalska, J., and M. Sozanska. 2006. “Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel.” Mater. Charact. 56 (4–5): 355–362. https://doi.org/10.1016/j.matchar.2005.11.003.
Mola, J., and M. Ren. 2018. “On the hardness of high carbon ferrous martensite.” IOP Conf. Ser.: Mater. Sci. 373 (1): 012004. https://doi.org/10.1088/1757-899X/373/1/012004.
Moser, R. D., P. M. Singh, L. F. Kahn, K. E. Kurtis, D. G. Nino, and Z. B. McClelland. 2019. “Crevice corrosion and environmentally assisted cracking of high-strength duplex stainless steels in simulated concrete pore solutions.” Constr. Build. Mater. 203 (10): 366–376. https://doi.org/10.1016/j.conbuildmat.2019.01.082.
Motra, H. B., J. Hildebrand, and A. Dimming-Osburg. 2014. “Assessment of strain measurement techniques to characterise mechanical properties of structural steel.” Eng. Sci. Technol. Intl. J. 17 (4): 260–269. https://doi.org/10.1016/j.jestch.2014.07.006.
Neves, I. C., J. P. C. Rodrigues, and A. P. Loureiro. 1996. “Mechanical properties of reinforcing and prestressing steels after heating.” J. Mater. Civ. Eng. 8 (4): 189–194. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:4(189).
Nilsson, J. O. 1992. “Super duplex stainless steels.” Mater. Sci. Technol. 8 (8): 685–700. https://doi.org/10.1179/mst.1992.8.8.685.
Otarola, T., S. Hollner, B. Bonnefois, M. Anglada, L. Coudreuse, and A. Mateo. 2005. “Embrittlement of a superduplex stainless steel in the range of 550–700°C.” Eng. Fail. Anal. 12 (6): 930–941. https://doi.org/10.1016/j.engfailanal.2004.12.022.
Piroglu, F., M. Baydoga, and K. Ozakgul. 2017. “An experimental study on fire damage of structural steel members in an industrial building.” Eng. Fail. Anal. 80 (Oct): 341–351. https://doi.org/10.1016/j.engfailanal.2017.06.051.
Pohl, M., O. Storz, and T. Glogowski. 2007. “Effect of intermetallic precipitations on the properties of duplex stainless steel.” Mater. Charact. 58 (1): 65–71. https://doi.org/10.1016/j.matchar.2006.03.015.
Ruan, T., N. Spandley, C. Johnson, and A. Poursaee. 2015. “The impact of fire and fire extinguishing method on the corrosion behavior of the steel bars in concrete pore solution.” Fire Saf. J. 78 (Nov): 196–201. https://doi.org/10.1016/j.firesaf.2015.10.001.
Sajid, H. U., and R. Kiran. 2018. “Influence of stress concentration and cooling methods on post-fire mechanical behavior of ASTM A36 steels.” Constr. Build. Mater. 186 (Oct): 920–945. https://doi.org/10.1016/j.conbuildmat.2018.08.006.
Shahriar, S. 1993. “Microstructure of super-duplex stainless steels.” Ph.D. thesis, Dept. of Materials Science and Metallurgy, Univ. of Cambridge.
Siow, K. S., T. Y. Song, and J. H. Qiu. 2001. “Pitting corrosion of duplex stainless steels.” Anti-Corro. Method. Mater. 48 (1): 31–37. https://doi.org/10.1108/00035590110365309.
Susan, D. F., G. A. Knorovsky, C. V. Robino, J. R. Michael, M. A. Rodrigue, and M. J. Perricone. 2012. “Surface alloy depletion and martensite formation during glass to metal joining of austenitic stainless steels.” Sci. Technol. Weld. Join. 17 (4): 321–332. https://doi.org/10.1179/1362171812Y.0000000011.
Tan, L., and Y. Yang. 2015. “In situ phase transformation of Laves phase from Chi-phase in Mo-containing Fe-Cr-Ni alloys.” Mater. Lett. 158 (Nov): 233–236. https://doi.org/10.1016/j.matlet.2015.06.018.
Tao, Z., X. Q. Wang, M. K. Hassan, T. Y. Song, and L. A. Xie. 2019. “Behavior of three types of stainless steel after exposure to elevated temperatures.” J. Constr. Steel Res. 152 (Jan): 296–311. https://doi.org/10.1016/j.jcsr.2018.02.020.
Tsuchida, N., T. Kawahata, E. Ishimaru, and A. Takahashi. 2014. “Effects of temperature and strain rate on tensile properties of a lean duplex stainless steel” ISIJ. Intl. 54 (8): 1971–1977. https://doi.org/10.2355/isijinternational.54.1971.
Villanueva, D. M. E., F. C. P. Junior, R. L. Plaut, and A. F. Padilha. 2006. “Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, ferritic and duplex.” Mater. Sci. Technol. 22 (9): 1098–1104. https://doi.org/10.1179/174328406X109230.
Wang, J., G. Shu, B. Zheng, and Q. Jiang. 2019. “Investigations on cold-forming effect of cold-drawn duplex stainless steel tubular sections.” J. Constr. Steel Res. 152 (Jan): 81–93. https://doi.org/10.1016/j.jcsr.2018.04.020.
Wang, X. Q., Z. Tao, T. Y. Song, and L. H. Han. 2014. “Stress–strain model of austenitic stainless steel after exposure to elevated temperatures.” J. Constr. Steel Res. 99 (Aug): 129–139. https://doi.org/10.1016/j.jcsr.2014.04.020.
Warnes, L. L. A., and H. W. King. 1976. “The low temperature magnetic properties of austenitic Fe-Cr-Ni alloys: 2. The prediction of Neel temperatures and maximum susceptibilities.” Cryogenics 16 (11): 659–667. https://doi.org/10.1016/0011-2275(76)90038-2.
Warren, A. D., I. J. Griffiths, and P. E. J. Flewitt. 2018. “Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel.” J. Mater. Sci. 53 (8): 6183–6197. https://doi.org/10.1007/s10853-017-1748-4.
Warren, A. D., R. L. Harniman, Z. Guo, C. M. Younes, P. E. J. Flewitt, and T. B. Scott. 2016. “Quantification of sigma-phase evolution in thermally aged 2205 duplex stainless steel.” J. Mater. Sci. 51 (2): 694–707. https://doi.org/10.1007/s10853-015-9131-9.
Wu, X., D. Ye, H. Li, and H. Yu. 2018. “Corrosion characteristics of S23043 duplex stainless steel bars.” Constr. Build. Mater. 178 (Jul): 135–143. https://doi.org/10.1016/j.conbuildmat.2018.05.008.
Xu, F., H. Liu, Z. Chen, H. Li, and X. Feng. 2019. “In-fire and postfire mechanical properties of duplex stainless steel S22053.” J. Mater. Civ. Eng. 31 (10): 04019210. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002842.
Zhang, C., B. Jia, and J. Wang. 2020. “Influence of artificial cooling methods on post-fire mechanical properties of Q355 structural steel.” Constr. Build. Mater. 252 (Aug): 119092. https://doi.org/10.1016/j.conbuildmat.2020.119092.
Zhang, L., Y. Jiang, B. Deng, W. Zhang, J. Xu, and J. Li. 2009. “Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel.” Mater. Charact. 60 (12): 1522–1528. https://doi.org/10.1016/j.matchar.2009.08.009.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 8August 2021

History

Received: Sep 21, 2020
Accepted: Dec 29, 2020
Published online: May 26, 2021
Published in print: Aug 1, 2021
Discussion open until: Oct 26, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Doctoral Student, Institute of Applied Physics and Materials Engineering, Univ. of Macau, Macau, China. Email: [email protected]
Associate Professor, Dept. of Electromechanical Engineering, Univ. of Macau, Macau, China (corresponding author). ORCID: https://orcid.org/0000-0003-0832-0263. Email: [email protected]
Professor, Dept. of Electromechanical Engineering, Univ. of Macau, Macau, China. Email: [email protected]
Professor, Institute of Applied Physics and Materials Engineering, Univ. of Macau, Macau, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share