Abstract

Waste management is a crucial issue facing modern society. The generation of sewage sludge is increasing annually due to the urbanization and improvement of sanitation systems of cities. The construction sector has emerged as a solution for the elimination of waste due to the enormous volume of materials that this sector can absorb. This paper evaluates the pozzolanic activity of sewage sludge ash (USSA) obtained following an uncontrolled-combustion process, a simple and economic procedure. Compressive strength of Portland cement/USSA mortars with 5%–25% by weight USSA were evaluated. Calcium hydroxide/USSA and Portland cement/USSA pastes were chemically and physically characterized through thermogravimetric/differential-thermogravimetric (TG/DTG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses. The increase in the replacement of Portland cement by USSA is associated with an increase in the compressive strength of mortars. These values for USSA containing mortars cured for 90 days were in the range of 49.655.4  MPa, higher than the one reached by the reference mortar. According to the microstructural analysis, the increment on the compressive strength can be attributed to the formation of hydrated products (C─ S─ H, C─ A─ S─ H, and C─ A─ H) by the pozzolanic reaction of USSA.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (Capes)—Finance Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Processo Nos. 309015/2015-4 and 478057/2013-0). Thanks go to the Scanning Electron Microscopy Service of FEIS/UNESP, Serviço Municipal Autônomo de Água e Esgoto (SEMAE) from the São José do Rio Preto city (São Paulo, Brazil).

References

ABNT (Associação Brasileira de Normas Técnicas). 2019. Portland cement: Determination of compressive strength of cylindrical test specimens. NBR 7215:2019. Rio de Janeiro, Brazil: ABNT.
Abuşoğlu, A., E. Özahi, A. İhsan Kutlar, and H. Al-jaf. 2017. “Life cycle assessment (LCA) of digested sewage sludge incineration for heat and power production.” J. Cleaner Prod. 142 (Part 4): 1684–1692. https://doi.org/10.1016/j.jclepro.2016.11.121.
Asociación Española de Normalización. 2014. Method of testing cement—Part 2: Chemical analysis of cement. UNE-EN 196-2:2014. Madrid, Spain: Asociación Española de Normalización.
Baeza-Brotons, F., P. Garcés, J. Payá, and J. M. Saval. 2014. “Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks.” J. Cleaner Prod. 82 (Nov): 112–124. https://doi.org/10.1016/j.jclepro.2014.06.072.
Biricik, H., and N. Sarier. 2014. “Comparative study of the characteristics of nano silica-, silica fume- and fly ash- incorporated cement mortars.” Mater. Res. 17 (3): 570–582. https://doi.org/10.1590/S1516-14392014005000054.
Chang, Z., G. Long, J. L. Zhou, and C. Ma. 2020. “Valorization of sewage sludge in the fabrication of construction and building materials: A review.” Resour. Conserv. Recycl. 154 (Mar): 104606. https://doi.org/10.1016/j.resconrec.2019.104606.
Chen, M., D. Blanc, M. Gautier, J. Mehu, and R. Gourdon. 2013. “Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction.” Waste Manage. 33 (5): 1268–1275. https://doi.org/10.1016/j.wasman.2013.01.004.
Chen, Z., and C. S. Poon. 2017. “Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars.” Constr. Build. Mater. 154 (Nov): 791–803. https://doi.org/10.1016/j.conbuildmat.2017.08.003.
Christensen, A. N., T. R. Jensen, and J. C. Hanson. 2004. “Formation of ettringite, Ca6Al2(SO4)3(OH)12·26H2O, AFt, and monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in hydrothermal hydration of portland cement and of calcium aluminum oxide—Calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder.” J. Solid State Chem. 177 (6): 1944–1951. https://doi.org/10.1016/j.jssc.2003.12.030.
Cordeiro, G. C., and K. E. Kurtis. 2017. “Effect of mechanical processing on sugar cane bagasse ash pozzolanicity.” Cem. Concr. Res. 97 (Jul): 41–49. https://doi.org/10.1016/j.cemconres.2017.03.008.
Criado, M., A. Fernández-Jiménez, and A. Palomo. 2007. “Alkali activation of fly ash: Effect of the SiO2/Na2O ratio—Part I: FTIR study.” Microporous Mesoporous Mater. 106 (1–3): 180–191. https://doi.org/10.1016/j.micromeso.2007.02.055.
Cyr, M., M. Coutand, and P. Clastres. 2007. “Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials.” Cem. Concr. Res. 37 (8): 1278–1289. https://doi.org/10.1016/j.cemconres.2007.04.003.
Donatello, S., and C. R. Cheeseman. 2013. “Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review.” Waste Manage. 33 (11): 2328–2340. https://doi.org/10.1016/j.wasman.2013.05.024.
Donatello, S., A. Freeman-Pask, M. Tyrer, and C. R. Cheeseman. 2010. “Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash.” Cem. Concr. Compos. 32 (1): 54–61. https://doi.org/10.1016/j.cemconcomp.2009.09.002.
Dyer, T. D., J. E. Halliday, and R. K. Dhir. 2011. “Hydration chemistry of sewage sludge ash used as a cement component.” J. Mater. Civ. Eng. 23 (5): 648–655. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000221.
El-Diadamony, H., A. A. Amer, T. M. Sokkary, and S. El-Hoseny. 2018. “Hydration and characteristics of metakaolin pozzolanic cement pastes.” HBRC J. 14 (2): 150–158. https://doi.org/10.1016/j.hbrcj.2015.05.005.
Garcés, P., M. Pérez Carrión, E. García-Alcocel, J. Payá, J. Monzó, and M. V. Borrachero. 2008. “Mechanical and physical properties of cement blended with sewage sludge ash.” Waste Manage. 28 (12): 2495–2502. https://doi.org/10.1016/j.wasman.2008.02.019.
Gastaldini, A. L. G., M. F. Hengen, M. C. C. Gastaldini, F. D. do Amaral, M. B. Antolini, and T. Coletto. 2015. “The use of water treatment plant sludge ash as a mineral addition.” Constr. Build. Mater. 94 (Sep): 513–520. https://doi.org/10.1016/j.conbuildmat.2015.07.038.
Hanum, F., L. C. Yuan, H. Kamahara, H. A. Aziz, Y. Atsuta, T. Yamada, and H. Daimon. 2019. “Treatment of sewage sludge using anaerobic digestion in Malaysia: Current state and challenges.” Front. Energy Res. 7 (Mar): 19. https://doi.org/10.3389/fenrg.2019.00019.
He, P., C. S. Poon, and D. C. W. Tsang. 2017. “Using incinerated sewage sludge ash to improve the water resistance of magnesium oxychloride cement (MOC).” Constr. Build. Mater. 147 (Aug): 519–524. https://doi.org/10.1016/j.conbuildmat.2017.04.187.
Imbabi, M. S., C. Carrigan, and S. McKenna. 2012. “Trends and developments in green cement and concrete technology.” Int. J. Sustainable Built Environ. 1 (2): 194–216. https://doi.org/10.1016/j.ijsbe.2013.05.001.
ISO. 2010. Determination of the specific surface area of solids by gas adsorption—BET method. ISO 9277:2010. Geneva: ISO.
Jaturapitakkul, C., J. Tangpagasit, S. Songmue, and K. Kiattikomol. 2011. “Filler effect and pozzolanic reaction of ground palm oil fuel ash.” Constr. Build. Mater. 25 (11): 4287–4293. https://doi.org/10.1016/j.conbuildmat.2011.04.073.
Jeon, D., W. S. Yum, Y. Jeong, and J. E. Oh. 2018. “Properties of quicklime(CaO)-activated Class F fly ash with the use of CaCl2.” Cem. Concr. Res. 111 (Sep): 147–156. https://doi.org/10.1016/j.cemconres.2018.05.019.
Kapeluszna, E., Ł. Kotwica, A. Różycka, and Ł. Gołek. 2017. “Incorporation of Al in C─ A─ S─ H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis.” Constr. Build. Mater. 155 (Nov): 643–653. https://doi.org/10.1016/j.conbuildmat.2017.08.091.
Kappel, A., L. M. Ottosen, and G. M. Kirkelund. 2017. “Colour, compressive strength and workability of mortars with an iron rich sewage sludge ash.” Constr. Build. Mater. 157 (Dec): 1199–1205. https://doi.org/10.1016/j.conbuildmat.2017.09.157.
Kelessidis, A., and A. S. Stasinakis. 2012. “Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.” Waste Manage. 32 (6): 1186–1195. https://doi.org/10.1016/j.wasman.2012.01.012.
Khan, M. N. N., M. Jamil, M. R. Karim, M. F. M. Zain, and A. B. M. A. Kaish. 2017. “Filler effect of pozzolanic materials on the strength and microstructure development of mortar.” KSCE J.Civ. Eng. 21 (1): 274–284.
Kliopova, I., and K. Makarskienė. 2015. “Improving material and energy recovery from the sewage sludge and biomass residues.” Waste Manage. 36 (Feb): 269–276. https://doi.org/10.1016/j.wasman.2014.10.030.
Krüger, O., and C. Adam. 2015. “Recovery potential of German sewage sludge ash.” Waste Manage. 45 (Nov): 400–406. https://doi.org/10.1016/j.wasman.2015.01.025.
Kumar, S., J. N. Y. Djobo, A. Kumar, and S. Kumar. 2018. “Size fractionation of brown fly ash: Utilisation of grey fraction as a pozzolanic material in blended cement.” Eur. J. Environ. Civ. Eng. 24 (6): 833–848. https://doi.org/10.1080/19648189.2018.1427635.
Li, J., Y. Zhou, Q. Wang, Q. Xue, and C. S. Poon. 2019. “Development of a novel binder using lime and incinerated sewage sludge ash to stabilize and solidify contaminated marine sediments with high water content as a fill material.” J. Mater. Civ. Eng. 31 (10): 04019245 https://doi.org/10.1061/(ASCE)MT.1943-5533.0002913.
Li, J. S., M. Z. Guo, Q. Xue, and C. S. Poon. 2017. “Recycling of incinerated sewage sludge ash and cathode ray tube funnel glass in cement mortars.” J. Cleaner Prod. 152 (May): 142–149. https://doi.org/10.1016/j.jclepro.2017.03.116.
Lin, D.-F., H.-L. Luo, and S.-W. Zhang. 2007. “Effects of nano-SiO2 on tiles manufactured with clay and incinerated sewage sludge ash.” J. Mater. Civ. Eng. 19 (10): 801–808. https://doi.org/10.1061/(ASCE)0899-1561200719:10(801).
Liu, G., Z. Yang, B. Chen, J. Zhang, X. Liu, Y. Zhang, M. Su, and S. Ulgiati. 2014. “Scenarios for sewage sludge reduction and reuse in clinker production towards regional eco-industrial development: A comparative emergy-based assessment.” J. Cleaner Prod. 103 (Sep): 371–383. https://doi.org/10.1016/j.jclepro.2014.09.003.
Lynn, C. J., R. K. Dhir, G. S. Ghataora, and R. P. West. 2015. “Sewage sludge ash characteristics and potential for use in concrete.” Constr. Build. Mater. 98 (Nov): 767–779. https://doi.org/10.1016/j.conbuildmat.2015.08.122.
Ma, Y., H. Wang, Y. Song, Y. Wu, and Z. Guo. 2018. “The synthesis of secondary iron minerals induced by quartz sand during the bioleaching process improves the dewaterability of municipal sewage sludge.” Minerals 8 (10): 419.
Mastali, M., A. Dalvand, A. R. Sattarifard, Z. Abdollahnejad, B. Nematollahi, J. G. Sanjayan, and M. Illikainen. 2018. “A comparison of the effects of pozzolanic binders on the hardened-state properties of high-strength cementitious composites reinforced with waste tire fibers.” Composites, Part B 162 (Apr): 134–153. https://doi.org/10.1016/j.compositesb.2018.10.100.
Mirzahosseini, M., and K. A. Riding. 2014. “Effect of curing temperature and glass type on the pozzolanic reactivity of glass powder.” Cem. Concr. Res. 58 (Apr): 103–111. https://doi.org/10.1016/j.cemconres.2014.01.015.
Monzó, J., J. Payá, M. Borrachero, and E. Peris-Mora. 1999. “Mechanical behavior of mortars containing sewage sludge ash (SSA) and portland cements with different tricalcium aluminate content.” Cem. Concr. Res. 29 (1): 87–94. https://doi.org/10.1016/S0008-8846(98)00177-X.
Monzó, J., J. Payá, M. V. Borrachero, and I. Girbés. 2003. “Reuse of sewage sludge ashes (SSA) in cement mixtures: The effect of SSA on the workability of cement mortars.” Waste Manage. 23 (4): 373–381. https://doi.org/10.1016/S0956-053X(03)00034-5.
Moraes, J. C. B., J. L. Akasaki, J. L. P. Melges, J. Monzó, M. V. Borrachero, L. Soriano, J. Payá, and M. M. Tashima. 2015. “Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended portland cement: Microstructural characterization of pastes and mechanical strength of mortars.” Constr. Build. Mater. 94 (Sep): 670–677. https://doi.org/10.1016/j.conbuildmat.2015.07.108.
Moraes, J. C. B., J. L. P. Melges, J. L. Akasaki, M. M. Tashima, L. Soriano, J. Monzó, M. V. Borrachero, and J. Payá. 2016. “Pozzolanic reactivity studies on a biomass-derived waste from sugar cane production: Sugar cane straw ash (SCSA).” ACS Sustainable Chem. Eng. 4 (8): 4273–4279.
Naamane, S., Z. Rais, and M. Taleb. 2016. “The effectiveness of the incineration of sewage sludge on the evolution of physicochemical and mechanical properties of portland cement.” Constr. Build. Mater. 112 (Jun): 783–789. https://doi.org/10.1016/j.conbuildmat.2016.02.121.
Oliva, M., F. Vargas, and M. Lopez. 2019. “Designing the incineration process for improving the cementitious performance of sewage sludge ash in portland and blended cement systems.” J. Cleaner Prod. 223 (Jun): 1029–1041. https://doi.org/10.1016/j.jclepro.2019.03.147.
Pan, S.-C., C.-C. Lin, and D.-H. Tseng. 2003a. “Reusing sewage sludge ash as adsorbent for copper removal from wastewater.” Resour. Conserv. Recycl. 39 (1): 79–90. https://doi.org/10.1016/S0921-3449(02)00122-2.
Pan, S.-C., D.-H. Tseng, C.-C. Lee, and C. Lee. 2003b. “Influence of the fineness of sewage sludge ash on the mortar properties.” Cem. Concr. Res. 33 (11): 1749–1754. https://doi.org/10.1016/S0008-8846(03)00165-0.
Payá, J., J. Monzó, M. V. Borrachero, L. Díaz-Pinzón, and L. M. Ordóñez. 2002. “Sugar-cane bagasse ash (SCBA): Studies on its properties for reusing in concrete production.” J. Chem. Technol. Biotechnol. 77 (3): 321–325. https://doi.org/10.1002/jctb.549.
Perez Carrion, M. T., F. Baeza Brotons, P. Garcés, O. Galao Malo, and J. Paya Bernabeu. 2013. “Potencial use of sewage sludge ash as a fine aggregate replacement in precast concrete blocks.” Dyna-Colombia 80 (179): 142–150.
Segui, P., J. E. Aubert, B. Husson, and M. Measson. 2012. “Characterization of wastepaper sludge ash for its valorization as a component of hydraulic binders.” Appl. Clay Sci. 57 (Mar): 79–85. https://doi.org/10.1016/j.clay.2012.01.007.
Shatat, M. R. 2016. “Hydration behavior and mechanical properties of blended cement containing various amounts of rice husk ash in presence of metakaolin.” Supplement, Arabian J. Chem. 9 (S2): S1869–S1874.
Smol, M., J. Kulczycka, A. Henclik, K. Gorazda, and Z. Wzorek. 2015. “The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy.” J. Cleaner Prod. 95 (May): 45–54. https://doi.org/10.1016/j.jclepro.2015.02.051.
Soriano, L., J. Monzó, M. Bonilla, M. M. Tashima, J. Payá, and M. V. Borrachero. 2013. “Effect of pozzolans on the hydration process of portland cement cured at low temperatures.” Cem. Concr. Compos. 42 (Sep): 41–48. https://doi.org/10.1016/j.cemconcomp.2013.05.007.
Soriano, L., J. Payá, J. Monzó, M. V. Borrachero, and M. M. Tashima. 2016. “High strength mortars using ordinary portland cement-fly ash-fluid catalytic cracking catalyst residue ternary system (OPC/FA/FCC).” Constr. Build. Mater. 106 (Mar): 228–235. https://doi.org/10.1016/j.conbuildmat.2015.12.111.
Tantawy, M. A. 2017. “Effect of high temperatures on the microstructure of cement paste.” J. Mater. Sci. Chem. Eng. 5 (11): 33–48.
Tantawy, M. A., A. M. El-Roudi, E. M. Abdalla, and M. A. Abdelzaher. 2012. “Evaluation of the pozzolanic activity of sewage sludge ash.” ISRN Chem. Eng. 2012 (10): 1–8.
Tarrago, M., M. Garcia-Valles, M. H. Aly, and S. Martínez. 2017. “Valorization of sludge from a wastewater treatment plant by glass-ceramic production.” Ceram. Int. 43 (1): 930–937. https://doi.org/10.1016/j.ceramint.2016.10.083.
Tashima, M. M., L. Reig, M. A. Santini Jr., J. C. B. Moraes, J. L. Akasaki, J. Payá, M. V. Borrachero, and L. Soriano. 2017. “Compressive strength and microstructure of alkali-activated blast furnace slag/sewage sludge ash (GGBS/SSA) blends cured at room temperature.” Waste Biomass Valorization 8 (5): 1441–1451.
Tironi, A., M. A. Trezza, A. N. Scian, and E. F. Irassar. 2013. “Assessment of pozzolanic activity of different calcined clays.” Cem. Concr. Compos. 37 (Mar): 319–327. https://doi.org/10.1016/j.cemconcomp.2013.01.002.
UNESCO WWAP (World Water Assessment Programme). 2017. Wastewater. The untapped resource. Paris: UNESCO WWAP.
Vouk, D., D. Nakic, N. Stirmer, and C. R. Cheeseman. 2017. “Use of sewage sludge ash in cementitious materials.” Rev. Adv. Mater. Sci. 49 (2): 158–170.
Wang, L., G. Skjevrak, J. E. Hustad, and M. G. Grønli. 2012. “Sintering characteristics of sewage sludge ashes at elevated temperatures.” Fuel Process. Technol. 96 (Apr): 88–97. https://doi.org/10.1016/j.fuproc.2011.12.022.
Xin-gang, Z., J. Gui-wu, L. Ang, and L. Yun. 2016. “Technology, cost, a performance of waste-to-energy incineration industry in China.” Renewable Sustainable Energy Rev. 55 (Mar): 115–130. https://doi.org/10.1016/j.rser.2015.10.137.
Yusuf, R. O., Z. Z. Noor, N. A. Moh’, D. F. Moh’, D. Din, and A. H. Abba. 2012. “Use of sewage sludge ash (SSA) in the production of cement and concrete—A review.” Int. J. Global Environ. Issues 12 (2–4): 214–228.
Zhang, Y., Y. Sun, K. Xu, Z. Yuan, J. Zhang, R. Chen, H. Xie, and R. Cheng. 2015. “Brucite modified epoxy mortar binders: Flame retardancy, thermal and mechanical characterization.” Constr. Build. Mater. 93 (Sep): 1089–1096. https://doi.org/10.1016/j.conbuildmat.2015.05.037.
Zhou, Y., J. Li, J. Lu, C. Cheeseman, and C. S. Poon. 2019. “Recycling incinerated sewage sludge ash (ISSA) as a cementitious binder by lime activation.” J. Cleaner Prod. 224 (Jan): 118856. https://doi.org/10.1016/j.jclepro.2019.118856.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 6June 2021

History

Received: Apr 17, 2020
Accepted: Nov 20, 2020
Published online: Mar 31, 2021
Published in print: Jun 1, 2021
Discussion open until: Aug 31, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Universidade Estadual Paulista (UNESP) “Júlio de Mesquita Filho,” Faculdade de Engenharia de Ilha Solteira, Grupo de Pesquisa em Materiais Alternativos de Construção (MAC), Ilha Solteira-SP 15385-000, Brazil. ORCID: https://orcid.org/0000-0002-1872-8871
Assistant Professor, Departamento de Ingeniería Mecánica y Construcción (EMC), Universitat Jaume I, Av. de Vicent Sos Baynat s/n, Castello’ de la Plana 12071, Spain. ORCID: https://orcid.org/0000-0001-5683-2779
Lourdes Soriano
Assistant Professor, Instituto de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València, Valencia 46022, Spain.
Maria Victoria Borrachero
Full Professor, Instituto de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València, Valencia 46022, Spain.
José Luiz Pinheiro Melges
Assistant Professor, Universidade Estadual Paulista (UNESP) “Júlio de Mesquita Filho,” Faculdade de Engenharia de Ilha Solteira, Grupo de Pesquisa em Materiais Alternativos de Construção (MAC), Ilha Solteira-SP 15385-000, Brazil.
Jorge Luis Akasaki
Full Professor, Universidade Estadual Paulista (UNESP) “Júlio de Mesquita Filho,” Faculdade de Engenharia de Ilha Solteira, Grupo de Pesquisa em Materiais Alternativos de Construção (MAC), Ilha Solteira-SP 15385-000, Brazil.
Jorge Juan Payá Bernabeu
Full Professor, Instituto de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València, Valencia 46022, Spain.
Mauro Mitsuuchi Tashima [email protected]
Assistant Professor, Universidade Estadual Paulista (UNESP) “Júlio de Mesquita Filho.” Faculdade de Engenharia de Ilha Solteira, Grupo de Pesquisa em Materiais Alternativos de Construção (MAC), Ilha Solteira-SP 15385-000, Brazil (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share