Abstract

In this study, a calcined illite clay from Bailén, Jaén, Spain, was valorized as a substitute of metakaolin in the synthesis of new geopolymeric materials. The raw materials, raw clay and commercial kaolin, were pretreated at 750°C (4 h). Several samples (0%–100% by weight of clay) were activated by mixing NaOH solution and sodium silicate solution. The specimens were cured (60°C and 99% relative humidity) for 24 h, then demolded and kept at ambient conditions for 7, 28, and 90 days. The prepared geopolymers were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Physical, mechanical, and thermal properties were determined. The results indicated that the specimens based on the illite raw clay and metakaolin present an amorphous consolidated appearance, characteristic of the polycondensation reactions. The incorporation of up to 50% by weight of raw clay provided geopolymers with higher mechanical strength (39.6 MPa) and bulk density (1,455  kg/m3), lower apparent porosity (19.6%), and similar although slightly higher thermal conductivity (0.25  W/mK) than control geopolymers containing only metakaolin as a precursor after 28 days of curing. Control geopolymers presented compressive strength, bulk density, apparent porosity, and thermal conductivity of 23 MPa, 1,251  kg/m3, 41.03% and 0.224  W/mk, respectively, at the same age of cured geopolymers. The mechanical properties increased with curing time due to a greater advance of the geopolymerization reaction. Therefore, this illite clay can be thermally activated together with metakaolin to obtain geopolymers with suitable technological properties. The results demonstrate that the finished materials can be used for construction applications.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was funded by the project “Development and characterization of new geopolymerical composites based on waste from the olive industry. Towards a sustainable construction” (MAT2017-88097-R), The European Regional Development Fund (FEDER)/Ministry of Science, Innovation and Universities, State Research Agency. The authors thank Caobar S.A. for supplying the kaolinite. Technical and human support provided by Scientific and Technical Instrumentation Centre (CICT) of Universidad de Jaén (UJA, Ministry of Economy, Industry and Competitiveness, Junta de Andalucía, FEDER) is gratefully acknowledged.

References

Alamri, H., and I. M. Low. 2013. “Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites.” Compos. Pt. A-Appl. Sci. Manuf. 44 (Jan): 23–31. https://doi.org/10.1016/j.compositesa.2012.08.026.
Albitar, M., M. S. Mohamed Ali, P. Visintin, and M. Drechsler. 2017. “Durability evaluation of geopolymer and conventional concretes.” Constr. Build. Mater. 136 (Apr): 374–385. https://doi.org/10.1016/j.conbuildmat.2017.01.056.
Alonso, S., and A. Palomo. 2001. “Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures.” Cem. Concr. Res. 31 (1): 25–30. https://doi.org/10.1016/S0008-8846(00)00435-X.
Autef, A., E. Joussein, G. Gasgnier, and S. Rossignol. 2012. “Role of the silica source on the geopolymerization rate.” J. Non-Cryst. Solids 358 (21): 2886–2893. https://doi.org/10.1016/j.jnoncrysol.2012.07.015.
Barbosa, V. F. F., and K. J. D. MacKenzie. 2010. “Synthesis and thermal behavior of potassium sialate geopolymers.” Mater. Lett. 57 (9–10): 1477–1482. https://doi.org/10.1016/S0167-577X(02)01009-1.
Buchwald, A., K. Dombrowski, and M. Weil. 2005. “The influence of calcium content on the performance of geopolymeric binder especially the resistance against acids.” In Proc., World Congress Geopolymer, 35–39. Saint Quentin: Geopolymer Institute.
Buchwald, A., M. Hohmann, K. Posern, and E. Brendler. 2009. “The suitability of thermally activated illite/smectite clay as raw material for geopolymer binder.” Appl. Clay Sci. 46 (3): 300–304. https://doi.org/10.1016/j.clay.2009.08.026.
Cabrera-Fuentes, B., A. A. Fernández-Jiménez, and A. Palomo. 2011. “Alkaline activation of blended fly ash and cement kiln dust.” In Proc., of 13th Int. Congress on the Chemistry of Cement, 1–7. Madrid: Science Direct.
Cebrián, J. L., and F. Pisonero. 1971. “Determinación de la superficie específica por el método Blaine en cenizas volantes y cementos puzolánicos.” Mater. Constr. 21 (142): 81–91. https://doi.org/10.3989/mc.1971.v21.i142.1512.
Davidovits, J. 1994. Properties of geopolymer cements. Saint-Quentin: Geopolymer Institute.
Davidovits, J. 2008. Geopolymer, chemistry & applications. 2nd ed. Saint-Quentin, France: Institut Géopolymère.
De Aza, A. H., X. Turrillas, M. A. Rodriguez, T. Durana, and P. Pena. 2014. “Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite.” J. Eur. Ceram. Soc. 34 (5): 1409–1421. https://doi.org/10.1016/j.jeurceramsoc.2013.10.034.
DeSilva, P., K. Sagoe-Crenstil, and V. Sirivivatnanon. 2007. “Kinetics of geopolymerization: Role of Al2O3 and SiO2.” Cem. Concr. Res. 37 (4): 512–518. https://doi.org/10.1016/j.cemconres.2007.01.00.
Duxson, P., G. C. Lukey, and J. S. J. van Deventer. 2006. “Thermal evolution of metakaolin geopolymers: Part 1—Physical evolution.” J. Non-Cryst. Solids 352 (52): 5541–5555. https://doi.org/10.1016/j.jnoncrysol.2006.09.019.
El Hafid, K., and M. Hajjaji. 2015. “Effects of the experimental factors on the microstructure and the properties of cured alkali-activated heated clay.” Appl. Clay Sci. 116 (Nov): 202–210. https://doi.org/10.1016/j.clay.2015.03.015.
Eliche-Quesada, D., L. Pérez-Villarejo, F. J. Iglesias-Godino, C. Martínez-García, and F. A. Corpas-Iglesias. 2011. “Incorporation of coffee grounds into clay brick production.” Adv. Appl. Ceram. 110 (4): 225–232. https://doi.org/10.1179/1743676111Y.0000000006.
Elimbi, A., H. K. Tchakoute, and D. Njopwouo. 2011. “Effect of calcination temperature of kaolinite clays on the properties of geopolymer cements.” Constr. Build. Mater. 25 (6): 2805–2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055.
Essaidi, N., B. Samet, S. Baklouti, and S. Rossignol. 2014. “Feasibility of producing geopolymers from two different Tunisian clays before and after calcination at various temperatures.” Appl. Clay Sci. 88 (Feb): 221–227. https://doi.org/10.1016/j.clay.2013.12.006.
Fabbri, B., B. Gualtieri, and C. Leonardi. 2013. “Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin.” Appl. Clay Sci. 73 (Mar): 2–10. https://doi.org/10.1016/j.clay.2012.09.019.
Fernández-Jiménez, A., M. Monzo, M. Vicent, A. Barba, and A. Palomo. 2008. “Alkaline activation of metakaolin–fly ash mixtures: Obtain of zeoceramics and zeocements.” Micr Mes Mat. 108 (1–3): 41–49. https://doi.org/10.1016/j.micromeso.2007.03.024.
Fernández-Jiménez, A., A. Palomo, and M. Criado. 2005. “Microstructure development of alkali-activated fly ash cement: A descriptive model.” Cem. Concr. Res. 35 (6): 1204–1209. https://doi.org/10.1016/j.cemconres.2004.08.021.
Ferone, C., B. Liguori, I. Capasso, F. Colangelo, R. Cioffi, E. Cappelletto, and R. Di Maggio. 2015. “Thermally treated clay sediments as geopolymer source material.” Appl. Clay Sci. 107 (Apr): 195–204. https://doi.org/10.1016/j.clay.2015.01.027.
Furlani, E., S. Maschio, M. Magnan, E. Aneggi, F. Andreatta, M. Lekka, A. Lanzutti, and L. Fedrizzi. 2018. “Synthesis and characterization of geopolymers containing blends of unprocessed steel slag and metakaolin: The role of slag particle size.” Ceram. Int. 44 (5): 5226–5232. https://doi.org/10.1016/j.ceramint.2017.12.131.
Gao, X. X., A. Autef, E. Prud’homme, P. Michaud, B. Samet, E. Joussein, and S. Rossignol. 2013. “Synthesis of consolidated materials from alkaline solutions and metakaolin: Existence of domains in the Al–Si–K/O ternary diagram.” J. Sol-Gel Sci. Technol. 65 (2): 220–229. https://doi.org/10.1007/s10971-012-2927-z.
García-Lodeiro, I., A. Fernández-Jiménez, A. Palomo, and D. Macphee. 2010. “Effect of calcium additions on N-A-S-H cementitious gels.” J. Am. Ceram. Soc. 93 (7): 1934–1940. https://doi.org/10.1111/j.1551-2916.2010.03668.x.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. Macphee. 2011. “Compatibility studies between NASH and CASH gels: Study in the ternary diagram Na2OCaOAl2O3SiO2H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Gharzouni, A., E. Joussein, B. Samet, S. Baklouti, and S. Rossignol. 2015. “Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation.” J. Non Crystal. Solids 410 (Feb): 127–134. https://doi.org/10.1016/j.jnoncrysol.2014.12.021.
GR. 2008. Royal Decree 1247/2008, of July 18, which approves the structural concrete instruction. EHE-08. Dorval, Canada: Global-Regulation.
Granizo, M. L., M. T. Blanco-Varela, and A. Palomo. 2000. “Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry.” J. Mater. Sci. 35 (24): 6309–6315. https://doi.org/10.1023/A:1026790924882.
Granizo, N., A. Palomo, and A. Fernandez-Jiménez. 2014. “Effect of temperature and alkaline concentration on metakaolin leaching kinetics.” Ceram. Int. 40 (7): 8975–8985. https://doi.org/10.1016/j.ceramint.2014.02.071.
Hajimohammadi, A., J. L. Provis, and J. S. van Deventer. 2011. “Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation.” J. Colloid Interface Sci. 357 (2): 384–392. https://doi.org/10.1016/j.jcis.2011.02.045.
Hamdi, N., I. B. Messaoud, and E. Srasra. 2019. “Production of geopolymer binders using clay minerals and industrial wastes.” C.R. Chim. 22 (2–3): 220–226. https://doi.org/10.1016/j.crci.2018.11.010.
Haq, E. U., S. K. Padmanabhan, and A. Licciulli. 2014. “Synthesis and characteristics of fly ash and bottom ash based geopolymers—A comparative study.” Ceram. Inter. 40 (2): 2965–2971. https://doi.org/10.1016/j.ceramint.2013.10.012.
He, J., Y. Jie, J. Zhang, H. Yu, and G. Zhang. 2013. “Synthesis and characterization of red mud and rice husk ash-based geopolymer composites.” Cem. Concr. Compos. 37 (Mar): 108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010.
ISO. 1991. Thermal insulation: Determination of steady-state thermal resistance and related properties—Guarded hot plate apparatus. Geneva: ISO.
Jaya, N. A., L. Yun-Ming, H. Cheng-Yong, M. M. Al Bakri Abdullah, and K. Hussin. 2020. “Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer.” Constr. Build. Mater. 247 (Jun): 118641. https://doi.org/10.1016/j.conbuildmat.2020.118641.
Kakali, G., T. H. Perraki, S. Tsivilis, and E. Badogiannis. 2001. “Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity.” Appl. Clay Sci. 20 (1–2): 73–80. https://doi.org/10.1016/S0169-1317(01)00040-0.
Karosou, A., S. Konopisi, E. Paulidou, and M. Stefanidou. 2019. “Alkali activated clay mortars with different activators.” Constr. Build. Mater. 212 (Jul): 85–91. https://doi.org/10.1016/j.conbuildmat.2019.03.244.
Kirschner, A., and H. Harmutharald. 2004. “Investigation of geopolymer binders with respect to their application for building materials.” Ceram. Silikáty 48 (3): 117–120.
Kong, D. L. Y., J. G. Sanjayan, and K. Sagoe-Crentsil. 2007. “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures.” Cem. Concr. Res. 37 (12): 1583–1589. https://doi.org/10.1016/j.cemconres.2007.08.021.
Latifi, N., C. L. Meehan, M. Z. A. Majid, and S. Horpibulsuk. 2016. “Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A microlevel study.” Appl. Clay Sci. 132 (Nov): 182–193. https://doi.org/10.1016/j.clay.2016.06.004.
Lee, W. K. W., and J. S. J. van Deventer. 2002. “The effect of ionic contaminants on the early-age properties of alkali-activated fly-ash-based cements.” Cem. Concr. Res. 32 (4): 577–584. https://doi.org/10.1016/S0008-8846(01)00724-4.
Liew, Y. M., C. Y. Heah, A. B. Mohd-Mustafa, and H. Kamarudin. 2016. “Structure and properties of clay-based geopolymer cements: A review.” Prog. Mater Sci. 83 (Oct): 595–629. https://doi.org/10.1016/j.pmatsci.2016.08.002.
Lost, R. L., and A. M. Vassalo. 1996. “The dehydroxylation of kaolinite clay minerals using infrared emission spectroscopy.” Clay Clay Min. 44 (5): 636–651. https://doi.org/10.1346/CCMN.1996.0440506.
Mabroum, S., A. Aboulayt, Y. Taha, M. Benzaazoua, N. Semlal, and R. Hakkou. 2020. “Elaboration of geopolymers based on clays by-products from phosphate mines for construction applications.” J. Clean Prod. 261 (Mar): 121317. https://doi.org/10.1016/j.jclepro.2020.121317.
Marsh, A., A. Heath, P. Patuerau, M. Evernden, and P. Walker. 2019. “Phase formation behavior in alkali activation of clay mixtures.” Appl. Clay Sci. 175 (Jul): 10–21. https://doi.org/10.1016/j.clay.2019.03.037.
Nath, S. K., and S. Kumar. 2020. “Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer.” Constr. Build. Mater. 233 (Feb): 117294. https://doi.org/10.1016/j.conbuildmat.2019.117294.
Ozer, I., and S. Soyer-Uzun. 2015. “Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios.” Ceram. Inter. 41 (8): 10192–10198. https://doi.org/10.1016/j.ceramint.2015.04.125.
Palomo, A., M. T. Blanco-Barela, M. L. Granizo, F. Puertas, T. Vazquez, and M. W. Grutzeck. 1999. “Chemical stability of cementitious materials based on metakaolin.” Cem. Concr. Res. 29 (7): 997–1004. https://doi.org/10.1016/S0008-8846(99)00074-5.
Pan, Z., K. Feng, K. Gong, B. Zou, A. Korayem, H. Sanjayan, J. G. Duan, and W. Collins. 2012. “Damping and microstructure of fly ash-based geopolymers.” J. Mater. Sci. 48 (8): 3128–3137. https://doi.org/10.1007/s10853-012-7090-y.
Park, S., J. Jang, N. Lee, and H. Lee. 2016. “Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures.” Cem. Concr. Res. 89 (Nov): 72–79. https://doi.org/10.1016/j.cemconres.2016.08.004.
Peigang, H., D. Jia, and S. Wang. 2013. “Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor.” J. Eur. Ceram. Soc. 33 (4): 689–698. https://doi.org/10.1016/j.jeurceramsoc.2012.10.019.
Peng, H., C. Cui, Z. Liu, C. S. Cai, and Y. Liu. 2019. “Synthesis and reaction mechanism of an alkali-activated metakaolin-slag composite system at room temperature.” J. Mater. Civ. Eng. 31 (1): 04018345. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002558.
Phetchuay, C., S. Horpibulsuk, A. Arulrajah, C. Suksiripattanapong, and A. Udomchai. 2016. “Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer.” Appl. Clay Sci. 127–128: 134–142. https://doi.org/10.1016/j.clay.2016.04.005.
Prud’Homme, E., P. Michaud, E. Joussein, J. M. Clacens, S. Arii-Clacens, I. Sobrados, C. Peyratout, A. Smith, J. Sanz, and S. Rossignol. 2011a. “Structural characterization of geomaterial foams—Thermal behavior.” J. Non-Cryst. Solids 357 (May): 3637–3647. https://doi.org/10.1016/j.jnoncrysol.2011.06.033.
Prud’homme, E., P. Michaud, E. Joussein, C. Peyratout, A. Smith, and S. Rossignol. 2011b. “In situ organic foam prepared from various clays at low temperature.” Appl. Clay Sci. 51 (1–2): 15–22. https://doi.org/10.1016/j.clay.2010.10.016.
Rovnanik, P. 2010. “Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer.” Constr. Build. Mater. 24 (7): 1176–1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023.
Rowles, M., and B. O’Connor. 2003. “Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite.” J. Mater. Chem. 13 (5): 1161–1165. https://doi.org/10.1039/b212629j.
Saravanapavan, P., and L. L. Hench. 2003. “Mesoporous calcium silicate glasses. I: Synthesis.” J. Non-Cryst. Solids 318 (1–2): 1–13. https://doi.org/10.1016/S0022-3093(02)01864-1.
Seiffarth, T., M. Hohmann, K. Posern, and C. Kaps. 2013. “Effect of thermal pre-treatment conditions of common clays on the performance of clay-based geopolymeric binders.” Appl. Clay Sci. 73 (Mar): 35–41. https://doi.org/10.1016/j.clay.2012.09.010.
Selmani, S., A. Sdiri, S. Bouaziz, and S. Rossignol. 2017. “Geopolymers based on calcined Tunisian clays: Effects of alkaline solution on vibrational spectra and mechanical properties.” Int. J. Miner. Process. 165 (Aug): 50–57. https://doi.org/10.1016/j.minpro.2017.05.012.
Sperberga, I., G. Sedmale, G. Stinkulis, K. Zeila, and D. Ulme. 2011. “Comparative study of illite clay and illite-based geopolymer products.” In Proc., IOP Conf. Series: Material Science Engineering. Bristol: IOP Publishing.
Sukmak, P., G. Sukmak, S. Horpibulsuk, M. Setkit, S. Kassawat, and A. Arulrajah. 2017. “Palm oil fuel ash-soft soil geopolymer for subgrade applications: Strength and microstructural evaluation.” Road Mater. Pavement Des. 20 (1): 1–22. https://doi.org/10.1080/14680629.2017.1375967.
UNESCO. 2007. Natural stone test methods—Determination of real density and apparent density, and of total and open porosity. UNE-EN 1936:2007. Paris: UNESCO.
UNESCO. 2011. Methods of test for masonry units—Part 1: Determination of compressive strength. Paris: UNESCO.
UNESCO. 2019. Geotechnical investigation and testing—Identification and classification of soil—Part 2: Principles for a classification. Paris: UNESCO.
Villaquirán-Caicedo, M. A., R. Mejíde Gutiérrez, S. Sulekar, C. Davis, and J. C. Nino. 2015. “Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources.” Appl. Clay Sci. 118 (Dec): 276–282. https://doi.org/10.1016/j.clay.2015.10.005.
Wang, S., K. Scrivener, and P. Pratt. 1994. “Factors affecting the strength of alkali-activated slag.” Cem. Conc. Res. 24 (6): 1033–1043. https://doi.org/10.1016/0008-8846(94)90026-4.
Xu, H., and J. S. J. van Deventer. 2000. “The geopolymerisation of alumino-silicate minerals.” Int J Miner Process. 59 (3): 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5.
Yaghoubi, M., A. Arulrajah, M. M. Disfani, S. Horpibulsuk, M. Bo, and S. Darmawan. 2018. “Effects of industrial by-product based geopolymers on the strength development of a soft soil.” Soils Found 58 (3): 716–728. https://doi.org/10.1016/j.sandf.2018.03.005.
Yip, C. K., C. Lukey, and J. S. J. van Deventer. 2005. “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cement Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
Yunsheng, Z., S. Wei, and L. Zongjin. 2010. “Composition design and microstructural characterization of calcined kaolin-based geopolymer cement.” Appl Clay Sci. 47 (3–4): 271–275. https://doi.org/10.1016/j.clay.2009.11.002.
Zaharaki, D., K. Komnitsas, and V. Perdikatsis. 2010. “Use of analytical techniques for identification of inorganic polymer gel composition.” J. Mater. Sci. 45 (10): 2715–2724. https://doi.org/10.1007/s10853-010-4257-2.
Zhang, H. Y., V. Kodur, B. Wu, L. Cao, and S. L. Qi. 2016. “Comparative thermal and mechanical performance of geopolymers derived from metakaolin and fly ash.” J. Mater. Civ. Eng. 28 (2): 04015092. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001359.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 5May 2021

History

Received: Apr 15, 2020
Accepted: Sep 28, 2020
Published online: Feb 25, 2021
Published in print: May 1, 2021
Discussion open until: Jul 25, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Dept. of Chemical, Environmental and Materials Engineering, Univ. of Jaén, Campus Las Lagunillas, s/n, Jaén 23071, Spain; Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Univ. of Jaén, Campus Las Lagunillas, s/n, Jaén 23071, Spain (corresponding author). ORCID: https://orcid.org/0000-0003-3803-9595. Email: [email protected]
E. Bonet-Martínez [email protected]
Ph.D. Student, Dept. of Chemical, Environmental and Materials Engineering, Univ. of Jaén, Campus Las Lagunillas, s/n, Jaén 23071, Spain. Email: [email protected]
L. Pérez-Villarejo [email protected]
Associate Professor, Dept. of Chemical, Environmental and Materials Engineering, Univ. of Jaén, Campus Las Lagunillas, s/n, Jaén 23071, Spain. Email: [email protected]
Full Professor, Dept. of Chemical, Environmental and Materials Engineering, Univ. of Jaén, Campus Las Lagunillas, s/n, Jaén 23071, Spain; Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Univ. of Jaén, Campus Las Lagunillas, s/n, Jaén 23071, Spain. ORCID: https://orcid.org/0000-0003-1719-6049. Email: [email protected]
P. J. Sánchez-Soto [email protected]
Research Scientist, Materials Science Institute of Sevilla (ICMS), Joint Center Spanish National Research Council (CSIC), Univ. of Sevilla, C/Américo Vespucio, 49, Sevilla 41092, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share