Abstract

Concrete compositions demand products in order to meet certain requirements and specific properties. For the production of self-compacting concrete, a certain amount of fine materials and/or chemical products should be added to the mix as viscosity modifying agents that will enable a mixture with enough flowability, and that should show stability. This paper presents preliminary results of a novel viscosity modifying agent based on a biopolymer (chitosan) found in the residues of the fishing industry. The effects of the product were tested in cement pastes by means of typical flow tests and rheological measurements. The new admixture promotes an increase in the plastic viscosity and yield stress of fluid cement pastes resulting in stable and fluid mixtures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

ABNT (Associação Brasileira de Normas Técnicas). 1983. Calda de cimento para injeção—Determinação do índice de fluidez. ABNT NBR 7682. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2002. Argamassa para assentamento e revestimento de paredes e tetos—Determinação do índice de consistência. ABNT NBR 13276. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2018. Cimento Portland—Requisitos. ABNT NBR 16697. Rio de Janeiro, Brazil: ABNT.
Assis, O. B. G., and V. L. da Silva. 2003. “Caracterização estrutural e da capacidade de absorção de água em filmes finos de quitosana processados em diversas concentrações.” [In Portuguese.] Polímeros 13 (4): 223–228. https://doi.org/10.1590/S0104-14282003000400006.
Azevedo, V. V. C., S. A. Chaves, D. C. Bezerra, M. V. L. Fook, and A. C. F. M. Costa. 2007. “Quitina e Quitosana: aplicações como biomateriais.” Revista Eletrônica de Materiais e Processos 2 (3): 27–34.
Barrak, M., M. Mouret, and A. Bascoul. 2009. “Self-compacting concrete paste constituents: Hierarchical classification of their influence on flow properties of the paste.” Cem. Concr. Compos. 31 (1): 12–21. https://doi.org/10.1016/j.cemconcomp.2008.10.002.
Bouvet, A., E. Ghorbel, and R. Bennacer. 2010. “The mini-conical slump flow test: Analysis and numerical study.” Cem. Concr. Res. 40 (10): 1517–1523. https://doi.org/10.1016/j.cemconres.2010.06.005.
Brito, G. F., P. Agrawal, E. M. Araújo, and T. J. A. Mélo. 2011. “Biopolímeros, Polímeros Biodegradáveis e Polímeros Verdes.” Revista Eletrônica de Materiais e Processos 6 (2): 127–139.
Duan, J., and S. Lv. 2011. Preparation of amphoteric chitosan water reducing agent used for concrete, by reacting chitosan with methoxypolyethylene glycol 2000 aldehyde derivative, and reacting N-methoxypolyethylene glycol chitosan with chlorosulfonic acid. Xi’an, China: Shaanxi Univ. of Science and Technology.
EFNARC (European Federation of National Associations Representing for Concrete). 2006. Guidelines for viscosity modifying admixtures for concrete. Marentino, Italy: EFNARC.
Fiorentin, T. R. 2011. Influência do Aditivo Modificador de Viscosidade e do Fíler Calcário no Comportamento de Pastas e Argamassas de Concreto Auto-Adensável, 68. Pato Branco, Brazil: Universidade Tecnológica Federal do Paraná.
Gortari, M. C., and R. A. Hours. 2013. “Biotechnological processes for chitin recovery out of crustacean waste: A mini-review.” Electron. J. Biotechnol. 16 (3): 14.
James, T. K. 2016. “Compatibility study of an admixture with different cement brands of varying chemical composition for SCC.” Int. J. Eng. Res. Technol. 5 (9): 503–506.
Jeon, Y. J., J. Y. V. A. Kamil, and F. Shahidi. 2002. “Chitosan as an edible invisible film for quality preservation of herring and Atlantic Cod.” J. Agric. Food. Chem. 50 (18): 5167–5178. https://doi.org/10.1021/jf011693l.
Lasheras-Zubiate, M., I. Navarro-Blasco, J. M. Fernández, and J. I. Alvarez. 2011. “Studies on chitosan as an admixture for cement-based materials: Assessment of its viscosity enhancing effect and complexing ability for heavy metals.” J. Appl. Polym. Sci. 120 (1): 242–252. https://doi.org/10.1002/app.33048.
Lasheras-Zubiate, M., I. Navarro-Blasco, J. M. Fernández, and J. I. Alvarez. 2012. “The effect of the addition of chitosan ethers on the fresh properties of cement mortars.” Cem. Concr. Compos. 34 (8): 964–973. https://doi.org/10.1016/j.cemconcomp.2012.04.010.
Lisbôa, E. M. 2011. Avaliação da influência da adição de um biopolimero e de resíduo de beneficiamento de mármore e granito (RBMG) nas características de pastas de cimento Portland. [In Portuguese.] Maceió, Brazil: Tese (Doutorado em Química e Biotecnologia)—Universidade Federal de Alagoas.
Marchon, D., S. Kawashima, H. Bessaies-Bey, S. Mantellato, and S. Ng. 2018. “Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry.” Cem. Concr. Res. 112 (Oct): 96–110. https://doi.org/10.1016/j.cemconres.2018.05.014.
Paes Junior, RLS 2011. Estudo de propriedades reológicas de misturas cimentícias com diferentes níveis de consistência. [In Portuguese.] Maceió, Brazil: Universidade Federal de Alagoas.
Reiter, L., T. Wangler, N. Roussel, and R. J. Flatt. 2018. “The role of early age structural build-up in digital fabrication with concrete.” Cem. Concr. Res. 112 (Oct): 86–95. https://doi.org/10.1016/j.cemconres.2018.05.011.
Roussel, N. 2018. “Rheological requirements for printable concretes.” Cem. Concr. Res. 112 (Oct): 76–85. https://doi.org/10.1016/j.cemconres.2018.04.005.
Santos Filho, M. M., J. Tonholo, and S. B. B. Uchoa. 2013. “Use of a biopolymer as corrosion inhibitor on carbon steel: AFM and electrochemical techniques in simulated interstitial concrete electrolyte.” In Anais do Eurocorr 2013, 1141.
Santos Filho, M. M., S. B. B. Uchoa, J. Tonholo, J. G. da Silva Júnior, A. S. Ribeiro, and E. M. Lisbôa. 2010. Composição A Base De Quitosana Como Inibidor De Corrosão Em Aço. [In Portuguese.] Brasilia, Brazil: Instituto Nacional da Propriedade Industrial.
Shrivastava, A. K., and M. Kumar. 2016. “Compatibility issues of cement with water reducing admixture in concrete.” Perspect. Sci. 8 (Sep): 290–292. https://doi.org/10.1016/j.pisc.2016.04.055.
Silva, H. S. R., K. S. C. R. dos Santos, and E. I. Ferreira. 2006. “Quitosana: derivados hidrossolúveis, aplicações farmacêuticas e avanços.” Química Nova 29 (4): 776–785. https://doi.org/10.1590/S0100-40422006000400026.
Tenório Filho, J. R., and K. A. Melo. 2017. Caracterização reológica de produtos cimentícios: Contribuições ao estudo de reologia de pastas e argamassas obtidas de concretos de consistência fluida e autoadensável. [In Portuguese.] Maceió, Brazil: Novas Edições Acadêmicas.
TKEN-C (Takenaka Komuten Co.). 1982. Spraying concrete or mortar—With addn. of cationic polymer e.g. chitosan to increase viscosity without clogging spray pipe. Osaka, Japan: TKEN-C.
Tregger, N., L. Ferrara, and S. P. Shah. 2008. “Identifying viscosity of cement paste from mini-slump-flow test.” ACI Mater. J. 105 (6): 558–566.
Tutikian, B. F., D. C. C. Dal Molin, and R. Cremonini. 2008. “A practical mix design method for self-compacting concrete.” In Proc., 5th ACI/CANMET/IBRACON Int. Conf. on High-Performance Concrete Structures and Materials 2008, 226–241. Farmington Hills, MI: American Concrete Institute.
von Daake, H., and D. Stephan. 2017. “Adsorption kinetics of retarding admixtures on cement with time controlled addition.” Cem. Concr. Res. 102 (Dec): 119–126. https://doi.org/10.1016/j.cemconres.2017.09.006.
Vyšvail, M., and T. Žižlavský. 2017. “Effect of chitosan ethers on fresh state properties of lime mortars.” In Vol. 251 of Proc., IOP Conf. Series: Materials Science and Engineering. Bristol, UK: IOP Publications.
Zuo, W., P. Feng, P. Zhong, Q. Tian, N. Gao, Y. Wang, C. Yu, and C. Miao. 2017. “Effects of novel polymer-type shrinkage-reducing admixture on early age autogenous deformation of cement pastes.” Cem. Concr. Res. 100 (Oct): 413–422. https://doi.org/10.1016/j.cemconres.2017.08.007.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 4April 2021

History

Received: Sep 12, 2019
Accepted: Aug 13, 2020
Published online: Jan 19, 2021
Published in print: Apr 1, 2021
Discussion open until: Jun 19, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Magnel-Vandepitte Laboratory, Dept. of Structural Engineering and Building Materials, Faculty of Engineering and Architecture, Ghent Univ., East Flanders 9000, Belgium (corresponding author). ORCID: https://orcid.org/0000-0002-3135-5694. Email: [email protected]
Luiza Rodrigues Meira de Miranda https://orcid.org/0000-0001-8481-5255
Magnel-Vandepitte Laboratory, Dept. of Structural Engineering and Building Materials, Faculty of Engineering and Architecture, Ghent Univ., East Flanders 9000, Belgium. ORCID: https://orcid.org/0000-0001-8481-5255
Karoline Alves de Melo Moraes
Professor, Laboratory of Structures and Building Materials, Technology Center, Federal Univ. of Alagoas, Maceió 57072-900, Brazil.
Paulo César Correia Gomes
Professor, Laboratory of Structures and Building Materials, Technology Center, Federal Univ. of Alagoas, Maceió 57072-900, Brazil.
Silvia Beatriz Beger Uchoa https://orcid.org/0000-0002-2317-5554
Professor, Laboratory of Structures and Building Materials, Technology Center, Federal Univ. of Alagoas, Maceió 57072-900, Brazil. ORCID: https://orcid.org/0000-0002-2317-5554

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share