Technical Papers
Jan 19, 2021

EPS Geofoam Pavement Foundations Overlaid by Geocell-Reinforced Soil under Static Loading: Large-Scale Tests and Numerical Modeling

This article has a reply.
VIEW THE REPLY
Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 4

Abstract

Pavement foundations supported on expanded polystyrene (EPS) geofoam blocks are vulnerable to excessive deformation or even failure owing to truck passage during construction. To investigate this, a series of large-scale static plate load tests, accompanied by numerical analyses, were carried out to determine the effects of overlying soil thickness, EPS geofoam density, and the gap between EPS blocks. Furthermore, the effect of geocell reinforcement on the performance of such pavement systems was evaluated. Test results showed that as the soil thickness increased from 300 to 600 mm, the surface settlement of unreinforced pavement decreased by up to 65%. Low-density EPS geofoam can double or triple surface settlements or cause premature failure in a system. Additionally, reinforcing the overlying soil layer with geocell causes up to a 54% reduction in surface settlements. A series of verified numerical analyses demonstrated that as long as the pressure transferred to geofoam blocks remains below the compressive strength of EPS geofoam, the increase in pavement surface settlement is limited. Furthermore, increasing the gap between EPS geofoam blocks can increase the surface settlement of unreinforced pavements, while geocell reinforcement can help to moderate these settlements. The results of this study can be used to develop solutions to some of the limitations encountered during the construction of EPS geofoam embankments and under static loading conditions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abdollahi, M., S. N. Moghaddas Tafreshi, and B. Leshchinsky. 2019. “Experimental-numerical assessment of geogrid-EPS systems for protecting buried utilities.” Geosynthetics Int. 26 (4): 333–353. https://doi.org/10.1680/jgein.19.00013.
Abu-Farsakh, M., S. Hanandeh, L. Mohammad, and Q. Chen. 2016. “Performance of geosynthetic reinforced/stabilized paved roads built over soft soil under cyclic plate loads.” Geotext. Geomembr. 44 (6): 845–853. https://doi.org/10.1016/j.geotexmem.2016.06.009.
Akay, O., A. T. Özer, and G. A. Fox. 2014. “Assessment of EPS block geofoam with internal drainage for sandy slopes subjected to seepage flow.” Geosynthetics Int. 21 (6): 364–376. https://doi.org/10.1680/gein.14.00024.
Al-Qarawi, A., C. Leo, and D. S. Liyanapathirana. 2020. “Effects of wall movements on performance of integral abutment bridges.” Int. J. Geomech. 20 (2): 04019157. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001559.
Arulrajah, A., J. Piratheepan, and M. Disfani. 2014. “Reclaimed asphalt pavement and recycled concrete aggregate blends in pavement subbases: Laboratory and field evaluation.” J. Mater. Civ. Eng. 26 (2): 349–357. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000850.
ASTM. 2000. Standard test method for compressive properties of rigid cellular plastics. ASTM D1621. West Conshohocken, PA: ASTM.
ASTM. 2004. Standard specification for rigid cellular polystyrene geofoam. ASTM D6817. West Conshohocken, PA: ASTM.
ASTM. 2005. Standard guide for use of expanded polystyrene (EPS) geofoam in geotechnical projects. ASTM D7180. West Conshohocken, PA: ASTM.
ASTM. 2007. Standard test method for density and unit weight of soil in place by the sand-cone method. ASTM D1556. West Conshohocken, PA: ASTM.
ASTM. 2008. Standard test method for apparent density of rigid cellular plastics. ASTM D1622. West Conshohocken, PA: ASTM.
ASTM. 2009. Standard specification for graded aggregate material for bases or subbases for highways or airports. ASTM D2940. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test methods for laboratory compaction characteristics of soil using modified effort. ASTM D1557. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for unconsolidated-undrained triaxial compression test on cohesive soils. ASTM D2850-15. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913/D6913M. West Conshohocken, PA: ASTM.
Awol, T. A. 2012. A parametric study of creep on EPS geofoam embankments, 9. Trondheim, Norway: NTNU-Trondheim Norwegian Univ. of Science and Technology.
Azizian, M., S. N. Moghaddas Tafreshi, and N. J. Darabi. 2020. “Experimental evaluation of an expanded polystyrene (EPS) block-geogrid system to protect buried pipes.” Soil Dyn. Earthquake Eng. 129 (Feb): 105965. https://doi.org/10.1016/j.soildyn.2019.105965.
Banerjee, L., S. Chawla, and S. K. Dash. 2020. “Performance evaluation of coal mine overburden as a potential subballast material in railways with additional improvement using geocell.” J. Mater. Civ. Eng. 32 (8): 04020200. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003269.
Bathurst, R. J., and R. Karpurapu. 1993. “Large-scale triaxial compression testing of geocell-reinforced granular soils.” Geotech. Test. J. 16 (3): 296–303. https://doi.org/10.1520/GTJ10050J.
Beju, Y. Z., and J. N. Mandal. 2017. “Combined use of jute geotextile-EPS geofoam to protect flexible buried pipes: Experimental and numerical studies.” Int. J. Geosynthetics Ground Eng. 3 (4): 32. https://doi.org/10.1007/s40891-017-0107-5.
Birhan, A., and D. Negussey. 2014. “Effects of confinement on the stress-strain behavior of EPS geofoam.” In Proc., Int. Conf. on Geotechnical Engineering. Reston, VA: ASCE.
Biswas, A., A. M. Krishna, and S. K. Dash. 2016. “Behavior of geosynthetic reinforced soil foundation systems supported on stiff clay subgrade.” Int. J. Geomech. 16 (5): 04016007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000559.
Brito, L. A. T., A. R. Dawson, and P. Kolisoja. 2009. “Analytical evaluation of unbound granular layers in regard to permanent deformation.” In Proc., Bearing Capacity of Roads, Railways, and Airfields (BCR2A’09), edited by E. Tutumluer and L. Al-Qadi. London: Taylor and Francis Group.
Chakraborty, M., and J. Kumar. 2014. “Bearing capacity of circular foundations reinforced with geogrid sheets.” Soils Found. 54 (4): 820–832. https://doi.org/10.1016/j.sandf.2014.06.013.
Chen, W., H. Hao, D. Hughes, Y. Shi, J. Cui, and Z. X. Li. 2015. “Static and dynamic mechanical properties of expanded polystyrene.” Mater. Des. 69 (Mar): 170–180. https://doi.org/10.1016/j.matdes.2014.12.024.
Choudhary, A. K., B. Pandit, and G. S. Babu. 2019. “Uplift capacity of horizontal anchor plate in geocell reinforced sand.” Geotext. Geomembr. 47 (2): 203–216. https://doi.org/10.1016/j.geotexmem.2018.12.009.
Chun, B. S., H. S. Lim, M. Sagong, and K. Kim. 2004. “Development of a hyperbolic constitutive model for expanded polystyrene (EPS) geofoam under triaxial compression tests.” Geotext. Geomembr. 22 (4): 223–237. https://doi.org/10.1016/j.geotexmem.2004.03.005.
Das, B. M., ed. 2010. Geotechnical engineering handbook. Fort Lauderdale, FL: J. Ross Publishing.
Dash, S. K. 2010. “Influence of relative density of soil on performance of geocell-reinforced sand foundations.” J. Mater. Civ. Eng. 22 (5): 533–538. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000040.
Dash, S. K., and A. K. Choudhary. 2018. “Geocell reinforcement for performance improvement of vertical plate anchors in sand.” Geotext. Geomembr. 46 (2): 214–225. https://doi.org/10.1016/j.geotexmem.2017.11.008.
Duškov, M. 1997a. “Materials research on EPS20 and EPS15 under representative conditions in pavement structures.” Geotext. Geomembr. 15 (1–3): 147–181. https://doi.org/10.1016/S0266-1144(97)00011-3.
Duškov, M. 1997b. “Measurements on a flexible pavement structure with an EPS geofoam sub-base.” Geotext. Geomembr. 15 (1–3): 5–27. https://doi.org/10.1016/S0266-1144(97)00004-6.
Dutta, S., and J. N. Mandal. 2016. “Model studies on geocell-reinforced fly ash bed overlying soft clay.” J. Mater. Civ. Eng. 28 (2): 04015091. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001356.
Ertugrul, O. L., and A. C. Trandafir. 2011. “Reduction of lateral earth forces acting on rigid nonyielding retaining walls by EPS geofoam inclusions.” J. Mater. Civ. Eng. 23 (12): 1711–1718. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000348.
Farnsworth, C. B., S. F. Bartlett, D. Negussey, and A. W. Stuedlein. 2008. “Rapid construction and settlement behavior of embankment systems on soft foundation soils.” J. Geotech. Geoenviron. Eng. 134 (3): 289–301. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(289).
Frydenlund, T. E., and R. Aabøe. 2001. “Long term performance and durability of EPS as a lightweight filling material.” In Proc., 3th Conf. Int. EPS Geofoam 2001. Salt Lake City, UT: EPS Geofoam.
Frydenlund, T. E., D. Arellano, T. D. Stark, and R. Aabøe. 2002. Lightweight filling materials for road construction. Research Rep. Oslo, Norway: Norwegian Public Roads Administration.
Gandahl, R. 1988. Polystyrene foam as a frost protection measure on national roads in Sweden. Washington, DC: Transportation Research Board.
Ghotbi Siabil, S. M. A., S. N. Moghaddas Tafreshi, A. R. Dawson, and M. Parvizi Omran. 2019. “Behavior of expanded polystyrene (EPS) blocks under cyclic pavement foundation loading.” Geosynthetics Int. 26 (1): 1–25. https://doi.org/10.1680/jgein.18.00033.
Ghothi Siabil, S. G., S. N. Moghaddas Tafreshi, and A. R. Dawson. 2020. “Response of pavement foundations incorporating both geocells and expanded polystyrene (EPS) geofoam.” Geotext. Geomembr. 48 (1): 1–23. https://doi.org/10.1016/j.geotexmem.2019.103499.
Giroud, J. P., and J. Han. 2004. “Design method for geogrid-reinforced unpaved roads. II: Calibration and applications.” J. Geotech. Geoenviron. Eng. 130 (8): 787–797. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(787).
Gnip, I., V. Keršulis, S. Vaitkus, and S. Vėjelis. 2007. “Confidence intervals of prediction and synthesis of prediction estimates for deformability of expanded polystyrene in long-term compression.” Constr. Build. Mater. 21 (7): 1390–1398. https://doi.org/10.1016/j.conbuildmat.2006.08.001.
Han, J., S. K. Pokharel, X. Yang, C. Manandhar, D. Leshchinsky, I. Halahmi, and R. L. Parsons. 2011. “Performance of geocell-reinforced RAP bases over weak subgrade under full-scale moving wheel loads.” J. Mater. Civ. Eng. 23 (11): 1525–1534. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000286.
Hegde, A. 2017. “Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review.” Constr. Build. Mater. 154 (Nov): 658–674. https://doi.org/10.1016/j.conbuildmat.2017.07.230.
Hegde, A. M., and T. G. Sitharam. 2015a. “3-Dimensional numerical modelling of geocell reinforced sand beds.” Geotext. Geomembr. 43 (2): 171–181. https://doi.org/10.1016/j.geotexmem.2014.11.009.
Hegde, A. M., and T. G. Sitharam. 2015b. “Three-dimensional numerical analysis of geocell-reinforced soft clay beds by considering the actual geometry of geocell pockets.” Can. Geotech. J. 52 (9): 1396–1407. https://doi.org/10.1139/cgj-2014-0387.
Hegde, A. M., and T. G. Sitharam. 2017. “Experiment and 3D-numerical studies on soft clay bed reinforced with different types of cellular confinement systems.” Transp. Geotech. 10 (Mar): 73–84. https://doi.org/10.1016/j.trgeo.2017.01.001.
Horvath, J. S. 1997. “The compressible inclusion function of EPS geofoam.” Geotext. Geomembr. 15 (1–3): 77–120. https://doi.org/10.1016/S0266-1144(97)00008-3.
Horvath, J. S. 2010. “Emerging trends in failures involving EPS-block geofoam fills.” J. Perform. Constr. Facil. 24 (4): 365–372. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000114.
Khan, M. I., and M. A. Meguid. 2018. “Experimental investigation of the shear behavior of EPS geofoam.” Int. J. Geosynthetics Ground Eng. 4 (2): 12. https://doi.org/10.1007/s40891-018-0129-7.
Kim, H., A. F. Witthoeft, and D. Kim. 2018. “Numerical study of earth pressure reduction on rigid walls using EPS geofoam inclusions.” Geosynthetics Int. 25 (2): 180–199. https://doi.org/10.1680/jgein.18.00001.
Lal, D., N. Sankar, and S. Chandrakaran. 2017. “Effect of reinforcement form on the behaviour of coir geotextile reinforced sand beds.” Soils Found. 57 (2): 227–236. https://doi.org/10.1016/j.sandf.2016.12.001.
Leo, C. J., M. Kumruzzaman, H. Wong, and J. H. Yin. 2008. “Behavior of EPS geofoam in true triaxial compression tests.” Geotext. Geomembr. 26 (2): 175–180. https://doi.org/10.1016/j.geotexmem.2007.10.005.
Leshchinsky, B., and H. I. Ling. 2013. “Numerical modeling of behavior of railway ballasted structure with geocell confinement.” Geotext. Geomembr. 36 (Feb): 33–43. https://doi.org/10.1016/j.geotexmem.2012.10.006.
Liu, Y., A. Deng, and M. Jaksa. 2019. “Failure mechanisms of geocell walls and junctions.” Geotext. Geomembr. 47 (2): 104–120. https://doi.org/10.1016/j.geotexmem.2018.11.003.
Look, B. G. 2014. Handbook of geotechnical investigation and design tables. Boca Raton, FL: CRC Press.
Mahgoub, A., and H. El Naggar. 2020. “Coupled TDA–Geocell stress-bridging system for buried corrugated metal pipes.” J. Geotech. Geoenviron. Eng. 146 (7): 04020052. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002279.
Meguid, M. A., and M. G. Hussein. 2017. “A numerical procedure for the assessment of contact pressures on buried structures overlain by EPS geofoam inclusion.” Int. J. Geosynthetics Ground Eng. 3 (1): 2. https://doi.org/10.1007/s40891-016-0078-y.
Meguid, M. A., and T. A. Youssef. 2018. “Experimental investigation of the earth pressure distribution on buried pipes backfilled with tire-derived aggregate.” Transp. Geotech. 14 (Mar): 117–125. https://doi.org/10.1016/j.trgeo.2017.11.007.
Mengelt, M. J., T. B. Edil, and C. H. Benson. 2000. Reinforcement of flexible pavements using geocells.. Madison, WI: Dept. of Civil and Environmental Engineering, Univ. of Wisconsin-Madison.
Moghaddas Tafreshi, S. N., and A. R. Dawson. 2010. “Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement.” Geotext. Geomembr. 28 (1): 72–84. https://doi.org/10.1016/j.geotexmem.2009.09.003.
Moghaddas Tafreshi, S. N., N. Joz Darabi, A. R. Dawson, and M. Azizian. 2020. “Experimental evaluation of geocell and EPS geofoam as means of protecting pipes at the bottom of repeatedly loaded trenches.” Int. J. Geomech. 20 (4): 04020023. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001624.
Moghaddas Tafreshi, S. N., O. Khalaj, and A. R. Dawson. 2014. “Repeated loading of soil containing granulated rubber and multiple geocell layers.” Geotext. Geomembr. 42 (1): 25–38. https://doi.org/10.1016/j.geotexmem.2013.12.003.
Moghaddas Tafreshi, S. N., P. Sharifi, and A. R. Dawson. 2016. “Performance of circular footings on sand by use of multiple-geocell or-planar geotextile reinforcing layers.” Soils Found. 56 (6): 984–997. https://doi.org/10.1016/j.sandf.2016.11.004.
Mohajerani, A., M. Ashdown, L. Abdihashi, and M. Nazem. 2017. “Expanded polystyrene geofoam in pavement construction.” Constr. Build. Mater. 157 (Dec): 438–448. https://doi.org/10.1016/j.conbuildmat.2017.09.113.
Negussey, D. 2007. “Design parameters for EPS geofoam.” Soils Found. 47 (1): 161–170. https://doi.org/10.3208/sandf.47.161.
Negussey, D., L. Andrews, S. Singh, and C. Liu. 2019. “Forensic investigation of a wide culvert reconstruction failure.” J. Pipeline Syst. Eng. Pract. 10 (3): 05019001. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000377.
Newman, M. P., S. F. Bartlett, and E. C. Lawton. 2009. “Numerical modeling of geofoam embankments.” J. Geotech. Geoenviron. Eng. 136 (2): 290–298. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000203.
Ossa, A., and M. P. Romo. 2009. “Micro- and macro-mechanical study of compressive behavior of expanded polystyrene geofoam.” Geosynthetics Int. 16 (5): 327–338. https://doi.org/10.1680/gein.2009.16.5.327.
Özer, A. T. and E. Akınay. 2019. “First geofoam roadway embankment application in Turkey.” In Proc., 5th Int. Conf. on Geofoam Blocks in Construction Applications, edited by D. Arellano, A. Özer, S. Bartlett, and J. Vaslestad. Cham: Springer. https://doi.org/10.1007/978-3-319-78981-1_5.
Piratheepan, J., C. T. Gnanendran, and A. Arulrajah. 2012. “Determination of c and φ from IDT and unconfined compression testing and numerical analysis.” J. Mater. Civ. Eng. 24 (9): 1153–1164. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000493.
Pokharel, S. K., J. Han, D. Leshchinsky, and R. L. Parsons. 2018. “Experimental evaluation of geocell-reinforced bases under repeated loading.” Int. J. Pavement Res. Technol. 11 (2): 114–127. https://doi.org/10.1016/j.ijprt.2017.03.007.
Pokharel, S. K., J. Han, D. Leshchinsky, R. L. Parsons, and I. Halahmi. 2010. “Investigation of factors influencing behavior of single geocell-reinforced bases under static loading.” Geotext. Geomembr. 28 (6): 570–578. https://doi.org/10.1016/j.geotexmem.2010.06.002.
PRA (Public Roads Administration). 1992. Expanded polystyrene used in road embankments—Design, construction and quality assurance. Oslo, Norway: Public Roads Administration, Road Research Laboratory.
Pu, X., Z. Shi, and H. Xiang. 2018. “Feasibility of ambient vibration screening by periodic geofoam-filled trenches.” Soil Dyn. Earthquake Eng. 104 (Jan): 228–235. https://doi.org/10.1016/j.soildyn.2017.10.022.
Puppala, A. J., P. Ruttanaporamakul, T. V. Bheemasetti, and A. Shafikhani. 2018. “Laboratory and field investigations on geofoam.” J. Pipeline Syst. Eng. Pract. 10 (1): 04018036. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000364.
Puppala, A. J., P. Ruttanaporamakul, and S. S. C. Congress. 2019. “Design and construction of lightweight EPS geofoam embedded geomaterial embankment system for control of settlements.” Geotext. Geomembr. 47 (3): 295–305. https://doi.org/10.1016/j.geotexmem.2019.01.015.
Rowe, R. K., ed. 2012. Geotechnical and geoenvironmental engineering handbook. New York: Springer.
Satyal, S. R., B. Leshchinsky, J. Han, and M. Neupane. 2018. “Use of cellular confinement for improved railway performance on soft subgrades.” Geotext. Geomembr. 46 (2): 190–205. https://doi.org/10.1016/j.geotexmem.2017.11.006.
Simulia, D. S. 2013. ABAQUS 6.13 user’s manual. Providence, RI: Dassault Systems.
Sireesh, S., T. Sitharam, and S. K. Dash. 2009. “Bearing capacity of circular footing on geocell–sand mattress overlying clay bed with void.” Geotext. Geomembr. 27 (2): 89–98. https://doi.org/10.1016/j.geotexmem.2008.09.005.
Song, F., H. Liu, L. Ma, and H. Hu. 2018. “Numerical analysis of geocell-reinforced retaining wall failure modes.” Geotext. Geomembr. 46 (3): 284–296. https://doi.org/10.1016/j.geotexmem.2018.01.004.
Srirajan, S., D. Negussey, and N. Anasthas. 2001. “Creep behavior of EPS geofoam.” In Proc., 3rd Int. Conf. on EPS—EPS Geofoam 2001. Salt Lake City, UT: Geofoam Research Center.
Stark, T. D., D. Arellano, J. S. Horvath, and D. Leshchinsky. 2004. Geofoam applications in the design and construction of highway embankments: NCHRP Project No. 24-11. Washington, DC: Transportation Research Board.
Stark, T. D., S. F. Bartlett, and D. Arellano. 2012. “Expanded polystyrene (EPS) geofoam applications and technical data.” Accessed October 8, 2020. http://www.beaverplastics.com/Geotechnical/documents/geofoam_app_and_tech_data.pdf.
Stuedlein, A. W., D. Negussey, and M. Mathioudakis. 2004. “A case history of the use of geofoam for bridge approach fills.” In Proc., 5th Int. Conf. on Case Histories in Geotechnical Engineering. New York: Univ. of Missouri Rolla.
Subaida, E. A., S. Chandrakaran, and N. Sankar. 2009. “Laboratory performance of unpaved roads reinforced with woven coir geotextiles.” Geotext. Geomembr. 27 (3): 204–210. https://doi.org/10.1016/j.geotexmem.2008.11.009.
Tavira, J., J. R. Jiménez, J. Ayuso, M. J. Sierra, and E. F. Ledesma. 2018. “Functional and structural parameters of a paved road section constructed with mixed recycled aggregates from non-selected construction and demolition waste with excavation soil.” Constr. Build. Mater. 164 (Mar): 57–69. https://doi.org/10.1016/j.conbuildmat.2017.12.195.
Temesgen, E. K., L. Andrews, and D. Negussey. 2019. “Non destructive testing For EPS geofoam quality assurance.” In Proc., 5th Int. Conf. on Geofoam Blocks in Construction Applications, 197–206. Cham, Switzerland: Springer.
Thakur, J. K., J. Han, and R. L. Parsons. 2016. “Factors influencing deformations of geocell-reinforced recycled asphalt pavement bases under cyclic loading.” J. Mater. Civ. Eng. 29 (3): 04016240. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001760.
Thakur, J. K., J. Han, S. K. Pokharel, and R. L. Parsons. 2012. “Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading.” Geotext. Geomembr. 35 (Dec): 14–24. https://doi.org/10.1016/j.geotexmem.2012.06.004.
Tingle, J. S., and S. R. Jersey. 2007. “Empirical design methods for geosynthetic-reinforced low-volume roads.” Transp. Res. Rec. 1989 (1): 91–101. https://doi.org/10.3141/1989-52.
Vaitkus, A., J. Grazulyte, and R. Kleiziene. 2014. “Influence of static and impact load on pavement performance.” In Vol. 9 of Proc., Int. Conf. on Environmental Engineering ICEE, 1. Vilnius, Lithuania: Vilnius Gediminas Technical Univ., Dept. of Construction Economics and Property.
Wong, H., and C. J. Leo. 2006. “A simple elastoplastic hardening constitutive model for EPS geofoam.” Geotext. Geomembr. 24 (5): 299–310. https://doi.org/10.1016/j.geotexmem.2006.03.007.
Yapage, N. N. S., D. S. Liyanapathirana, H. G. Poulos, R. B. Kelly, and C. J. Leo. 2013. “Numerical modeling of geotextile-reinforced embankments over deep cement mixed columns incorporating strain-softening behavior of columns.” Int. J. Geomech. 15 (2): 04014047. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000341.
Yoon, Y. W., S. B. Heo, and K. S. Kim. 2008. “Geotechnical performance of waste tires for soil reinforcement from chamber tests.” Geotext. Geomembr. 26 (1): 100–107. https://doi.org/10.1016/j.geotexmem.2006.10.004.
Zhang, L., M. Zhao, C. Shi, and H. Zhao. 2010. “Bearing capacity of geocell reinforcement in embankment engineering.” Geotext. Geomembr. 28 (5): 475–482. https://doi.org/10.1016/j.geotexmem.2009.12.011.
Zou, W. L., L. L. Wan, Z. Han, and X. Q. Wang. 2019. “Effect of stress history on compressive and rheological behaviors of EPS geofoam.” Constr. Build. Mater. 228 (Dec): 116592. https://doi.org/10.1016/j.conbuildmat.2019.07.318.
Zou, Y., C. J. Leo, and J. C. Small. 2000. “Behaviour of EPS geofoam as flexible pavement subgrade material in model tests.” Geosynthetics Int. 7 (1): 1–22. https://doi.org/10.1680/gein.7.0163.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 4April 2021

History

Received: Mar 20, 2020
Accepted: Aug 7, 2020
Published online: Jan 19, 2021
Published in print: Apr 1, 2021
Discussion open until: Jun 19, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Civil Engineering, K.N. Toosi Univ. of Technology, Valiasr St., Mirdamad Cr., Tehran 1996715433, Iran (corresponding author). ORCID: https://orcid.org/0000-0002-7149-6686. Email: [email protected]
Dept. of Civil Engineering, K.N. Toosi Univ. of Technology, Valiasr St., Mirdamad Cr., Tehran 1996715433, Iran. ORCID: https://orcid.org/0000-0003-0359-0950. Email: [email protected]
Mehran Azizian [email protected]
M.Sc. Graduate, Dept. of Civil Engineering, K.N. Toosi Univ. of Technology, Valiasr St., Mirdamad Cr., Tehran 1996715433, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share