Technical Papers
Dec 23, 2020

Effect of Nanoclay on Physical and Rheological Properties of Waste Cooking Oil–Modified Asphalt Binder

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 3

Abstract

The use of waste cooking oil (WCO) and nanoclay (NC) in the modification of asphalt binder can produce sustainable material for paving applications. This study evaluated the change in physical and rheological properties attained by modification of a conventional asphalt binder using varying percentages of WCO and NC; 0%, 2.5%, and 5% WCO was used to modify a VG 30 binder, followed by reinforcement using four different dosages of montmorillonite NC (0%, 2%, 4%, and 6%). A total of 12 combinations of asphalt binders were produced (VG30, 2NC, 4NC, 6NC, 2.5WCO, 5WCO, 2.5WCO2NC, 2.5WCO4NC, 2.5WCO6NC, 5WCO2NC, 5WCO4NC, and 5WCO6NC) and subjected to physical (penetration, softening point, viscosity, and temperature susceptibility) and rheological [high-temperature performance grading (PG), multiple stress creep and recovery (MSCR), and linear amplitude sweep test (LAS)] measurements. The physical and rheological measurements showed that the use of NC in WCO-modified asphalt binder could reverse the softening effect caused by the inclusion of WCO in VG 30. At 50°C and 60°C, 2.5WCO with 4% and 6% NC had higher values of percentage recovery (R) compared with VG 30. It was found that the use of NC insignificantly increased the strain susceptibility of the asphalt binders at intermediate temperatures for all WCO levels. Statistical analysis revealed that the effect of modification on unrecoverable creep compliance is less significant than the change in R for a temperature range of 40°C–70°C. The significance of modification at intermediate temperatures was not consistent and clear. A simple cost–benefit analysis was proposed, which indicated that 2.5WCO6NC is the optimum combined blend for obtaining higher benefits relative to the cost of modification.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors thank Hindustan Colas Private Limited for providing the asphalt binder used in this study. The authors also thank the Ministry of Human Resource and Development (MHRD), India, for their support.

References

AASHTO. 2014a. Estimating damage tolerance of asphalt binders using linear amplitude sweep. AASHTO TP 101. Washington, DC: AASHTO.
AASHTO. 2014b. Specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. AASHTO M 332. Washington, DC: AASHTO.
AASHTO. 2014c. Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). AASHTO T 350. Washington, DC: AASHTO.
AASHTO. 2017. Standard specification for performance-graded asphalt binder. AASHTO M 320. Washington, DC: AASHTO.
Abdelrahman, M., D. R. Katti, A. Ghavibazoo, H. B. Upadhyay, and K. S. Katti. 2014. “Engineering physical properties of asphalt binders through nanoclay-asphalt interactions.” J. Mater. Civ. Eng. 26 (12): 04014099. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001017.
Adesina, P. A., and B. I. Dahunsi. 2020. “Blended waste utilization in road construction: Physical characteristics of bitumen modified with waste cooking oil and high-density polyethylene.” Int. J. Pavement Res. Technol. 1–7. https://doi.org/10.1007/s42947-020-0040-1.
Al-Omari, A. A., T. S. Khedaywi, and M. A. Khasawneh. 2018. “Laboratory characterization of asphalt binders modified with waste vegetable oil using SuperPave specifications.” Int. J. Pavement Res. Technol. 11 (1): 68–76. https://doi.org/10.1016/j.ijprt.2017.09.004.
Al-Sabaeei, A. M., M. B. Napiah, M. H. Sutanto, W. S. Alaloul, and A. Usman. 2019. “A systematic review of bio-asphalt for flexible pavement applications: Coherent taxonomy, motivations, challenges and future directions.” J. Cleaner Prod. 249 (Mar): 119357. https://doi.org/10.1016/j.jclepro.2019.119357.
Asli, H., E. Ahmadinia, M. Zargar, and M. R. Karim. 2012. “Investigation on physical properties of waste cooking oil—Rejuvenated bitumen binder.” Constr. Build. Mater. 37 (Dec): 398–405. https://doi.org/10.1016/j.conbuildmat.2012.07.042.
Azahar, W. N. A. W., M. Bujang, R. P. Jaya, M. R. Hainin, M. M. A. Aziz, and N. Ngadi. 2015. “Application of nanotechnology in asphalt binder: A conspectus and overview.” Jurnal Teknologi 76 (14): 85–89. https://doi.org/10.11113/jt.v76.5847.
Azahar, W. N. A. W., M. Bujang, R. P. Jaya, M. R. Hainin, A. Mohamed, N. Ngadi, and D. S. Jayanti. 2016a. “The potential of waste cooking oil as bio-asphalt for alternative binder: An overview.” Jurnal Teknologi 78 (4): 111–116. https://doi.org/10.11113/jt.v78.8007.
Azahar, W. N. A. W., M. Bujang, R. P. Jaya, M. R. Hainin, N. Ngadi, and M. M. A. B. Abdullah. 2016b. “Performance of waste cooking oil in asphalt binder modification.” In Vol. 700 of Proc., Key Engineering Materials, 216–226. Zurich, Switzerland: Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.700.216.
Aziz, M. M. A., M. T. Rahman, M. R. Hainin, and W. A. W. A. Bakar. 2015. “An overview on alternative binders for flexible pavement.” Constr. Build. Mater. 84 (Jun): 315–319. https://doi.org/10.1016/j.conbuildmat.2015.03.068.
Behnood, A. 2019. “Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: A review.” J. Cleaner Prod. 231 (Sep): 171–182. https://doi.org/10.1016/j.jclepro.2019.05.209.
Bilema, M. A., M. Y. Aman, N. A. Hassan, and N. F. A. Abdullah. 2019. “Investigation on rheology and physical properties of asphalt binder blended with waste cooking oil.” In Proc., IOP Conf. Series: Materials Science and Engineering. Bristol, UK: IOP Publishing. https://doi.org/10.1088/1757-899X/527/1/012045.
Bonati, A., F. Merusi, G. Bochicchio, B. Tessadri, G. Polacco, S. Filippi, and F. Giuliani. 2013. “Effect of nanoclay and conventional flame retardants on asphalt mixtures fire reaction.” Constr. Build. Mater. 47 (Oct): 990–1000. https://doi.org/10.1016/j.conbuildmat.2013.06.002.
Chen, M., B. Leng, S. Wu, and Y. Sang. 2014. “Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders.” Constr. Build. Mater. 66 (Sep): 286–298. https://doi.org/10.1016/j.conbuildmat.2014.05.033.
Choudhary, J., B. Kumar, and A. Gupta. 2019. “Performance evaluation of bauxite residue modified asphalt concrete mixes.” Eur. J. Environ. Civ. Eng. 1–17. https://doi.org/10.1080/19648189.2019.1691662.
Cong, P., B. Chen, and H. Zhao. 2020. “Coupling effects of wasted cooking oil and antioxidant on aging of asphalt binders.” Int. J. Pavement Res. Technol. 13 (1): 64–74. https://doi.org/10.1007/s42947-019-0086-0.
D’Angelo, J. A. 2009. “The relationship of the MSCR test to rutting.” Supplement, Road Mater. Pavement Des. 10 (S1): 61–80. https://doi.org/10.1080/14680629.2009.9690236.
Ezzat, H., S. El-Badawy, A. Gabr, E. S. I. Zaki, and T. Breakah. 2016. “Evaluation of asphalt binders modified with nanoclay and nanosilica.” Procedia Eng. 143: 1260–1267. https://doi.org/10.1016/j.proeng.2016.06.119.
Fang, C., R. Yu, S. Liu, and Y. Li. 2013. “Nanomaterials applied in asphalt modification: A review.” J. Mater. Sci. Technol. 29 (7): 589–594. https://doi.org/10.1016/j.jmst.2013.04.008.
Farrar, M. J., R. W. Grimes, C. Sui, J. P. Planche, S. C. Huang, T. F. Turner, and R. Glaserx. 2012. “Thin film oxidative aging and low temperature performance grading using small plate dynamic shear rheometry: An alternative to standard RTFO, PAV, and BBR.” In Proc., 5th Eurasphalt and Eurobitume Congress. Brussels, Belgium: Foundation Eurasphalt.
Fini, E. H., S.-H. Yang, and S. Xiu. 2010. Characterization and application of manure-based bio-binder in asphalt industry. Washington, DC: Transportation Research Board.
Ghanoon, S. A., J. Tanzadeh, and M. Mirsepahi. 2020. “Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder.” Constr. Build. Mater. 238 (Mar): 117592. https://doi.org/10.1016/j.conbuildmat.2019.117592.
Gong, M., J. Yang, J. Zhang, H. Zhu, and T. Tong. 2016. “Physical–chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue.” Constr. Build. Mater. 105 (Feb): 35–45. https://doi.org/10.1016/j.conbuildmat.2015.12.025.
Gui, M. M., K. T. Lee, and S. Bhatia. 2008. “Feasibility of edible oil versus non-edible oil versus waste edible oil as biodiesel feedstock.” Energy 33 (11): 1646–1653. https://doi.org/10.1016/j.energy.2008.06.002.
Hossain, Z., M. Zaman, T. Hawa, and M. C. Saha. 2015. “Evaluation of moisture susceptibility of nanoclay-modified asphalt binders through the surface science approach.” J. Mater. Civ. Eng. 27 (10): 04014261. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001228.
Ingrassia, L. P., X. Lu, G. Ferrotti, and F. Canestrari. 2019. “Renewable materials in bituminous binders and mixtures: Speculative pretext or reliable opportunity?” Resour. Conserv. Recycl. 144 (May): 209–222. https://doi.org/10.1016/j.resconrec.2019.01.034.
Jamshidi, A., M. R. Mohd Hasan, H. Yao, Z. You, and M. O. Hamzah. 2015. “Characterization of the rate of change of rheological properties of nano-modified asphalt.” Constr. Build. Mater. 98 (Nov): 437–446. https://doi.org/10.1016/j.conbuildmat.2015.08.069.
Ji, J., H. Yao, Z. Suo, Z. You, H. Li, S. Xu, and L. Sun. 2017. “Effectiveness of vegetable oils as rejuvenators for aged asphalt binders.” J. Mater. Civ. Eng. 29 (3): D4016003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001769.
Joni, H. H., R. H. A. Al-Rubaee, and M. A. Al-Zerkani. 2020. “Characteristics of asphalt binder modified with waste vegetable oil and waste plastics.” In Vol. 737 of Proc., IOP Conf. Series: Materials Science and Engineering. Bristol, UK: IOP Publishing. https://doi.org/10.1088/1757-899X/737/1/012126.
Kriz, P., D. Grant, N. Boussad, D. Gausson, F. Cointe, C. Toulemonde, and R. Shirts. 2017. “Assessment of performance specification tests for rheologically simple bitumens.” In Proc., 6th Eurasphalt and Eurobitume Congress. Brussels, Belgium: Foundation Eurasphalt. https://doi.org/10.14311/EE.2016.269.
Lakshmi, M. S., M. Sriranjani, H. B. Bakrudeen, A. S. Kannan, A. B. Mandal, and B. S. R. Reddy. 2010. “Carvedilol/montmorillonite: Processing, characterization and release studies.” Appl. Clay Sci. 48 (4): 589–593. https://doi.org/10.1016/j.clay.2010.03.008.
Liu, G., M. Van De Ven, S. Wu, J. Yu, and A. Molenaar. 2011. “Influence of organo-montmorillonites on fatigue properties of bitumen and mortar.” Int. J. Fatigue 33 (12): 1574–1582. https://doi.org/10.1016/j.ijfatigue.2011.06.014.
Maharaj, R., V. Harry, and N. Mohamed. 2015a. “The rheological properties of Trinidad asphaltic materials blended with waste cooking oil.” Prog. Rubber Plast. Recycl. Technol. 31 (4): 265–279. https://doi.org/10.1177/147776061503100402.
Maharaj, R., V. Ramjattan-Harry, and N. Mohamed. 2015b. “Rutting and fatigue cracking resistance of waste cooking oil modified Trinidad asphaltic materials.” Sci. World J. 2015 (3): 1–7. https://doi.org/10.1155/2015/385013.
Maniruzzaman, M. A. A., M. T. Rahman, M. R. Rosli Haininl, and W. A. W. B. Abu. 2016. “Alternative binders for flexible pavement.” J. Eng. Appl. Sci. 11 (20): 11868–11871.
Mills-Beale, J., and Z. You. 2011. “Nanoclay-modified asphalt binder systems.” In Nanotechnology in civil infrastructure, 257–270. Berlin: Springer.
Narayan, S. P. A., D. N. Little, and K. R. Rajagopal. 2019. “Incorporating disparity in temperature sensitivity of asphalt binders into high-temperature specifications.” J. Mater. Civ. Eng. 31 (1): 04018343. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002534.
Panadare, D. C., and V. K. Rathod. 2015. “Applications of waste cooking oil other than biodiesel: A review.” Iran. J. Chem. Eng. 12 (3): 55–76.
Pouranian, M. R., and J. E. Haddock. 2019. “A new framework for understanding aggregate structure in asphalt mixtures.” Int. J. Pavement Eng. 1–17. https://doi.org/10.1080/10298436.2019.1660340.
Pouranian, M. R., and M. Shishehbor. 2019. “Sustainability assessment of green asphalt mixtures: A review.” Environments 6 (6): 73. https://doi.org/10.3390/environments6060073.
Ray, S. S., and M. Okamoto. 2003. “Polymer/layered silicate nanocomposites: a review from preparation to processing.” Prog. Polym. Sci. 28 (11): 1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002.
Saboo, N., and P. Kumar. 2015. “A study on creep and recovery behavior of asphalt binders.” Constr. Build. Mater. 96 (Oct): 632–640. https://doi.org/10.1016/j.conbuildmat.2015.08.078.
Saboo, N., and P. Kumar. 2016. “Analysis of different test methods for quantifying rutting susceptibility of asphalt binders.” J. Mater. Civ. Eng. 28 (7): 04016024. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001553.
Saboo, N., R. Kumar, P. Kumar, and A. Gupta. 2018. “Ranking the rheological response of SBS- and EVA-modified bitumen using MSCR and LAS tests.” J. Mater. Civ. Eng. 30 (8): 04018165. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002367.
Saboo, N., and M. Sukhija. 2020. “Evaluating the suitability of nanoclay modified asphalt binders from 10°C to 70°C.” J. Mater. Civ. Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003386.
Silvestre, J., N. Silvestre, and J. de Brito. 2016. “Polymer nanocomposites for structural applications: Recent trends and new perspectives.” Mech. Adv. Mater. Struct. 23 (11): 1263–1277. https://doi.org/10.1080/15376494.2015.1068406.
Sun, D., G. Sun, Y. Du, X. Zhu, T. Lu, Q. Pang, S. Shi, and Z. Dai. 2017. “Evaluation of optimized bio-asphalt containing high content waste cooking oil residues.” Fuel 202 (Aug): 529–540. https://doi.org/10.1016/j.fuel.2017.04.069.
Sun, Z., J. Yi, Y. Huang, D. Feng, and C. Guo. 2016. “Properties of asphalt binder modified by bio-oil derived from waste cooking oil.” Constr. Build. Mater. 102 (Jan): 496–504. https://doi.org/10.1016/j.conbuildmat.2015.10.173.
Wang, C., C. Castorena, J. Zhang, and Y. Richard Kim. 2015. “Unified failure criterion for asphalt binder under cyclic fatigue loading.” Supplement, Road Mater. Pavement Des. 16 (S2): 125–148. https://doi.org/10.1080/14680629.2015.1077010.
Wang, C., L. Xue, W. Xie, Z. You, and X. Yang. 2018. “Laboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oil.” Constr. Build. Mater. 167 (Apr): 348–358. https://doi.org/10.1016/j.conbuildmat.2018.02.038.
Wang, C., H. Zhang, C. Castorena, J. Zhang, and Y. R. Kim. 2016. “Identifying fatigue failure in asphalt binder time sweep tests.” Constr. Build. Mater. 121 (Sep): 535–546. https://doi.org/10.1016/j.conbuildmat.2016.06.020.
Warith, K. A. A., and S. A. Khedr. 2013. “Investigating a natural plant-based bio binder and cement dust mix as a bitumen substitute in flexible pavements.” Adv. Civ. Eng. Mater. 2 (1): 637–653. https://doi.org/10.1520/ACEM20130079.
Wen, H., S. Bhusal, and B. Wen. 2013. “Laboratory evaluation of waste cooking oil-based bioasphalt as an alternative binder for hot mix asphalt.” J. Mater. Civ. Eng. 25 (10): 1432–1437. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000713.
Whiteoak, D. 1990. The Shell bitumen handbook. Belfast, UK: Shell Bitumen.
Wu, S., J. Wang, and L. Jiesheng. 2010. “Preparation and fatigue property of nanoclay modified asphalt binder.” In Proc., Int. Conf. on Mechanic Automation and Control Engineering, 1595–1598. New York: IEEE.
Xinxin, C., C. Xuejuan, T. Boming, W. Yuanyuan, and L. Xiaolong. 2018. “Investigation on possibility of waste vegetable oil rejuvenating aged asphalt.” Appl. Sci. 8 (5): 765. https://doi.org/10.3390/app8050765.
Yang, J., and S. Tighe. 2013. “A review of advances of nanotechnology in asphalt mixtures.” Procedia Social Behav. Sci. 96 (Nov): 1269–1276. https://doi.org/10.1016/j.sbspro.2013.08.144.
Yao, H., Z. You, L. Li, S. W. Goh, C. H. Lee, Y. K. Yap, and X. Shi. 2013a. “Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy.” Constr. Build. Mater. 38 (Jan): 327–337. https://doi.org/10.1016/j.conbuildmat.2012.08.004.
Yao, H., Z. You, L. Li, S. W. Goh, J. Mills-Beale, X. Shi, and D. Wingard. 2013b. “Evaluation of asphalt blended with low percentage of carbon micro-fiber and nanoclay.” J. Test. Eval. 41 (2): 278–288. https://doi.org/10.1520/JTE20120068.
You, Z., J. Mills-Beale, E. Fini, S. W. Goh, and B. Colbert. 2011a. “Evaluation of low-temperature binder properties of warm-mix asphalt, extracted and recovered RAP and RAS, and bioasphalt.” J. Mater. Civ. Eng. 23 (11): 1569–1574. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000295.
You, Z., J. Mills-Beale, J. M. Foley, S. Roy, G. M. Odegard, Q. Dai, and S. W. Goh. 2011b. “Nanoclay-modified asphalt materials: Preparation and characterization.” Constr. Build. Mater. 25 (2): 1072–1078. https://doi.org/10.1016/j.conbuildmat.2010.06.070.
Zargar, M., E. Ahmadinia, H. Asli, and M. R. Karim. 2012. “Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen.” J. Hazard. Mater. 233–234: 254–258. https://doi.org/10.1016/j.jhazmat.2012.06.021.
Zhu, J., B. Birgisson, and N. Kringos. 2014. “Polymer modification of bitumen: Advances and challenges.” Eur. Polym. J. 54 (May): 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005.
Zilg, C., F. Dietsche, B. Hoffmann, and C. Dietrich. 2001. “Nanofillers based upon organophilic layered silicates.” Macromol. Symp. 169 (1): 65–77. https://doi.org/10.1002/1521-3900(200105)169:1%3C65::AID-MASY65%3E3.0.CO;2-F.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 3March 2021

History

Received: Apr 18, 2020
Accepted: Aug 3, 2020
Published online: Dec 23, 2020
Published in print: Mar 1, 2021
Discussion open until: May 23, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Nikhil Saboo [email protected]
Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology, Varanasi, Uttar Pradesh 221005, India. Email: [email protected]
Mayank Sukhija [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Varanasi, Uttar Pradesh 221005, India (corresponding author). Email: [email protected]
Gaurav Singh [email protected]
M.Tech. Student, Dept. of Civil Engineering, Indian Institute of Technology, Varanasi, Uttar Pradesh 221005, India, Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share