Technical Papers
Dec 21, 2020

Effect of Used Engine Oil Addition on the Rheological Properties of a Plastic Bag Waste–Modified 40/50 Grade Bitumen

Publication: Journal of Materials in Civil Engineering
Volume 33, Issue 3

Abstract

The oily fraction allows expansion and dissolution of the polymer particles within the bituminous matrix. This contribution studies the effects of adding a small quantity of a used engine oil (UEO) to bag waste plastic-modified 40/50 grade bitumen. The objective is to investigate the possibility of using the used oil as a plastic-bitumen compatibilizing agent. Penetration, softening point, Rolling Thin Film Oven Test (RTFOT), and Fourier transform infrared spectroscopy (FTIR) tests were used in this paper to characterize the waste plastic-modified bitumen (WPmB) and the used engine oil plastic-modified bitumen (UEOPmB). The Van Der Poal nomograph is used to complete the characterization of the studied binders. It was observed that adding used engine oil allowed incorporating greater plastic quantities into the pure bitumen. Moreover, both the WPmB and the UEOPmB have shown improved mechanical properties compared with pure bitumen. Obtained results demonstrated that oil addition enhances the aging resistance and reduces the low temperature cracking resistance of the UEOPmB.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Akmaz, S., O. Iscan, M. A. Gurkaynak, and M. Yasar. 2011. “The structural characterization of saturate, aromatic, resin, and asphaltene fractions of Batiraman Crude.” Oil. Pet. Sci. Technol. 29 (2): 160–171. https://doi.org/10.1080/10916460903330361.
Al-Abdul Wahhab, H. I., M. A. Dalhat, and M. A. Habib. 2016. “Storage stability and high-temperature performance of asphalt binder modified with recycled plastic.” Road Mater. Pavement Des. 18 (5): 1117–1134. https://doi.org/10.1080/14680629.2016.1207554.
Alberto, B., B. Bernard, C. Jean-François, D. Elio, G. Anton, L. Guy, and W. Simon. 1999. Use of modified bituminous binders, special bitumens and bitumens with additives in road pavements. Paris: World Road Association.
Algeria Press Service. 2019. Algeria consumes 7 billion plastic bags annually. Algiers, Algeria: Algeria Press Service.
Angelone, S., M. Cauhapé Casaux, M. Borghi, and F. O. Martinez. 2016. “Green pavements: Reuse of plastic waste in asphalt mixtures.” Mater. Struct. 49 (5): 1655–1665. https://doi.org/10.1617/s11527-015-0602-x.
ASTM. 2011. Standard practice for determining the separation tendency of polymer from polymer modified asphalt. ASTM D7173-11. West Conshohocken, PA: ASTM.
Blazejowski, K., and B. Dolzycki. 2014. “The relationships between asphalt mix rutting resistance and MSCR test results.” In Design, analysis, and asphalt material characterization for road and airfield pavements, 202–209. Reston, VA: ASCE.
Borhan, M. N., F. Suja, and A. Ismail. 2009. “The effects of used cylinder oil on asphalt mixes.” Eur. J. Sci. Res. 28 (3): 398–411.
CEN (European Committee for Standardization). 1999. Standard test method for determination of needle penetration. EN 1426. Paris: Association Française de Normalisation.
CEN (European Committee for Standardization). 2000a. Standard test method for determination of softening point: Ring and Bali method. EN 1427. Paris: Association Française de Normalisation.
CEN (European Committee for Standardization). 2000b. Standard test method for determination of the resistance to hardening under the influence of heat and air, part 1: RTFOT method. EN 12607-1. Paris: Association Française de Normalisation.
CEN (European Committee for Standardization). 2007. Standard test method for determination of the Fraass breaking point. NF EN 12593. Paris: Association Française de Normalisation.
CEN (European Committee for Standardization). 2009. Specifications for paving grade bitumens. EN 12591. Paris: Association Française de Normalisation.
Chee, C. Y., H. Azahari, and M. Rehan. 2014. “Modification of bitumen characteristic by using recycled polyethylene.” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 604 (1): 33–40. https://doi.org/10.1080/15421406.2014.967652.
Costa, L. M. B., H. M. R. D. Silva, J. R. M. Oliveira, and S. R. M. Fernandes. 2013. “Incorporation of waste plastic in asphalt binders to improve their performance in the pavement.” Int. J. Pavement Res. Technol. 6 (4): 457–464. https://doi.org/10.6135/ijprt.org.tw/2013.6(4).457.
Daham, G. R., A. A. AbdulRazak, A. S. Hamadi, and A. A. Mohammed. 2017. “Re-refining of used lubricant oil by solvent extraction using central composite design method.” Korean J. Chem. Eng. 34 (9): 2435–2444. https://doi.org/10.1007/s11814-017-0139-5.
Dalhat, M. A., and H. I. Al-Abdul Wahhab. 2015. “Performance of recycled plastic waste modified asphalt binder in Saudi Arabia.” Int. J. Pavement Eng. 18 (4): 349–357. https://doi.org/10.1080/10298436.2015.1088150.
Danane, F., A. Ahmia, A. Bakiri, and N. Lalaoui. 2014. “Experimental regeneration process of used motor oils.” Revue des Energies Renouvelables 17 (2): 345–351.
DeDene, C. D. 2011. “Investigation of using waste engine oil blended with reclaimed asphalt materials to improve pavement recyclability.” Master’s thesis, Dept. of Civil and Environmental Engineering, Michigan Technological Univ.
DeDene, C. D., and Z.-P. You. 2014. “The performance of aged asphalt materials rejuvenated with waste engine oil.” Int. J. Pavement Res. Technol. 7 (2): 145–152. https://doi.org/10.6135/ijprt.org.tw/2014.7(2).145.
Delfosse, F., I. Drouadaine, S. Faucon-Dumont, S. Largeaud, B. Eckmann, J. P. Planche, F. Turner, and R. Glaser. 2016. “Impact of the bitumen quality on the asphalt mixes performances.” In Proc., 6th Eurasphalt & Eurobitume Congress. Prague, Czechia: Czech Technical University in Prague. https://doi.org/10.14311/EE.2016.049.
Dokandari, P. A., D. Kaya, B. Sengoz, and A. Topal. 2017. “Implementing waste oils with reclaimed asphalt pavement.” In Proc., 2nd World Congress on Civil, Structural and Environmental Engineering. Roseville, CA: International Academy of Science, Engineering and Technology. https://doi.org/10.11159/icsenm17.142.
Dony, A. 1989. “Liants bitumes-polymères de la fabrication à la mise en œuvre des enrobés : Influence de la nature du bitume sur leurs propriétés mécaniques, leur micromorphologie et leur stabilité thermiques.” Doctoral thesis, Dept. of Physics, Univ. of Pierre and Marie Curie.
Dreessen, S., and T. Gallet. 2012. “MSCRT: Performance related test method for rutting prediction of asphalt mixtures from binder rheological characteristics.” In Proc., 5th Eurasphalt Eurobitume Congress. Washington, DC: Transportation Research Board.
Eckmann, B. 2005. Relation entre propriétés des liants bitumineux et caractéristiques des enrobes. Sainte-Julie, QC, Canada: Bitume Québec.
Farahani, H. Z., M. Palassi, and S. Sadeghpour Galooyak. 2017. “Thermal analysis of bitumen modified with LDPE and CR.” Pet. Sci. Technol. 35 (15): 1570–1575. https://doi.org/10.1080/10916466.2017.1319385.
Feng, Z., H. Bian, X. Li, and J. Yu. 2016a. “FTIR analysis of UV aging on bitumen and its fractions.” Mater. Struct. 49 (4): 1381–1389. https://doi.org/10.1617/s11527-015-0583-9.
Feng, Z., S. Wang, H. Bian, Q. Guo, and X. Li. 2016b. “FTIR and rheology analysis of aging on different ultraviolet absorber modified bitumens.” Constr. Build. Mater. 115 (Jul): 48–53. https://doi.org/10.1016/j.conbuildmat.2016.04.040.
Fernandes, S. R. M., H. M. R. D. Silva, and J. R. M. Oliveira. 2018. “Developing enhanced modified bitumens with waste engine oil products combined with polymers.” Constr. Build. Mater. 160 (Jan): 714–724. https://doi.org/10.1016/j.conbuildmat.2017.11.112.
Fu, H., L. Xie, D. Dou, L. Li, M. Yu, and S. Yao. 2007. “Storage stability and compatibility of asphalt binder modified by SBS graft copolymer.” Constr. Build. Mater. 21 (7): 1528–1533. https://doi.org/10.1016/j.conbuildmat.2006.03.008.
Hamawand, I., T. Yusaf, and S. Rafat. 2013. “Recycling of waste engine oils using a new washing agent.” Energies 6 (2): 1023–1049. https://doi.org/10.3390/en6021023.
Hesp, S. A. M., and H. F. Shurvell. 2010. “X-ray fluorescence detection of waste engine oil residue in asphalt and its effect on cracking in service.” Int. J. Pavement Eng. 11 (6): 541–553. https://doi.org/10.1080/10298436.2010.488729.
Jafar, J. J. 2016. “Utilisation of waste plastic in bituminous mix for improved performance of roads.” KSCE J. Civ. Eng. 20 (1): 243–249. https://doi.org/10.1007/s12205-015-0511-0.
Jia, X., B. Huang, B. F. Bowers, and S. Zhao. 2014. “Infrared spectra and rheological properties of asphalt cement containing waste engine oil residues.” Constr. Build. Mater. 50 (Jan): 683–691. https://doi.org/10.1016/j.conbuildmat.2013.10.012.
Jun, L., Z. Yuxia, and Z. Yuzhen. 2008. “The research of GMA-g-LDPE modified Qinhuangdao bitumen.” Constr. Build. Mater. 22 (6): 1067–1073. https://doi.org/10.1016/j.conbuildmat.2007.03.007.
Kalantar, Z. N., M. R. Karim, and A. Mahrez. 2012. “A review of using waste and virgin polymer in pavement.” Constr. Build. Mater. 33 (Aug): 55–62. https://doi.org/10.1016/j.conbuildmat.2012.01.009.
Köfteci, S., P. Ahmedzade, and B. Kultayev. 2014. “Performance evaluation of bitumen modified by various types of waste plastics.” Constr. Build. Mater. 73 (Dec): 592–602. https://doi.org/10.1016/j.conbuildmat.2014.09.067.
Kumar, P., and R. Garg. 2011. “Rheology of waste plastic fibre-modified bitumen.” Int. J. Pavement Eng. 12 (5): 449–459. https://doi.org/10.1080/10298430903255296.
Largeaud, S., S. Faucon-Dumon, B. Eckmann, Y. Hung, L. Lapalu, and G. Gauthier. 2016. “Low temperature and aging properties of polymer-modified binders.” In Proc., 6th Eurasphalt & Eurobitume Congress. Prague, Czechia: Czech Technical University in Prague. https://doi.org/10.14311/EE.2016.325.
Liang, Z., and S. A. M. Hesp. 1993. “In situ steric stabilization of polyethylene emulsions in asphalt binders for hot-mix pavement applications.” Colloids Surf., A 81 (Dec): 239–250. https://doi.org/10.1016/0927-7757(93)80251-9.
Liu, S., H. Meng, Y. Xu, and S. Zhou. 2018a. “Evaluation of rheological characteristics of asphalt modified with waste engine oil (WEO).” Pet. Sci. Technol. 36 (6): 475–480. https://doi.org/10.1080/10916466.2018.1430157.
Liu, S., A. Peng, J. Wu, and S. B. Zhou. 2018b. “Waste engine oil influences on chemical and rheological properties of different asphalt binders.” Constr. Build. Mater. 191 (Dec): 1210–1220. https://doi.org/10.1016/j.conbuildmat.2018.10.126.
Lu, X., and U. Isacsson. 1997. “Compatibility and storage stability of styrene-butadiene-styrene copolymer modified bitumens.” Mater. Struct. 30 (10): 618–626. https://doi.org/10.1007/BF02486904.
Mahalakshmi, M. M., S. Priyankaprakash, T. Shalini, R. Rajamanickam, and K. Ramasamy. 2014. “Utilization of waste plastic in bitumen.” Int. J. Eng. Res. Technol. 3 (2): 2720–2727.
Mamun, A. A., and H. I. Al-Abdul Wahhab. 2018. “Evaluation of waste engine oil-rejuvenated asphalt concrete mixtures with high RAP content.” Adv. Mater. Sci. Eng. 2018: 1–8. https://doi.org/10.1155/2018/7386256.
Mangiafico, S., H. Di Benedetto, C. Sauzeat, F. Olard, S. Dupriet, L. Planque, and R. Rooijen Van. 2012. “Effect of reclaimed asphalt pavement on complex modulus and fatigue resistance of bitumens and asphalts.” In Proc., 5th Eurasphalt Eurobitume Congress. Washington, DC: Transportation Research Board.
Martinez, F. O., S. M. Angelone, and M. Cauhape Casaux. 2015. “Evaluation of predictive models for the rheological asphalt binders.” Bituminous mixtures and pavements VI, edited by A. Nikolaides, 65–71. Oxfordshire, UK: Taylor & Francis.
Mosa, A. M. 2017. “Modification of hot mix asphalt using polyethylene therephthalate (PET) waste bottles.” J. Eng. Comput. Sci. 18 (1): 62–73.
Nait, S. R. 2015. “Bitumes modifiés aux polymères de NAFTAL.” In Proc., 1st Int. Seminar on Roads Road Material. Bab Ezzouar, Algeria: Univ. of Science and Technology Houari Boumediene.
Naskar, M., T. K. Chaki, and K. S. Reddy. 2010. “Effect of waste plastic as modifier on thermal stability and degradation kinetics of bitumen/waste plastics blend.” Thermochim. Acta 509 (1–2): 128–134. https://doi.org/10.1016/j.tca.2010.06.013.
Nasr, D., and A. H. Pakshir. 2017. “Rheology and storage stability of modified binders with waste polymers composites.” Road Mater. Pavement Des. 20 (4): 1–20. https://doi.org/10.1080/14680629.2017.1417152.
Nivitha, M. R., J. M. Krishnan, and K. R. Rajagopal. 2018. “Viscoelastic transitions exhibited by modified and unmodified bitumen.” Int. J. Pavement Eng. 21 (6): 1–15. https://doi.org/10.1080/10298436.2018.1508846.
Nouali, M., Z. Derriche, E. Ghorbel, and L. Chuanqiang. 2019. “Plastic bag waste modified bitumen a possible solution to the Algerian road pavements.” Road Mater. Pavement Des. 21 (6): 1–13. https://doi.org/10.1080/14680629.2018.1560355.
Nouali, M., E. Ghorbel, and Z. Derriche. 2020. “Phase separation and thermal degradation of plastic bag waste modified bitumen during high temperature storage.” Constr. Build. Mater. 239 (Apr): 117872. https://doi.org/10.1016/j.conbuildmat.2019.117872.
Olard, F., and H. Di Benedetto. 2003. “General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes.” Road Mater. Pavement Des. 4 (2): 185–224. https://doi.org/10.1080/14680629.2003.9689946.
Olard, F., H. Di Benedetto, and B. Eckmann. 2004. “Rhéologie des bitumes: Prédiction des résultats des tests de fluage BBR à partir des résultats de module complexe.” Bull. Lab. Ponts Chaussées 252–253: 3–15.
Pehlivan, D., A. Sarimeseli, G. Kelbaliyev, and Y. Colak. 2003. “Rheological properties of asphalt-plastic blends.” Pet. Sci. Technol. 21 (9–10): 1427–1438. https://doi.org/10.1081/LFT-120023207.
Pérez-Lepe, A., F. J. Martínez-Boza, P. Attané, and C. Gallegos. 2006. “Destabilization mechanism of polyethylene-modified bitumen.” J. Appl. Polym. Sci. 100 (1): 260–267. https://doi.org/10.1002/app.23091.
Pérez-Lepe, A., F. J. Martínez-Boza, and C. Gallegos. 2007. “High temperature stability of different polymer-modified bitumens: A rheological evaluation.” J. Appl. Polym. Sci. 103: 1166–1174. https://doi.org/10.1002/app.25336.
Qurashi, I. A., and A. K. Swamy. 2018. “Viscoelastic properties of recycled asphalt binder containing waste engine oil.” J. Cleaner Prod. 182 (May): 992–1000. https://doi.org/10.1016/j.jclepro.2018.01.237.
Ralph, M. S., L. D. Gregory, and H. H. Jennifer. 2002. A feasibility study for recycling used automotive oil filters in a blast furnace. Washington, DC: American Iron and Steel Institute Technology Roadmap Program. https://doi.org/10.2172/797408.
Shoukat, T., and P. J. Yoo. 2018. “Rheology of asphalt binder modified with 5W30 viscosity grade waste engine oil.” Appl. Sci. 8 (7): 1194. https://doi.org/10.3390/app8071194.
Singh, S. K., Y. Kumar, and S. S. Ravindranath. 2018. “Thermal degradation of SBS in bitumen during storage: Influence of temperature, SBS concentration, polymer type and base bitumen.” Polym. Degrad. Stab. 147: 64–75. https://doi.org/10.1016/j.polymdegradstab.2017.11.008.
Sybilski, D. 1994. “Relationship between absolute viscosity of polymer-modified bitumens and rutting resistance of pavement.” Mater. Struct. 27 (2): 110–120. https://doi.org/10.1007/BF02472829.
Van Poel, C. D. 1954. “A general system describing the visco-elastic properties of bitumens and its relation to routine test data.” J. Appl. Chem. 4 (5): 221–236. https://doi.org/10.1002/jctb.5010040501.
Villanueva, A., S. Ho, and L. Zanzotto. 2008. “Asphalt modification with used lubricating oil.” Can. J. Civ. Eng. 35 (2): 148–157. https://doi.org/10.1139/L07-092.
Youtcheff, J., N. Wijayatilleke, and A. Shenoy. 2005. Evaluation of the laboratory asphalt stability test. Washington, DC: Federal Highway Administration.
Zani, L., F. Giustozzi, and J. Harvey. 2017. “Effect of storage stability on chemical and rheological properties of polymer-modified asphalt binders for road pavement construction.” Constr. Build. Mater. 145: 326–335. https://doi.org/10.1016/j.conbuildmat.2017.04.014.
Zhu, J. 2016. “Storage stability and phase separation behaviour of polymer-modified bitumen.” Ph.D. thesis, Dept. of Civil and Architectural Engineering, School of Architecture and Built Environment.
Zhu, J., B. Birgisson, and N. Kringos. 2014. “Polymer modification of bitumen: Advances and challenges.” Eur. Polym. J. 54: 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 33Issue 3March 2021

History

Received: Feb 7, 2020
Accepted: Jul 6, 2020
Published online: Dec 21, 2020
Published in print: Mar 1, 2021
Discussion open until: May 21, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Mohammed Nouali [email protected]
Ph.D. Student in Civil Engineering, Laboratoire Travaux Publics ingénierie des Transports and Environnement, Ecole Nationale Supérieure des Travaux Publics–Francis Jeanson, Rue Sidi Garidi Vieux Kouba, Alger 16051, Algeria (corresponding author). Email: [email protected]
Zohra Derriche [email protected]
Full Professor, Laboratoire Travaux Publics ingénierie des Transports and Environnement, Ecole Nationale Supérieure des Travaux Publics–Francis Jeanson, Rue Sidi Garidi Vieux Kouba, Alger 16051, Algeria. Email: [email protected]
Full Professor, Laboratoire de Mécanique et Matériaux de Génie Civil (L2MGC), CY Cergy-Paris Univ., Voie Mail Gay-Lussac, Ville Neuville-sur-Oise Cergy-Pontoise, Paris 95031, France. ORCID: https://orcid.org/0000-0001-9042-2706. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share