State-of-the-Art Reviews
Aug 18, 2020

Critical Review of Recycled Aggregate Concrete Properties, Improvements, and Numerical Models

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 11

Abstract

A literature review of the latest advancements in recycled aggregate concretes with regards to identifying properties, improving performance, and numerical modeling is presented in this paper. Although the properties of recycled aggregate concrete are widely considered to be inferior to those of natural aggregate concrete, research in the field still is of merit due to growing awareness of environmental concerns relating to the concrete construction and demolition industry. In addition, some methods have been proposed to improve the properties of recycled aggregate concrete, with the use of geopolymer binders in place of portland cement showing the most potential. In addition to further research regarding the improvement of properties of concrete made with recycled aggregates, the development of numerical models that accurately represent the behavior of recycled aggregate concrete under loading are essential to the industrial implementation of the technology.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

This research is supported by the Louisiana Board of Regents [Contract No. LEQSF(2017-20)-RD-B-02]. Louisiana State University provided the Donald W. Clayton Ph.D. Graduate Assistantship for the first author. All the support is greatly appreciated.

References

Abdelmoumen, S., E. Bellenger, B. Lynge, and M. Queneudec-T’Kint. 2010. “Finite element analysis of elastic property of concrete composites with ITZ.” Comput. Concr. 7 (6): 497–510. https://doi.org/10.12989/cac.2010.7.6.497.
Agioutantis, Z., E. Chatzopoulou, and M. Stavroulaki. 2000. “A numerical investigation of the effect of the interfacial transition zone in concrete mixtures under uniaxial compression: The case of the dilute limit.” Cem. Concr. Res. 30 (5): 715–723. https://doi.org/10.1016/S0008-8846(00)00240-4.
Ahmari, S., X. Ren, V. Toufigh, and L. Zhang. 2012. “Production of geopolymeric binder from blended waste concrete powder and fly ash.” Constr. Build. Mater. 35 (Oct): 718–729. https://doi.org/10.1016/j.conbuildmat.2012.04.044.
Al-Majidi, M. H., A. Lampropoulos, A. Cundy, and S. Meikle. 2016. “Development of geopolymer mortar under ambient temperature for in situ applications.” Constr. Build. Mater. 120 (Sep): 198–211. https://doi.org/10.1016/j.conbuildmat.2016.05.085.
Amer, A. A. M., K. Ezziane, A. Bougara, and M. H. Adjoudj. 2016. “Rheological and mechanical behavior of concrete made with pre-saturated and dried recycled concrete aggregates.” Constr. Build. Mater. 123 (Oct): 300–308. https://doi.org/10.1016/j.conbuildmat.2016.06.107.
Assaad, J., and Y. Daou. 2017. “Behavior of structural polymer-modified concrete containing recycled aggregates.” J. Adhes. Sci. Technol. 31 (8): 874–896. https://doi.org/10.1080/01694243.2016.1235750.
Awoyera, P. O., A. R. Dawson, N. H. Thom, and J. O. Akinmusuru. 2017. “Suitability of mortars produced using laterite and ceramic wastes: Mechanical and microscale analysis.” Constr. Build. Mater. 148 (Sep): 195–203. https://doi.org/10.1016/j.conbuildmat.2017.05.031.
Beckmann, B., K. Schicktanz, M. Curbach, and D. Tregger. 2014. “DEM simulation of concrete fracture phenomena.” Technische Mechanik 34 (3): 119–127.
Beckmann, D. I. B., and D. M. D. Reischl. 2012. “DEM simulation of concrete fracture and crack evolution.” Struct. Concr. 13 (4): 213–220. https://doi.org/10.1002/suco.201100036.
Benhood, A., J. Olek, and M. A. Glinicki. 2015. “Predicting modulus of elasticity of recycled aggregate concrete using M5′ model tree algorithm.” Constr. Build. Mater. 94 (Sep): 137–147. https://doi.org/10.1016/j.conbuildmat.2015.06.055.
Bhowmick, A., and S. Ghosh. 2012. “Effect of synthesizing parameters on workability and compressive strength of fly ash based geopolymer mortar.” Int. J. Civ. Struct. Eng. 3 (1): 168–177.
Cantero, B., I. F. Sáez del Bosque, A. Matías, and C. Medina. 2018. “Statistically significant effects of mixed recycled aggregate on the physical-mechanical properties of structural concretes.” Constr. Build. Mater. 185 (Oct): 93–101. https://doi.org/10.1016/j.conbuildmat.2018.07.060.
Cassuccio, M., M. C. Torrijos, G. Giaccio, and R. Zerbino. 2008. “Failure mechanism of recycled concrete aggregate.” Constr. Build. Mater. 22 (7): 1500–1506. https://doi.org/10.1016/j.conbuildmat.2007.03.032.
Cho, Y. H., and S. H. Yeo. 2004. “Application of recycled waste aggregate to lean concrete subbase in highway pavement.” Can. J. Civ. Eng. 31 (6): 1101–1108. https://doi.org/10.1139/l04-088.
Choi, H., M. Lim, H. Choi, R. Kitagi, and T. Noguchi. 2014. “Using microwave heating to completely recycle concrete.” Scientific Res. 5 (7): 583–596. https://doi.org/10.4236/jep.2014.57060.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Davidovitz, J. 1994. Properties of geopolymer cements. Saint-Quentin, France: Geoploymer Institute.
Deb, P. S., P. K. Sarker, and S. Barbhuiuya. 2016. “Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica.” Cem. Concr. Compos. 72 (Sep): 235–245. https://doi.org/10.1016/j.cemconcomp.2016.06.017.
Duxson, P., J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. van Deventer. 2005. “Understanding the relationship between geopolymer composition, microstructure and mechanical properties.” Colloids Surf. A 269 (1–3): 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
Evangelista, L., and J. de Brito. 2007. “Mechanical behaviour of concrete made with fine recycled concrete aggregates.” Cem. Concr. Compos. 29 (5): 397–401. https://doi.org/10.1016/j.cemconcomp.2006.12.004.
Evangelista, L., and J. de Brito. 2010. “Durability performance of concrete made with fine recycled concrete aggregates.” Cem. Concr. Compos. 32 (1): 9–14. https://doi.org/10.1016/j.cemconcomp.2009.09.005.
Farhan, N. A., M. N. Sheikh, and M. N. S. Hadi. 2019. “Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete.” Constr. Build. Mater. 196 (30): 26–42. https://doi.org/10.1016/j.conbuildmat.2018.11.083.
Fathifazl, G., A. Abbas, G. Razaqpur, O. B. Isgur, B. Fournier, and S. Foo. 2009. “New mixture proportioning method for concrete made with coarse recycled concrete aggregate.” J. Mater. Civ. Eng. 21 (10): 601–611. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(601).
Fathifazl, G., R. A. Ghani, O. B. Isgor, A. Abbas, B. Fournier, and S. Foo. 2012. “Bond performance of deformed steel bars in concrete produced with coarse recycled concrete aggregate.” Can. J. Civ. Eng. 39 (2): 128–139. https://doi.org/10.1139/l11-120.
Fernandez-Jimenez, A., A. Palomo, and M. Criado. 2004. “Microstructure development of alkali-activated fly ash cement: A descriptive model.” Cem. Concr. Res. 35 (6): 1204–1209. https://doi.org/10.1016/j.cemconres.2004.08.021.
Gholampour, A., A. H. Gandomi, and T. Ozbakkaloglu. 2017. “New formulations for mechanical properties of recycled aggregate concrete using gene expression programming.” Constr. Build. Mater. 130 (Jan): 122–145. https://doi.org/10.1016/j.conbuildmat.2016.10.114.
Grabiec, A. M., J. Klama, D. Zawal, and D. Krupa. 2012. “Modification of recycled concrete aggregate by calcium carbonate biodeposition.” Constr. Build. Mater. 34 (Sep): 145–150. https://doi.org/10.1016/j.conbuildmat.2012.02.027.
Guo, H., C. Shi, X. Guan, J. Zhu, Y. Ding, T. C. Ling, H. Zhang, and Y. Wang. 2018. “Durability of recycled aggregate concrete—A review.” Cem. Concr. Compos. 89 (May): 251–259. https://doi.org/10.1016/j.cemconcomp.2018.03.008.
Habert, G., J. B. d’Espinose de Lacaillerie, and N. Roussel. 2011. “An environmental evaluation of geopolymer based concrete production: Reviewing current research trends.” J. Cleaner Prod. 19 (11): 1229–1238. https://doi.org/10.1016/j.jclepro.2011.03.012.
Hansen, T. C., and H. Narud. 1983. “Strength of recycled concrete made from crushed concrete coarse aggregate.” Concr. Int. 5 (1): 79–83.
Hayles, M., L. F. M. Sanchez, and M. Noël. 2018. “Eco-efficient low cement recycled concrete aggregate mixtures for structural applications.” Constr. Build. Mater. 169 (Apr): 724–732. https://doi.org/10.1016/j.conbuildmat.2018.02.127.
Ho, H. L., R. Huang, W. T. Lin, and A. Cheng. 2018. “Pore-structures and durability of concrete containing pre-coated fine recycled aggregates using pozzolan and polyvinyl alcohol materials.” Constr. Build. Mater. 160 (Jan): 278–292. https://doi.org/10.1016/j.conbuildmat.2017.11.063.
Huseien, G. F., J. Mirza, M. Ismail, and M. W. Hussin. 2016. “Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash.” Constr. Build. Mater. 125 (Oct): 1229–1240. https://doi.org/10.1016/j.conbuildmat.2016.08.153.
Ismail, M., T. O. Yusuf, A. H. Noruzman, and I. O. Hassan. 2013. “Early strength characteristics of palm oil fuel ash and metakaolin blended geopolymer mortar.” Adv. Mater. Res. 690–693: 1045–1048. https://doi.org/10.4028/www.scientific.net/AMR.690-693.1045.
Ismail, S., and M. Ramli. 2013. “Engineering properties of treated recycled concrete aggregate for structural applications.” Constr. Build. Mater. 44 (Jul): 464–476. https://doi.org/10.1016/j.conbuildmat.2013.03.014.
Jayasuriya, A., M. P. Adams, and M. J. Bandelt. 2018. “Understanding variability in recycled aggregate concrete mechanical properties through numerical simulation and statistical evaluation.” Constr. Build. Mater. 178 (Jul): 301–312. https://doi.org/10.1016/j.conbuildmat.2018.05.158.
Jumrat, S., B. Chatveera, and P. Rattanadecho. 2011. “Dielectric properties and temperature profile of fly ash-based geopolymer mortar.” Int. Commun. Heat Mass Transfer 38 (2): 242–248. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.020.
Kabir, S. M. A., U. J. Alengaram, M. Z. Jumaat, A. Sharmin, and A. Islam. 2015. “Influence of molarity and chemical composition on the development of compressive strength in POFA based geopolymer mortar.” Adv. Mater. Sci. Eng. 2015: 1–15. https://doi.org/10.1155/2015/647071.
Kareem, A. I., H. Nikraz, and H. Asadi. 2018. “Evaluation of the double coated recycled concrete aggregates for hot mix asphalt.” Constr. Build. Mater. 172 (May): 544–552. https://doi.org/10.1016/j.conbuildmat.2018.03.158.
Katz, A. 2003. “Properties of concrete made with recycled aggregate from partially hydrated old concrete.” Cem. Concr. Res. 33 (5): 703–711. https://doi.org/10.1016/S0008-8846(02)01033-5.
Katz, A. 2004. “Treatments for the improvement of recycled aggregate.” J. Mater. Civ. Eng. 16 (6): 597–603. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(597).
Kawano, H. 2003. “The state of using by-products in Japan and outline of JIS/TR on recycled concrete using recycled aggregate.” In Proc., 1st FIB Congress on Recycling, 245–253. Lausanne, Switzerland: Swiss Federal Institute of Technology Lausanne.
Khatib, J. M. 2004. “Properties of concrete incorporating fine recycled aggregate.” Cem. Concr. Res. 35 (4): 763–769. https://doi.org/10.1016/j.cemconres.2004.06.017.
Khoshkenari, A. G., P. Shafigh, M. Moghimi, and H. B. Mahmud. 2014. “The role of 0–2 mm fine recycled concrete aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate concrete.” Mater. Des. 64 (Dec): 345–354. https://doi.org/10.1016/j.matdes.2014.07.048.
Kong, D., T. Lei, J. Zheng, C. Ma, J. Jiang, and J. Jiang. 2010. “Effect and mechanism of surface-coating pozzalanics materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete.” Constr. Build. Mater. 24 (5): 701–708. https://doi.org/10.1016/j.conbuildmat.2009.10.038.
Kotwal, A. R., Y. J. Kin, J. Hu, and V. Sriraman. 2015. “Characterization and early age physical properties of ambient cured geopolymer mortar based on Class C fly ash.” Int. J. Concr. Struct. Mater. 9 (1): 35–43. https://doi.org/10.1007/s40069-014-0085-0.
Laskar, S. M., and S. Talukdar. 2017. “Development of ultrafine slag-based geopolymer mortar for use as repairing mortar.” J. Mater. Civ. Eng. 29 (5): 1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001824.
Lee, H., J. H. Kwon, K. H. Kim, and H. C. Cho. 2008. “Application of DEM model to breakage and liberation behaviour of recycled aggregates from impact-breakage of concrete waste.” Miner. Eng. 21 (11): 761–765. https://doi.org/10.1016/j.mineng.2008.06.007.
Lee, N. K., E. M. Kim, and H. K. Lee. 2016. “Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex.” Constr. Build. Mater. 113 (Jun): 264–272. https://doi.org/10.1016/j.conbuildmat.2016.03.055.
Leite, M. B., and V. M. Santana. 2019. “Evaluation of an experimental mix proportion study and production of concrete using fine recycled aggregate.” J. Build. Eng. 21 (Jan): 243–253. https://doi.org/10.1016/j.jobe.2018.10.016.
Li, Q., C. Chen, L. Shen, and J. Zhai. 2013a. “Manufacturing F-fly ash based geopolymer mortars using CFBC bottom ash as fine aggregates.” J. Chem. Soc. Pak. 35 (2): 314–319.
Li, T., J. Xiao, T. Sui, C. Liang, and L. Li. 2018a. “Effect of recycled coarse aggregate to damping variation of concrete.” Constr. Build. Mater. 178 (Jul): 445–452. https://doi.org/10.1016/j.conbuildmat.2018.05.161.
Li, W., J. Xiao, C. Shi, and C. S. Poon. 2015. “Structural behavior of composite members with recycled aggregate concrete—An overview.” Adv. Struct. Eng. 18 (6): 919–938. https://doi.org/10.1260/1369-4332.18.6.919.
Li, W. G., Z. Y. Luo, Z. H. Sun, Y. Hu, and W. H. Duan. 2018b. “Numerical modelling on plastic–damage response and crack propagation of recycled aggregate concrete under uniaxial loading.” Mag. Concr. Res. 70 (9): 459–472. https://doi.org/10.1680/jmacr.17.00042.
Li, X., S. Liu, and P. Wang. 2009. “Flexural behavior of geopolymer concrete mortar modified by re-dispersible polymer emulsion powder.” J. Build. Mater. 12 (2): 205–208.
Li, X., X. Ma, S. Zhang, and E. Zheng. 2013b. “Mechanical properties and microstructure of class C fly ash-based geopolymer paste and mortar.” Materials 6 (4): 1485–1495. https://doi.org/10.3390/ma6041485.
Liang, C., T. Liu, J. Xiao, D. Zou, and Q. Yang. 2016. “The damping property of recycled aggregate concrete.” Constr. Build. Mater. 102 (1): 834–842. https://doi.org/10.1016/j.conbuildmat.2015.11.026.
Liu, Q., J. Xiao, and Z. Sun. 2011. “Experimental study on the failure mechanism of recycled concrete.” Cem. Concr. Res. 41 (10): 1050–1057. https://doi.org/10.1016/j.cemconres.2011.06.007.
Liu, Z., C. S. Cai, H. Peng, and F. Fan. 2016. “Experimental study of the geopolymeric recycled aggregate concrete.” J. Mater. Civ. Eng. 28 (9): 04016077. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001584.
Liu, Z., H. Peng, and C. S. Cai. 2015. “Mesoscale analysis of stress distribution along ITZs in recycled concrete with variously shaped aggregates under uniaxial compression.” J. Mater. Civ. Eng. 27 (11): 04015024. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001280.
Luo, S., S. Ye, J. Xiao, J. Zheng, and Y. Zhu. 2018. “Carbonated recycled coarse aggregate and uniaxial compressive stress-strain relation of recycled aggregate concrete.” Constr. Build. Mater. 188 (Nov): 956–965. https://doi.org/10.1016/j.conbuildmat.2018.08.159.
Malkawi, A. B., M. F. Nuruddin, A. Fauzi, H. Almatarneh, and B. S. Mohammed. 2016. “Effects of alkaline solution on properties of HCFA geopolymer mortars.” Procedia Eng. 148: 710–717. https://doi.org/10.1016/j.proeng.2016.06.581.
Nassar, R. U. D., and P. Soroushian. 2012. “Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement.” Constr. Build. Mater. 29 (Apr): 368–377. https://doi.org/10.1016/j.conbuildmat.2011.10.061.
Nepomuceno, M. C. S., R. A. S. Isidoro, and J. P. G. Catarino. 2018. “Mechanical performance evaluation of concrete made with recycled coarse aggregates from industrial brick waste.” Constr. Build. Mater. 165 (Mar): 284–294. https://doi.org/10.1016/j.conbuildmat.2018.01.052.
Nuaklong, P., V. Sata, and P. Chindaprasirt. 2018. “Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens.” Constr. Build. Mater. 161 (Feb): 365–373. https://doi.org/10.1016/j.conbuildmat.2017.11.152.
Olorunsogo, F. T., and N. Padayachee. 2002. “Performance of recycled aggregate concrete monitored by durability indexes.” Cem. Concr. Res. 32 (2): 179–185. https://doi.org/10.1016/S0008-8846(01)00653-6.
Padmini, A. K., K. Ramamurthy, and M. S. Matthews. 2009. “Influence of parent concrete on the properties of recycled aggregate concrete.” Constr. Build. Mater. 23 (2): 829–836. https://doi.org/10.1016/j.conbuildmat.2008.03.006.
Patankar, S. V., Y. M. Ghugal, and S. S. Jamkar. 2014. “Effect of concentration of sodium hydroxide and degree of heat curing on fly ash-based geopolymer mortar.” Indian J. Eng. Mater. Sci. 2014: 1–6. https://doi.org/10.1155/2014/938789.
Pavithra, P., M. S. Reddy, P. Dinakar, B. H. Rao, B. K. Satpathy, and A. N. Mohanty. 2016. “A mix design procedure for geopolymer concrete with fly ash.” J. Cleaner Prod. 133: 117–125. https://doi.org/10.1016/j.jclepro.2016.05.041.
Pereira, P., L. Evangelista, and J. de Brito. 2012. “The effect of superplasticizers on the workability and compressive strength of concrete made with fine recycled aggregates.” Constr. Build. Mater. 28 (1): 722–729. https://doi.org/10.1016/j.conbuildmat.2011.10.050.
Phoo-ngernkham, T., V. Sata, S. Hanjitsuwan, C. Ridtirud, S. Hatanaka, and P. Chindaprairt. 2016. “Compressive strength, bending and fracture characteristics of high calcium fly ash geopolymer mortars containing Portland cement cured at ambient temperature.” Arabian J. Sci. Eng. 41 (4): 1263–1271. https://doi.org/10.1007/s13369-015-1906-4.
Poon, C. S., and D. Chan. 2006. “Paving blocks made with recycled concrete aggregate and crushed clay brick.” Constr. Build. Mater. 20 (8): 569–577. https://doi.org/10.1016/j.conbuildmat.2005.01.044.
Poon, C. S., Z. H. Shui, and L. Lam. 2004. “Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates.” Constr. Build. Mater. 18 (6): 461–468. https://doi.org/10.1016/j.conbuildmat.2004.03.005.
Purushothaman, R., R. R. Amirthavalli, and L. Karan. 2015. “Influence of treatment methods on the strength and performance characteristics of recycled aggregate concrete.” J. Mater. Civ. Eng. 27 (5): 04014168. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001128.
Ranjibar, N., M. Mehrali, A. Behnia, U. J. Alengaram, and M. Z. Jumaat. 2014. “Compressive strength and microstructural analysis of fly ash/palm oil fuel based geopolymer mortar.” Mater. Des. 59 (Jul): 532–539.
Ren, X., and L. Zhang. 2018. “Experimental study of interfacial transition zones between geopolymer binder and recycled aggregates.” Constr. Build. Mater. 167 (Apr): 749–756. https://doi.org/10.1016/j.conbuildmat.2018.02.111.
Roa, A., K. N. Jha, and S. Misra. 2007. “Use of aggregates from recycled construction and demolition waste in concrete.” Resour. Conserv. Recycl. 50 (1): 71–81. https://doi.org/10.1016/j.resconrec.2006.05.010.
Ryu, G. S., K. T. Koh, and J. H. Lee. 2013. “Strength development and durability of geopolymer mortar using the combined fly ash and blast-furnace slag.” J. Korean Recycled Constr. Resour. Inst. 1 (1): 35–41.
Sagoe-Crentsil, K. K., T. Brown, and A. H. Taylor. 2001. “Performance of concrete made with commercially produced coarse recycled concrete aggregate.” Cem. Concr. Res. 31 (5): 707–712. https://doi.org/10.1016/S0008-8846(00)00476-2.
Saloma, A. Saggaff, Hanafiah, and A. Mawwarni. 2016. “Geopolymer mortar with fly ash.” In Vol. 78 of Proc., MATEC Web of Conf., 1–6. Paris: EDP Sciences. https://doi.org/10.1051/matecconf/20167801026.
Sata, V., A. Sathonsaowaphak, and P. Chindaprasirt. 2012. “Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack.” Cem. Concr. Compos. 34 (5): 700–708. https://doi.org/10.1016/j.cemconcomp.2012.01.010.
Sathonsaowaphak, A., P. Chindaprasirt, and K. Pimraksa. 2009. “Workability and strength of lignite bottom ash geopolymer mortar.” J. Hazard. Mater. 168 (1): 44–50. https://doi.org/10.1016/j.jhazmat.2009.01.120.
Schubert, W., M. Khanal, and J. Tomas. 2005. “Impact crushing of particle–particle compounds—Experiment and simulation.” Int. J. Miner. Process. 75 (1–2): 41–52. https://doi.org/10.1016/j.minpro.2004.01.006.
Shen, J., P. Lu, Y. Ling, M. Faytarouni. 2018. Initial characterization of geopolymer-based UHPC material properties. Ames, IA: Iowa State Univ. Institute for Transportation.
Shi, C., Y. Li, J. Zhang, W. Li, L. Chong, and Z. Xie. 2016. “Performance enhancement of recycled concrete aggregate—A review.” J. Cleaner Prod. 112 (1): 466–472. https://doi.org/10.1016/j.jclepro.2015.08.057.
Shi, X. S., F. G. Collins, X. L. Zhao, and Q. Y. Wang. 2012. “Mechanical properties and microstructure analysis of fly ash geopolymetric recycled concrete.” J. Hazard. Mater. 237-238 (Oct): 20–29. https://doi.org/10.1016/j.jhazmat.2012.07.070.
Silva, R. V., J. de Brito, and R. K. Dhir. 2015. “The influence of the use of recycled aggregates on the compressive strength of concrete: A review.” Eur. J. Environ. Civ. Eng. 19 (7): 825–849. https://doi.org/10.1080/19648189.2014.974831.
Spaeth, V., M. P. Delplanke-Ogletre, and J. P. Lecomte. 2008. “Hydration process and microstructure development of integral water repellent cement-based materials.” In Proc., Hydrophobe, V 5th Int. Conf. on Water Repellent Treatment of Building Materials, 245–254. Freiburg, Germany: Aedificatio Publishers.
Tam, V. W. Y., X. F. Gao, and C. M. Tam. 2005. “Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach.” Cem. Concr. Res. 35 (6): 1195–1203. https://doi.org/10.1016/j.cemconres.2004.10.025.
Tam, V. W. Y., X. F. Gao, C. M. Tam, and K. M. Ng. 2009. “Physio-chemical reactions in recycle aggregate concrete.” J. Hazard. Mater. 163 (2–3): 823–828. https://doi.org/10.1016/j.jhazmat.2008.07.031.
Tam, V. W. Y., C. M. Tam, and K. N. Le. 2007. “Removal of cement mortar remains from recycled aggregate using pre-soaking approaches.” Resour. Conserv. Recycl. 50 (1): 82–101. https://doi.org/10.1016/j.resconrec.2006.05.012.
Tan, X., W. Li, M. Zhao, and V. W. Y. Tam. 2019. “Numerical discrete-element method investigation on failure process of recycled aggregate concrete.” J. Mater. Civ. Eng. 31 (1): 04018353. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002562.
Thomas, J., N. N. Thaickavil, and P. M. Wilson. 2018a. “Strength and durability of concrete containing recycled concrete aggregates.” J. Build. Eng. 19 (Sep): 349–365. https://doi.org/10.1016/j.jobe.2018.05.007.
Thomas, R. J., A. J. Fellows, and A. D. Sorensen. 2018b. “Durability analysis of recycled asphalt pavement as partial coarse aggregate replacement in a high-strength concrete mixture.” J. Mater. Civ. Eng. 30 (5): 04018061. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002262.
Topçu, I. B., and N. F. Günçan. 1995. “Using waste concrete as aggregate.” Cem. Concr. Res. 25 (7): 1385–1390. https://doi.org/10.1016/0008-8846(95)00131-U.
USEPA. 2016. Construction and demolition debris generation in the United States, 2014. Washington, DC: Office of Resource Conservation and Recovery.
USEPA. 2018. Advancing sustainable materials management: 2015 fact sheet. Washington, DC: Office of Land and Emergency Management.
USEPA. 2019. Advancing sustainable materials management: 2017 fact sheet. Washington, DC: Office of Land and Emergency Management.
Vasconcelos, E., S. Fernandes, J. L. Barroso de Aguiar, and F. Pacheco-Torgal. 2011. “Concrete retrofitting using metakaolin geopolymer mortars and CFRP.” Constr. Build. Mater. 25 (8): 3213–3221. https://doi.org/10.1016/j.conbuildmat.2011.03.006.
Velay-Lizancos, M., I. Martinex-Lage, M. Azenha, J. Granja, and P. Vazquez-Burgo. 2018. “Concrete with fine and coarse recycled aggregates: E-modulus evolution, compressive strength and non-destructive testing at early ages.” Constr. Build. Mater. 193 (Dec): 323–331. https://doi.org/10.1016/j.conbuildmat.2018.10.209.
Wang, Y., H. Zhang, Y. Geng, Q. Wang, and S. Zhang. 2019. “Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate.” Constr. Build. Mater. 215 (Aug): 332–346. https://doi.org/10.1016/j.conbuildmat.2019.04.212.
Xiang, X., C. S. Cai, R. Zhao, and H. Peng. 2016. “Numerical analysis of recycled aggregate concrete-filled steel tube stub columns.” Adv. Struct. Eng. 19 (5): 717–729. https://doi.org/10.1177/1369433215618270.
Xiao, J., W. Li, D. J. Corr, and S. P. Shah. 2013a. “Simulation study on the stress distribution in modeled recycled aggregate concrete under uniaxial compression.” J. Mater. Civ. Eng. 25 (4): 504–518. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000598.
Xiao, J., W. Li, D. J. Corr, and S. P. Shah. 2013b. “Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete.” Cem. Concr. Res. 52 (Oct): 82–99. https://doi.org/10.1016/j.cemconres.2013.05.004.
Xiao, J., W. Li, Z. Sun, and S. P. Shah. 2012. “Crack propagation in recycled aggregate concrete under uniaxial compressive loading.” ACI Mater. J. 109 (4): 451–462. https://doi.org/10.14359/51683920.
Xu, J., X. Zhao, Y. Yu, T. Xie, G. Yang, and J. Xue. 2019. “Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks.” Constr. Build. Mater. 211 (Jun): 479–491. https://doi.org/10.1016/j.conbuildmat.2019.03.234.
Yan, S., and K. Sagoe-Crentsil. 2012. “Properties of wastepaper sludge in geopolymer mortars for masonry applications.” J. Environ. Manage. 112 (Dec): 27–32. https://doi.org/10.1016/j.jenvman.2012.07.008.
Yang, S., and H. Lee. 2017. “Mechanical properties of recycled aggregate concrete proportioned with modified equivalent mortar volume method for paving applications.” Constr. Build. Mater. 136 (Apr): 9–17. https://doi.org/10.1016/j.conbuildmat.2017.01.029.
Yang, X., Z. You, Z. Wang, and Q. Dai. 2016. “Review on heterogeneous model reconstruction of stone-based composites in numerical simulation.” Constr. Build. Mater. 117 (Aug): 229–243. https://doi.org/10.1016/j.conbuildmat.2016.04.135.
Yusuf, T. O., M. Ismail, J. Usman, and A. H. Noruzman. 2014. “Impact of blending on strength distribution of ambient cured metakaolin and palm oil fuel ash based geopolymer mortar.” Adv. Civ. Eng. 2014: 1–8. https://doi.org/10.1155/2014/658067.
Zaharieva, R., F. Buyle-Bodin, and E. Wirquin. 2004. “Frost resistance of recycled aggregate concrete.” Cem. Concr. Res. 34 (10): 1927–1932. https://doi.org/10.1016/j.cemconres.2004.02.025.
Zhang, H., T. Ji, H. Liu, and S. Su. 2018a. “Modifying recycled aggregate concrete by aggregate surface treatment using sulphoaluminate cement and basalt powder.” Constr. Build. Mater. 192 (Dec): 526–537. https://doi.org/10.1016/j.conbuildmat.2018.10.160.
Zhang, H. Y., L. Cao, and B. Wu. 2016a. “Tensile and bond properties and strength degradation mechanism of geopolymer mortar after exposure to elevated temperatures.” J. Harbin Inst. Technol. 48 (12): 128–134.
Zhang, H. Y., V. Kodur, B. Wu, L. Cao, and F. Wang. 2016b. “Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures.” Constr. Build. Mater. 109 (Apr): 17–24. https://doi.org/10.1016/j.conbuildmat.2016.01.043.
Zhang, H. Y., S. L. Qi, and L. Cao. 2015a. “Mechanical performance comparison geopolymer paste, mortar, and concrete after exposure to high temperature.” J. Disaster Prev. Mitigation Eng. 35 (1): 11–16.
Zhang, J., C. Shi, Y. Li, and X. Pan. 2015b. “Performance enhancement of recycled concrete aggregates through carbonation.” J. Mater. Civ. Eng. 27 (11): 1–7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001296.
Zhang, P., Y. Zheng, K. Wang, and J. Zhang. 2018b. “A review on properties of fresh and hardened geopolymer mortar.” Compos. Part B 152 (Nov): 79–95. https://doi.org/10.1016/j.compositesb.2018.06.031.
Zhao, Z., S. Wang, L. Lu, and C. Gong. 2013. “Evaluation of pre-coated recycled aggregate for concrete and mortar.” Constr. Build. Mater. 43 (Jun): 191–196. https://doi.org/10.1016/j.conbuildmat.2013.01.032.
Zhu, Y. G., S. C. Kou, C. S. Poon, J. G. Dai, and Q. Y. Li. 2013. “Influence of silane-based water repellent on the durability properties of recycled aggregate concrete.” Cem. Concr. Compos. 35 (1): 32–38. https://doi.org/10.1016/j.cemconcomp.2012.08.008.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 11November 2020

History

Published online: Aug 18, 2020
Published in print: Nov 1, 2020
Discussion open until: Jan 18, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Matthew Upshaw, A.M.ASCE [email protected]
Graduate Student, Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA 70803. Email: [email protected]
C. S. Cai, F.ASCE [email protected]
Edwin B. and Norma S. McNeil Distinguished Professor, Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA 70803 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share