Technical Papers
Aug 29, 2020

Cement Stabilization of Indian Peat: An Experimental Investigation

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 11

Abstract

This article focuses particularly on the improvement of peatland in the Northeast (NE)-Indian region by using a chemical treatment process. Cement is used as a binding agent to the peat at different percentages (by dry weight of peat) which improves its mechanical, chemical, and microstructural characteristics. The organic content plays a vital role in the densification process, which ultimately reduces the density of peat. Further, the amendment of cement brings a notable strength improvement to peat, as well as nullifies the effect of organic content, reduces the influence of acidity, and finally renders a conducive change to its electrical conductance. Moreover, the principal mechanisms that contributed to this improvement process are supported by using some morphological studies such as field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). A significant change in the morphology of cement-treated peat has been noticed in the FESEM micrographs, which yields a reduced porous structure and densifies the entire soil fabric. The formation of the calcium silicate hydrate (CSH), calcium aluminate hydrate (CAH), calcium aluminum silicate hydrate (CASH), and ettringite is confirmed by XRD analysis which is actually responsible for the hardening process. Further, FTIR analysis gives additional support to the observed results where an increase in the spectral intensity throughout the entire range after the treatment process indicates the formation of a new strength-enhancing gel. However, the adverse effect caused by the organic substances (such as carboxylic groups and polysaccharides) to the overall improvement has also been confirmed through FTIR analysis.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are proprietary or confidential in nature and may only be provided with restrictions.

References

Adejumo, T. E. 2012. “Effect of organic content on compaction and consolidation characteristics of lagos organic clay.” Electron. J. Geotech. Eng. 17: 2201–2211.
Aiken, G. R. 1985. “Humic substances in soil, sediment, and water: Geochemistry, isolation, and characterization.” Geol. J. 692. https://doi.org/10.1002/gj.3350210213.
Al-Jabban, W., S. Knutsson, and J. Laue. 2017. “Stabilization of clayey silt soil using small amounts of Petrit T.” Engineering 9 (6): 540–562. https://doi.org/10.4236/eng.2017.96034.
Andriesse, J. P. 1988. Nature and management of tropical peat soils, 165. Rome, Italy: Food and Agriculture Organization.
Asapo, E. S., and C. A. Coles. 2012. “Characterization and comparison of saprist and fibrist Newfoundland Sphagnum peat soils.” J. Miner. Mater. Charact. Eng. 11 (7): 709–718. https://doi.org/10.4236/jmmce.2012.117057.
ASTM 1997. Standard guide for evaluating effectiveness of admixtures for soil stabilization. ASTM D4609. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort. ASTM D698. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for moisture, ash, and organic matter of peat and other organic soils. ASTM D2974. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for pH of peat materials. ASTM D2976. West Conshohocken, PA: ASTM.
Axelsson, K., S. E. Johansson, and R. Andersson. 2002. Stabilization of organic soils by cement and puzzolanic reactions–feasibility study. Linköping, Sweden: Swedish Deep Stabilization Research Centre.
Bergado, D. T., L. R. Anderson, N. Miura, and A. S. Balasubramaniam. 1996. Soft ground improvement in lowland and other environments, 427. New York: ASCE.
Bobet, A., J. Hwang, C. T. Johnston, and M. Santagata. 2011. “One-dimensional consolidation behavior of cement-treated organic soil.” Can. Geotech. J. 48 (7): 1100–1115. https://doi.org/10.1139/t11-020.
Boobathiraja, S., P. Balamurugan, M. Dhansheer, and A. Adhikari. 2014. “Study on strength of peat soil stabilised with cement and other pozzolanic materials.” Int. J. Civ. Eng. Res. 5 (4): 2278–3652.
Canakci, H., W. Sidik, and I. H. Kilic. 2015. “Bacterial calcium carbonate precipitation in peat.” Arabian J. Sci. Eng. 40 (8): 2251–2260. https://doi.org/10.1007/s13369-015-1760-4.
Clare, K. E., and P. T. Sherwood. 1954. “The effect of organic matter on the setting of soil-cement mixtures.” J. Appl. Chem. 4 (11): 625–630. https://doi.org/10.1002/jctb.5010041107.
Claringbull, G. F., and M. H. Hey. 1952. “A re-examination of tobermorite.” Mineral. Mag. J. Mineral. Soc. 29 (218): 960–962. https://doi.org/10.1180/minmag.1952.029.218.10.
Den Haan, E. J. 1998. “Cement based stabilizers for Dutch organic soils.” In Proc., Int. Conf. on Problematic Soils, 53–56. Rotterdam, Netherlands: A.A. Balkema.
Devi, K. R., R. B. Sahu, and S. Mukherjee. 2015. “Shear strength of organic clay in Kolkata region.” Indian Geotech. J. 45 (1): 25–34. https://doi.org/10.1007/s40098-014-0102-x.
Dhar, S., and M. Hussain. 2019. “The strength and microstructural behavior of lime stabilized subgrade soil in road construction.” Int. J. Geotech. Eng. 1–13. https://doi.org/10.1080/19386362.2019.1598623.
Dick, D. P., J. H. Z. Santos, and E. M. Ferranti. 2003. “Chemical characterization and infrared spectroscopy of soil organic matter from two southern Brazilian soils.” Revista Brasileira de Ciência do Solo 27 (1): 29–39. https://doi.org/10.1590/S0100-06832003000100004.
Edil, T. B. 1997. “Construction over peats and organic soils.” In Proc., Conf. on Recent Advances in Soft Soil Engineering, 5–7. http://resolver.tudelft.nl/uuid:6bd7949d-dcfa-4d23-bf70-2c1f3a91e144. Delft, Netherlands: Deltares.
Eisazadeh, A., K. A. Kassim, and H. Nur. 2011. “Characterization of phosphoric acid-and lime-stabilized tropical lateritic clay.” Environ. Earth Sci. 63 (5): 1057–1066. https://doi.org/10.1007/s12665-010-0781-2.
Eisazadeh, A., K. A. Kassim, and H. Nur. 2012. “Solid-state NMR and FTIR studies of lime stabilized montmorillonitic and lateritic clays.” Appl. Clay Sci. 67–68 (Oct): 5–10. https://doi.org/10.1016/j.clay.2012.05.006.
Elkady, T. Y. 2016. “The effect of curing conditions on the unconfined compression strength of lime-treated expansive soils.” Road Mater. Pavement Des. 17 (1): 52–69. https://doi.org/10.1080/14680629.2015.1062409.
Eriktius, D. T., E. C. Leong, and H. Rahardjo. 2017. “Shear strength of peaty soil-cement mixes.” In Soft soil engineering, 551–556. Abingdon, UK: Routledge.
Filippov, L., F. Thomas, I. Filippova, J. Yvon, and A. Morillon-Jeanmaire. 2009. “Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases.” J. Hazard. Mater. 171 (1–3): 731–738. https://doi.org/10.1016/j.jhazmat.2009.06.065.
Gadsden, J. A. 1975. Infrared spectra of minerals and related inorganic compounds, 277. London: Butterworths.
Gunasekaran, S., and G. Anbalagan. 2007. “Spectroscopic characterization of natural calcite minerals.” Spectrochim. Acta, Part A 68 (3): 656–664. https://doi.org/10.1016/j.saa.2006.12.043.
Harris, J., S. Sebesta, and T. Scullion. 2004. “Hydrated lime stabilization of sulfate-bearing vertisols in Texas.” Transp. Res. Rec. 1868 (1): 31–39. https://doi.org/10.3141/1868-04.
Harris, P., O. Harvey, A. Puppala, S. Sebesta, and S. Rao. 2009. Mitigating the effects of organics in stabilized soils: Technical report. College Station, TX: Texas Transportation Institute.
Hayashi, H., and S. Nishimoto. 2005. “Strength characteristics of stabilized peat using different types of binders.” In Proc., Int. Conf. of Deep Mixing—Best Practices and Recent Advances, Deep Mixing, 55–62. Linköping, Sweden: Swedish Deep Research Centre.
Haynes, R. H. 1998. The Canadian system of soil classification, 202. Ottawa: Canadian Science Publishing.
Heng, M., and K. Murata. 2004. “Aging of concrete building and determining the pH on the surface of the concrete by using a handy semi-conductive pH meter.” Anal. Sci. 20 (7): 1087–1090. https://doi.org/10.2116/analsci.20.1087.
Hewlett, P. 2003. Lea’s chemistry of cement and concrete, 896. Amsterdam, Netherlands: Elsevier.
Hoikkala, S., M. Leppänen, and P. Lahtinen. 1996. “Mass stabilization of peat in road construction.” In Vol. 1 of Proc., XII Nordiska Geoteknikermötet NGM, 26–28. Reykjavík, Iceland: Reykjavík Icelandic Geotechnical Society.
Huat, B. B. K., A. Asadi, A. Prasad, and S. Kazemian. 2014. Geotechnics of organic soils and peat, 250. Boca Raton, FL: CRC Press.
Huat, B. B. K., S. Maail, and T. A. Mohamed. 2005. “Effect of chemical admixtures on the engineering properties of tropical peat soils.” Am. J. Appl. Sci. 2 (7): 1113–1120. https://doi.org/10.3844/ajassp.2005.1113.1120.
Jain, A., S. C. Rai, and E. Sharma. 2000. “Hydro-ecological analysis of a sacred lake watershed system in relation to land-use/cover change from Sikkim Himalaya.” Catena 40 (3): 263–278. https://doi.org/10.1016/S0341-8162(00)00086-2.
Janz, M., and S. E. Johansson. 2002. The function of different binding agents in deep stabilization. Linköping, Sweden: Swedish Deep Stabilization Research Centre.
Kalantari, B., A. Prasad, and B. B. K. Huat. 2013. “Cement and silica fume treated columns to improve peat ground.” Arabian J. Sci. Eng. 38 (4): 805–816. https://doi.org/10.1007/s13369-012-0369-0.
Kamon, M., S. Tomohisa, and K. Sawa. 1989. “On stabilization of hedoro by using cement group hardening materials.” Zairyo 432 (38): 1092–1097. https://doi.org/10.2472/jsms.38.1092.
Kezdi, A. 1979. “Chemical soil stabilization.” In Stabilized earth roads developments in geotechnical engineering, 19. Amsterdam, Netherlands: Elsevier Scientific Publishing.
Kolay, P. K., and M. A. Rahman. 2015. “Physico-geotechnical properties of peat and its stabilisation.” Proc. Inst. Civ. Eng. Ground Improv. 169 (3): 206–216. https://doi.org/10.1680/jgrim.15.00025.
Krumins, J., M. Klavins, V. Seglins, and E. Kaup. 2012. “Comparative study of peat composition by using FT-IR spectroscopy.” Mater. Sci. Appl. Chem. 26: 106–114.
Latifi, N., A. S. A. Rashid, A. Marto, and M. M. Tahir. 2016. “Effect of magnesium chloride solution on the physico-chemical characteristics of tropical peat.” Environ. Earth Sci. 75 (3): 220. https://doi.org/10.1007/s12665-015-4788-6.
Lucas, R. E. 1982. Organic soils (Histosols) formation, distribution, physical and chemical properties and management for crop production, 77. East Lansing, MI: Agricultural Experiment Station.
Madhyannapu, R. S., A. J. Puppala, S. Nazarian, and D. Yuan. 2010. “Quality assessment and quality control of deep soil mixing construction for stabilizing expansive subsoils.” J. Geotech. Geoenviron. Eng. 136 (1): 119–128. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000188.
Mascarenhas, A. 1997. “Significance of peat on the western continental shelf of India.” J. Geol. Soc. India 49 (2): 145–152.
Montgomery, D. M., C. J. Sollars, R. Perry, S. E. Tarling, P. Barnes, and E. Henderson. 1991. “Treatment of organic-contaminated industrial wastes using cement-based stabilization/solidification—I. Microstructural analysis of cement-organic interactions.” Waste Manage. Res. 9 (2): 103–111. https://doi.org/10.1016/0734-242X(91)90098-R.
Morrill, L. G., B. C. Mahilum, and S. H. Mohiuddin. 1982. Organic compounds in soils: Sorption, degradation and persistence, 326. Ann Arbor, MI: Ann Arbor Science Publishers.
Mukhtar, F., M. A. Bhat, R. Bashir, and H. Chisti. 2014. “Assessment of surface water quality by evaluating the physico-chemical parameters and by checking the water quality index of Nigeen Basin and Brari Nambal Lagoon of Dal Lake, Kashmir.” J. Mater. Environ. Sci. 5 (4): 1178–1187.
Nacamoto, K. 1970. Infrared spectra of inorganic and coordinated compounds, 338. New York: Wiley.
Narayana, A. C., C. P. Priju, and G. Rajagopalan. 2002. “Late Quaternary peat deposits from Vembanad Lake (lagoon), Kerala, SW coast of India.” Curr. Sci. 83 (3): 318–321.
Nikookar, M. 2012. “The geotechnical improvement of Talesh peat soil with cement.” In Proc., 3rd Int. Conf. on New Developments in Soil Mechanics and Geotechnical Engineering, 1–8. Nicosia, North Cyprus: Near East Univ.
Ogino, T., T. Goto, K. Kataoka, and M. Kuroda. 1994. “Utilization of stabilized dredged waste for construction material.” In Proc., 1st Int. Congress on Environmental Goetechnics, 49–56. Bingham Farms, MI: BiTech.
Orem, W. H., S. G. Neuzil, H. E. Lerch, and C. B. Cecil. 1996. “Experimental early-stage coalification of a peat sample and a peatified wood sample from Indonesia.” Org. Geochem. 24 (2): 111–125. https://doi.org/10.1016/0146-6380(96)00012-5.
Park, C. G., S. W. Yun, P. C. Baveye, and C. Yu. 2015. “Effect of industrial by-products on unconfined compressive strength of solidified organic marine clayey soils.” Materials 8 (8): 5098–5111. https://doi.org/10.3390/ma8085098.
Parkkinen, E. 1997. “Utilization of industrial by-products to strengthen soft clayey and organic soils.” In Proc., Int. Conf. on Soil Mechanics and Foundation Engineering—Int. Society for Soil Mechanics and Foundation Engineering, 1701–1704. Rotterdam, Netherlands: A.A. Balkema.
Pashaki, M. K., M. Nikookar, S. M. Mirmoa’zen, and M. Arabani. 2017. “Geomechanical properties of peat stabilized with cement and sand.” Int. J. Adv. Appl. Sci. 4 (9): 19–25. https://doi.org/10.21833/ijaas.2017.09.003.
Paul, A., M. Hussain, and B. Ramu. 2018. “The physicochemical properties and microstructural characteristics of peat and their correlations: Reappraisal.” Int. J. Geotech. Eng. 1–12. https://doi.org/10.1080/19386362.2018.1483099.
Peyne, J., J. Gautron, J. Doudeau, E. Joussein, and S. Rossignol. 2017. “Influence of calcium addition on calcined brick clay based geopolymers: A thermal and FTIR spectroscopy study.” Constr. Build. Mater. 152 (Oct): 794–803. https://doi.org/10.1016/j.conbuildmat.2017.07.047.
Porbaha, A., S. Shibuya, and T. Kishida. 2000. “State of the art in deep mixing technology. Part III: Geomaterial characterization.” Proc. Inst. Civ. Eng. Ground Improv. 4 (3): 91–110. https://doi.org/10.1680/grim.2000.4.3.91.
Rahgozar, M. A., and M. Saberian. 2016. “Geotechnical properties of peat soil stabilised with shredded waste tyre chips.” Mire Peat 18 (16): 1–16.
Rahman, J. A., A. M. A. Napia, M. A. A. Nazri, R. Mohamed, and A. S. Al-Geethi. 2018. “A study on factors affecting strength of solidified peat through XRD and FESEM analysis.” In Proc., IOP Conf. Series: Earth and Environmental Science, 12059. Bristol, UK: IOP Publishing.
Rahman, M. M., A. Siddique, and M. K. Uddin. 2010. “Microstructure and chemical properties of cement treated soft Bangladesh clays.” Soils Found. 50 (1): 1–7. https://doi.org/10.3208/sandf.50.1.
Rahman, Z. A., N. Sulaiman, S. A. Rahim, W. M. R. Idris, and T. Lihan. 2016. “Effect of cement additive and curing period on some engineering properties of treated peat soil.” Sains Malaysiana 45 (11): 1679–1687.
Razali, S. N. M., I. Bakar, and A. Zainorabidin. 2013. “Behaviour of peat soil in instrumented physical model studies.” Procedia Eng. 53: 145–155. https://doi.org/10.1016/j.proeng.2013.02.020.
Reddy, B. K., R. B. Sahu, and S. Ghosh. 2014. “Consolidation behavior of organic soil in normal Kolkata deposit.” Indian Geotech. J. 44 (3): 341–350. https://doi.org/10.1007/s40098-013-0076-0.
Rezanezhad, F., J. S. Price, W. L. Quinton, B. Lennartz, T. Milojevic, and P. Van Cappellen. 2016. “Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists.” Chem. Geol. 429 (Jul): 75–84. https://doi.org/10.1016/j.chemgeo.2016.03.010.
Saeeda, K. A. H., K. A. Kassima, N. Z. M. Yunusa, and H. Nurb. 2014. “Physico-chemical characterization of lime stabilized tropical Kaolin clay.” Jurnal Teknologi 72 (3): 83–90.
Saride, S., A. J. Puppala, and S. R. Chikyala. 2013. “Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays.” Appl. Clay Sci. 85 (Nov): 39–45. https://doi.org/10.1016/j.clay.2013.09.008.
Sariosseiri, F., and B. Muhunthan. 2009. “Effect of cement treatment on geotechnical properties of some Washington State soils.” Eng. Geol. 104 (1–2): 119–125. https://doi.org/10.1016/j.enggeo.2008.09.003.
Sherwood, P. 1993. Soil stabilization with cement and lime, 153. Washington, DC: Transportation Research Board.
Siler, P., I. KolaGova, T. Sehnal, J. Masilko, and T. Opravil. 2016. “The determination of the influence of pH value of curing conditions on Portland cement hydration.” Procedia Eng. 151: 10–17. https://doi.org/10.1016/j.proeng.2016.07.393.
Sing, W. L., R. Hashim, and F. H. Ali. 2008. “Behavior of stabilized peat soils in unconfined compression tests.” Electron. J. Geotech. Eng. 13 (4): 581–591. https://doi.org/10.3844/ajeassp.2008.274.279.
Skels, P., K. Bondars, and A. Korjakins. 2011. “Unconfined compressive strength properties of cement stabilized peat.” In Vol. 6 of Proc., 4th Int. Conf. Civil Engineering’ 13 Proc. Part I Construction and Materials, 1915–1921. Jelgava, Latvia: Latvia Univ. of Agriculture.
Solanki, P., and M. Zaman. 2002. “Microstructural and mineralogical characterization of clay stabilized using calcium-based stabilizers.” Scanning Electron Microsc. (4): 771–798.
Talib, M. K. A., and Y. Noriyuki. 2017. “Highly organic soil stabilization by using sugarcane bagasse ash (SCBA).” In Vol. 103 of Proc., MATEC Web of Conf., 07013. Fukuoka, Japan: Kyushu Univ. https://doi.org/10.1051/matecconf/201710307013.
Taştan, E. O. 2005. “Stabilization of organic soils using fly ash.” J. Geotech. Geoenviron. Eng. 137 (9): 819–834. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000502.
Thomas, P. K., C. Venkataramanan, and K. Vasu. 1974. “Quality and quantity of peat material reserves in the Nilgiris.” Proc. Ind. Natl. Sci. Acad. 40: 608.
Timoney, M. J., and B. McCabe. 2012. “Experiences of dry soil mixing in organic soils.” J. Eng. Geol. 19 (1): 7–80. https://doi.org/10.1680/grim.2012.165.1.3.
Tremblay, H., J. Duchesne, J. Locat, and S. Leroueil. 2002. “Influence of the nature of organic compounds on fine soil stabilization with cement.” Can. Geotech. J. 39 (3): 535–546. https://doi.org/10.1139/t02-002.
Tremblay, H., S. Leroueil, and J. Locat. 2001. “Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement.” Can. Geotech. J. 38 (3): 567–579. https://doi.org/10.1139/t00-119.
Van der Marel, H. W., and H. Beutelspacher. 1976. Atlas of infrared spectroscopy of clay minerals and their admixtures. Amsterdam, Netherlands: Elsevier Publishing Company.
Vincent, N. A., R. Shivashankar, K. N. Lokesh, and M. J. Jinu. 2017. “Laboratory electrical resistivity studies on cement stabilized soil.” Int. Scholarly Res. Not. 2017: 1–15. https://doi.org/10.1155/2017/8970153.
von Post, L. 1922. Sveriges Geologiska Undersöknings torvinventering och några av dess hittills vunna resulta, 1–27. Jönköping, Sweden: Svenska mosskulturföreningen.
Wong, L. S. 2015. “Formulation of an optimal mix design of stabilized peat columns with fly ash as a Pozzolan.” Arabian J. Sci. Eng. 40 (4): 1015–1025. https://doi.org/10.1007/s13369-015-1576-2.
Xu, J., P. J. Morris, J. Liu, and J. Holden. 2018. “PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis.” Catena 160 (Jan): 134–140. https://doi.org/10.1016/j.catena.2017.09.010.
Young, J. F. 1972. “A review of the mechanisms of set-retardation in portland cement pastes containing organic admixtures.” Cem. Concr. Res. 2 (4): 415–433. https://doi.org/10.1016/0008-8846(72)90057-9.
Yousuf, M., A. Mollah, P. Palta, T. R. Hess, R. K. Vempati, and D. L. Cocke. 1995. “Chemical and physical effects of sodium lignosulfonate superplasticizer on the hydration of Portland cement and solidification/stabilization consequences.” Cem. Concr. Res. 25 (3): 671–682. https://doi.org/10.1016/0008-8846(95)00055-H.
Zulkifley, M. T. M., T. F. Ng, J. K. Raj, R. Hashim, A. F. A. Bakar, S. Paramanthan, and M. A. Ashraf. 2014. “A review of the stabilization of tropical lowland peats.” Bull. Eng. Geol. Environ. 73 (3): 733–746. https://doi.org/10.1007/s10064-013-0549-5.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 11November 2020

History

Received: Mar 27, 2019
Accepted: Mar 13, 2020
Published online: Aug 29, 2020
Published in print: Nov 1, 2020
Discussion open until: Jan 29, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Abhinaba Paul [email protected]
Ph.D. Scholar, Dept. of Civil Engineering, National Institute of Technology, Silchar, Silchar, Assam 788010, India. Email: [email protected]
Monowar Hussain, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering, National Institute of Technology, Silchar, Silchar, Assam 788010, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share