Abstract

This paper presents the influence of the loading velocity on the fracture response of mortars with both natural hydraulic and aerial limes under three different rates (loading-point displacement rates, 5.0×104, 5.0×101, and 1.6×101  mm/s). According to the results, the fracture energy and the peak load are sensitive to the loading rate. The maximum dynamic increase factors (DIF), of the peak load are 1.4 and 1.6 for the natural hydraulic and aerial lime mortars, respectively, while it is 1.9 for the fracture energy for both mortars. Moreover, the increase in the peak load and fracture energy of the natural hydraulic lime mortar is basically the result of the viscous effect of free water in the mortar. However, for the aerial lime mortar, the rate effect is chiefly related to the crack path and propagation velocity.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors appreciate funding from the Ministerio de Ciencia, Innovación y Universidades, Spain, with grants BIA2015-68678-C2-1-R and RTC-2017-6736-3, and the Junta de Comunidades de Castilla-La Mancha (JCCM), Fondo Europeo de Desarrollo Regional, Spain, with grant PEII-2014-016-P. Lucía Garijo also acknowledges the financial support from the Ministerio de Educación, Cultura y Deporte, Spain with the scholarship FPU014/05186 and José Joaquín Ortega from the JCCM with the scholarship 2016/12998, Spain. We also thank the fruitful discussion with Professor Pere Roca, from Universidad Politécnica de Cataluña, on the fabrication of the lime mortars, and Ignacio Garrido Sáenz, from Universidad de Castilla-La Mancha, for his assistance with the SEM analysis.

References

Apostolopoulou, M., E. Aggelakopoulou, L. Siouta, A. Bakolas, M. Douvika, P. G. Asteris, and A. Moropoulou. 2017. “A methodological approach for the selection of compatible and performable restoration mortars in seismic hazard areas.” Constr. Build. Mater. 155 (Nov): 1–14. https://doi.org/10.1016/j.conbuildmat.2017.07.210.
Arizzi, A., G. Cultrone, M. Brummer, and H. Viles. 2015a. “A chemical, morphological and mineralogical study on the interaction between hemp hurds and aerial and natural hydraulic lime particles: Implications for mortar manufacturing.” Constr. Build. Mater. 75 (Jan): 375–384. https://doi.org/10.1016/j.conbuildmat.2014.11.026.
Arizzi, A., G. Martinez-Huerga, E. Sebastian-Pardo, and G. Cultrone. 2015b. “Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions.” Materiales De Construccion 65 (318): 1–11. https://doi.org/10.3989/mc.2015.03514.
Asprone, D., E. Cadoni, F. Iucolano, and A. Prota. 2014. “Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar.” Cem. Concr. Compos. 53 (Oct): 52–58. https://doi.org/10.1016/j.cemconcomp.2014.06.009.
Asprone, D., E. Cadoni, and A. Prota. 2009. “Experimental analysis on the tensile dynamic behavior of existing concrete under high strain-rates.” ACI Struct. J. 106 (1): 106–113.
Bažant, Z. P., and J. Planas. 1998. Fracture and size effect in concrete and other Quasibrittle materials. Boca Raton, FL: Taylor and Francis.
Bischoff, P., and S. Perry. 1991. “Compressive behaviour of concrete at high strain rates.” Materiaux et Constructions 24 (144): 425–450.
BSI (British Standard Institute). 1998. Test for mechanical and physical properties of aggregates. Part 3: Determination of loose bulk density and voids. BSI, 10. BS EN 1097-3. London: BSI.
BSI (British Standard Institute). 1999a. Methods of test for mortar for masonry. Part 1: Determination of particle size distribution (by sieve analysis), BSI, 8. BS EN 1015-1. London: BSI.
BSI (British Standard Institute). 1999b. Methods of test for mortar for masonry. Part 3: Determination of consistence of fresh mortar (by flow table), BSI, 10. BS EN 1015-3. London: BSI.
BSI (British Standard Institute). 1999c. Methods of test for mortar for masonry. Part 6: Determination of bulk density of fresh mortar, BSI, 8. BS EN 1015-6. London: BSI.
BSI (British Standard Institute). 2013. Test for mechanical and physical properties of aggregates. Part 6: Determination of particle density and water absorption, BSI, 54. BS EN 1097-6. London: BSI.
BSI (British Standard Institute). 2015. Building lime. Part 1: Definitions, specifications and conformity criteria. BS EN 459-1. London: BSI.
BSI (British Standard Institute). 2019. Methods of test for mortar for masonry. Part 11: Determination of flexural and compressive strength of hardened mortar, BSI, 12. BS EN 1015-11. London: BSI.
Cadoni, E., L. Fenu, and D. Forni. 2012. “Strain rate behavior in tension of austenitic stainless steel used for reinforcing bars.” Constr. Build. Mater. 35 (Oct): 399–407. https://doi.org/10.1016/j.conbuildmat.2012.04.081.
Chan, R., and V. Bindiganavile. 2010. “Toughness of fibre reinforced hydraulic lime mortar. Part-2: Dynamic response.” Mater. Struct. 43 (10): 1445–1455. https://doi.org/10.1617/s11527-010-9599-3.
Drougkas, A., P. Roca, and C. Molins. 2016. “Compressive strength and elasticity of pure lime mortar masonry.” Mater. Struct. 49 (3): 983–999. https://doi.org/10.1617/s11527-015-0553-2.
Elices, M., G. V. Guinea, and J. Planas. 1992. “Measurement of the fracture energy using three point bend tests. 3: Influence of cutting the P-δ tail.” Mater. Struct. 25 (6): 327–334. https://doi.org/10.1007/BF02472591.
FIB. 2012. FIB model code 2010, final draft. Lausanne, Switzerland: FIB-Fédération Internationale du Béton.
Garijo, L., M. Azenha, M. Ramesh, P. B. Lourenço, and G. Ruiz. 2019a. “Stiffness evolution of natural hydraulic lime mortars at early ages measured through EMM-ARM.” Constr. Build. Mater. 216 (Aug): 405–415. https://doi.org/10.1016/j.conbuildmat.2019.04.258.
Garijo, L., X. X. Zhang, G. Ruiz, and J. J. Ortega. 2020. “Age effect on the mechanical properties of natural hydraulic and aerial lime mortars.” Constr. Build. Mater. 236 (Mar): 117573. https://doi.org/10.1016/j.conbuildmat.2019.117573.
Garijo, L., X. X. Zhang, G. Ruiz, J. J. Ortega, and Z. Wu. 2018. “The effects of dosage and production process on the mechanical and physical properties of natural hydraulic lime mortars.” Constr. Build. Mater. 169 (Apr): 325–334. https://doi.org/10.1016/j.conbuildmat.2018.03.016.
Garijo, L., X. X. Zhang, G. Ruiz, J. J. Ortega, and C. R. Yu. 2019b. “Mechanical behavior of natural hydraulic lime mortars.” In Sustainable construction and building materials, edited by S. Hemeda, 1–20. London: IntechOpen.
Garijo, L., X. X. Zhang, G. Ruiz, J. J. Ortega, and R. C. Yu. 2017. “Advanced mechanical characterization of NHL mortars and cohesive simulation of their failure behavior.” Constr. Build. Mater. 153 (Oct): 569–577. https://doi.org/10.1016/j.conbuildmat.2017.07.127.
Grilo, J., A. S. Silva, P. Faria, A. Gameiro, R. Veiga, and A. Velosa. 2014. “Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions.” Constr. Build. Mater. 51 (Jan): 287–294. https://doi.org/10.1016/j.conbuildmat.2013.10.045.
Guinea, G. V., J. Planas, and M. Elices. 1992. “Measurement of the fracture energy using three point bend tests. 1: Influence of experimental procedures.” Mater. Struct. 25 (4): 212–218.
Islam, M. T., and V. Bindiganavile. 2014. “Dynamic fracture toughness of sandstone masonry beams bound with fiber-reinforced mortars.” J. Mater. Civ. Eng. 26 (1): 125–133. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000704.
Islam, M. T., R. Chan, and V. Bindiganavile. 2012. “Stress rate sensitivity of stone masonry units bound with fibre reinforced hydraulic lime mortar.” Mater. Struct. 45 (5): 765–776. https://doi.org/10.1617/s11527-011-9796-8.
Jones, N. 2011. Structural impact. 2nd ed. Cambridge, UK: Cambridge University Press.
Kalthoff, J. 1985. “On the measurement of dynamic fracture toughnesses—A review of recent work.” Int. J. Fract. 27 (3–4): 277–298. https://doi.org/10.1007/BF00017973.
Lanas, J., M. Arandigoyen, J. I. Alvarez, J. L. Pérez Bernal, and M. A. Bello. 2004a. “Mechanical behavior of masonry repair mortars: Aerial and hydraulic lime-based mixtures.” In Proc., 10th Int. Congress on Deterioration and Conservation of Stones Stockholm. Stockholm, Sweden: International Council on Monuments and Sites.
Lanas, J., J. L. P. Bernal, M. A. Bello, and J. I. A. Galindo. 2004b. “Mechanical properties of natural hydraulic lime-based mortars.” Cem. Concr. Res. 34 (12): 2191–2201. https://doi.org/10.1016/j.cemconres.2004.02.005.
Lanas, J., R. Sirera, and J. I. Alvarez. 2005. “Compositional changes in lime-based mortars exposed to different environments.” Thermochim. Acta 429 (2): 219–226. https://doi.org/10.1016/j.tca.2005.03.015.
Marastoni, D., A. Benedetti, L. Pela, and G. Pignagnoli. 2017. “Torque penetrometric test for the in-situ characterisation of historical mortars: Fracture mechanics interpretation and experimental validation.” Constr. Build. Mater. 157 (Dec): 509–520. https://doi.org/10.1016/j.conbuildmat.2017.09.120.
Marastoni, D., L. Pela, A. Benedetti, and P. Roca. 2016. “Combining Brazilian tests on masonry cores and double punch tests for the mechanical characterization of historical mortars.” Constr. Build. Mater. 112 (Jun): 112–127. https://doi.org/10.1016/j.conbuildmat.2016.02.168.
Maravelaki-Kalaitzaki, P. 2007. “Hydraulic lime mortars with siloxane for waterproofing historic masonry.” Cem. Concr. Res. 37 (2): 283–290. https://doi.org/10.1016/j.cemconres.2006.11.007.
Maravelaki-Kalaitzaki, P., A. Bakolas, I. Karatasios, and V. Kilikoglou. 2005. “Hydraulic lime mortars for the restoration of historic masonry in Crete.” Cem. Concr. Res. 35 (8): 1577–1586. https://doi.org/10.1016/j.cemconres.2004.09.001.
Mindess, S., J. F. Young, and D. Darwin. 2003. Concrete. Upper Saddle River, NJ: Prentice Hall.
Pelà, L., E. Canella, A. Aprile, and P. Roca. 2016. “Compression test of masonry core samples extracted from existing brickwork.” Constr. Build. Mater. 119 (Aug): 230–240. https://doi.org/10.1016/j.conbuildmat.2016.05.057.
Pelà, L., K. Kasioumi, and P. Roca. 2017. “Experimental evaluation of the shear strength of aerial lime mortar brickwork by standard tests on triplets and non-standard tests on core samples.” Eng. Struct. 136 (Apr): 441–453. https://doi.org/10.1016/j.engstruct.2017.01.028.
Pereira, J. M., and P. B. Lourenço. 2017. “Experimental characterization of masonry and masonry components at high strain rates.” J. Mater. Civ. Eng. 29 (2): 04016223. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001755.
Planas, J., M. Elices, and G. V. Guinea. 1992. “Measurement of the fracture energy using three point bend tests. 2: Influence of bulk energy dissipation.” Mater. Struct. 25 (5): 305–312. https://doi.org/10.1007/BF02472671.
Popovics, S. 1998. Strength and related properties of concrete: A quantitative approach. New York: Wiley.
RILEM, D. R. 1985. “Determination of the fracture energy of mortar and concrete by means of the three-point bend tests on notched beams.” Mater. Struct. 18 (106): 285–290.
Sathiparan, N., and U. Rumeshkumar. 2018. “Effect of moisture condition on mechanical behavior of low strength brick masonry.” J. Build. Eng. 17 (May): 23–31. https://doi.org/10.1016/j.jobe.2018.01.015.
Silva, B. A., A. P. F. Pinto, and A. Gomes. 2014. “Influence of natural hydraulic lime content on the properties of aerial lime-based mortars.” Constr. Build. Mater. 72 (Dec): 208–218. https://doi.org/10.1016/j.conbuildmat.2014.09.010.
Silva, B. A., A. P. F. Pinto, and A. Gomes. 2015. “Natural hydraulic lime versus cement for blended lime mortars for restoration works.” Constr. Build. Mater. 94 (Sep): 346–360. https://doi.org/10.1016/j.conbuildmat.2015.06.058.
Veiga, R. 2017. “Air lime mortars: What else do we need to know to apply them in conservation and rehabilitation interventions? A review.” Constr. Build. Mater. 157 (Dec): 132–140. https://doi.org/10.1016/j.conbuildmat.2017.09.080.
Zhang, X. X., A. M. Abd Elazim, G. Ruiz, and R. C. Yu. 2014. “Fracture behavior of steel fibre-reinforced concrete at a wide range of loading rates.” Int. J. Impact Eng. 71 (Sep): 89–96. https://doi.org/10.1016/j.ijimpeng.2014.04.009.
Zhang, X. X., L. Garijo, G. Ruiz, and J. J. Ortega. 2019. “Influence of loading rate on the fracture behaviour of natural hydraulic and aerial lime mortars.” In Proc., 10th Int. Conf. on Fracture Mechanics of Concrete and Concrete Structures, 1–5. Bayonne, France: International Association of Fracture Mechanics for Concrete and Concrete Structures.
Zhang, X. X., G. Ruiz, M. Tarifa, D. Cendon, F. Galvez, and W. H. Alhazmi. 2017. “Dynamic fracture behavior of steel fiber reinforced self-compacting concretes (SFRSCCs).” Materials 10 (11): 1270. https://doi.org/10.3390/ma10111270.
Zhang, X. X., G. Ruiz, R. C. Yu, E. Poveda, and R. Porras. 2012. “Rate effect on the mechanical properties of eight types of high-strength concrete and comparison with FIB MC2010.” Constr. Build. Mater. 30 (May): 301–308. https://doi.org/10.1016/j.conbuildmat.2011.11.037.
Zhang, X. X., G. Ruiz, R. C. Yu, and M. Tarifa. 2009. “Fracture behaviour of high-strength concrete at a wide range of loading rates.” Int. J. Impact Eng. 36 (10–11): 1204–1209. https://doi.org/10.1016/j.ijimpeng.2009.04.007.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 9September 2020

History

Received: Jul 10, 2019
Accepted: Mar 11, 2020
Published online: Jun 30, 2020
Published in print: Sep 1, 2020
Discussion open until: Nov 30, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Senior Researcher, Escuela de Ingeniería Minera e Industrial de Almadén, Universidad de Castilla-La Mancha, Plaza Manuel Meca 1, Almadén 13400, Ciudad Real, Spain; Escuela Técnica Superior (ETS) de Ingenieros de Caminos, Canales y Puertos, Universidad de Castilla-La Mancha Avda, Camilo José Cela, s/n, Ciudad Real 13071, Spain (corresponding author). ORCID: https://orcid.org/0000-0002-7938-6924. Email: [email protected]
Postdoctoral Researcher, ETS de Ingenieros de Caminos, Canales y Puertos, Universidad de Castilla-La Mancha Avda, Camilo José Cela, s/n, Ciudad Real 13071, Spain. ORCID: https://orcid.org/0000-0003-0157-3946. Email: [email protected]
Gonzalo Ruiz [email protected]
Professor, ETS de Ingenieros de Caminos, Canales y Puertos, Universidad de Castilla-La Mancha Avda, Camilo José Cela, s/n, Ciudad Real 13071, Spain. Email: [email protected]
Postdoctoral Researcher, ETS de Ingenieros de Caminos, Canales y Puertos, Universidad de Castilla-La Mancha Avda, Camilo José Cela, s/n, Ciudad Real 13071, Spain. ORCID: https://orcid.org/0000-0001-8922-7882. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share