Technical Papers
Jun 26, 2020

Phase Structure and Corrosion Resistance of Multilayer Low-Temperature Sintered Chemically Reactive Enamel Coatings

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 9

Abstract

The phase structure and corrosion resistance of uncoated, pure enamel-, double-enamel- and triple-enamel-coated hot-rolled plain steel bars were investigated by X-ray diffraction (XRD), laser microscopic Raman spectroscopy, open-circuit potential (OCP), electrochemical impedance spectroscope (EIS), and potentiodynamic polarization curves. Raman spectroscopy tests demonstrated that the crystal phase is dominant on the surface, whereas the amorphous phase was observed in the cross-sectional area and decreased with an increase of distance from the steel-coating interface. The crystal phase decreased and there was almost no amorphous phase after immersion in 3.5% by weight NaCl solution. Electrochemical tests showed that both double-enamel- and triple-enamel-coated steel bars had approximately similar corrosion resistance, which was higher than that of pure enamel-coated steel bars.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data that support the findings of this study are available from the corresponding author upon reasonable request (open-circuit potentials, electrochemical impedance spectroscopy, and potentiodynamic polarization).

Acknowledgments

The authors thank Jiahua Deng for assistance in the experiment part of this study. In addition, the authors appreciate the financial support from the National Science Foundation of China (Nos. 51522905, 51778570, 51879230, and 51878119) and the Zhejiang Provincial Natural Science Foundation of China (No. LR15E090001).

References

Al-Bahar, S., E. K. Attiogbe, and H. Kamal. 1998. “Investigation of corrosion damage in a reinforced concrete structure in Kuwait.” ACI Mater. J. 95 (3): 226–231.
Aperador, W., R. Mejia de Gutierrez, and D. M. Bastidas. 2009. “Steel corrosion behaviour in carbonated alkali-activated slag concrete.” Corros. Sci. 51 (9): 2027–2033. https://doi.org/10.1016/j.corsci.2009.05.033.
ASTM. 2015. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. ASTM C876. West Conshohocken, PA: ASTM.
Bandara, A. M. T. S., and G. Senanayake. 2015. “Leachability of rare-earth, calcium and minor metal ions from natural Fluorapatite in perchloric, hydrochloric, nitric and phosphoric acid solutions: Effect of proton activity and anion participation.” Hydrometallurgy 153 (Mar): 179–189. https://doi.org/10.1016/j.hydromet.2015.02.002.
Cao, Y., C. Gehlen, U. Angst, L. Wang, Z. Wang, and Y. Yao. 2019. “Critical chloride content in reinforced concrete: An updated review considering Chinese experience.” Cem. Concr. Res. 117 (Mar): 58–68. https://doi.org/10.1016/j.cemconres.2018.11.020.
Cappellen, P. V., and R. A. Berner. 1991. “Fluorapatite crystal growth from modified seawater solutions.” Geochim. Cosmochim. Acta 55 (5): 1219–1234. https://doi.org/10.1016/0016-7037(91)90302-L.
Chairat, C., J. Schott, E. H. Oelkers, and J. E. Lartigue, and N. Harouiya. 2007. “Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12” Geochim. Cosmochim. Acta 71 (24): 5901–5912. https://doi.org/10.1016/j.gca.2007.08.031.
Chen, G., J. Volz, R. Brow, D. Yan, S. Reis, C. Wu, F. Tang, C. Werner, and X. Tao. 2010. Coated steel rebar for enhanced concrete-steel bond strength and corrosion resistance. Rolla, MI: Center for Transportation Infrastructure and Safety, Missouri Univ. of Science and Technology.
Chinese Standards. 2017. Steel for the reinforcement of concrete. Part 1: Hot rolled plain bars. [In Chinese.] GB/T 1499.1. Shenzhen, China: Standards Press of China.
Demnati, I., M. Parco, D. Grossin, I. Fagoaga, C. Drouet, G. Barykin, C. Combes, I. Braceras, S. Goncalves, and C. Rey. 2012. “Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun.” Surf. Coat. Tech. 206 (8–9): 2346–2353. https://doi.org/10.1016/j.surfcoat.2011.10.025.
Duarte, R. G., A. S. Castela, R. Neves, L. Freire, and M. F. Montemor. 2014. “Corrosion behavior of stainless steel rebars embedded in concrete: An electrochemical impedance spectroscopy study.” Electrochim. Acta 124 (Apr): 218–224. https://doi.org/10.1016/j.electacta.2013.11.154.
Francois, R., and J. C. Maso. 1988. “Effect of damage in reinforced concrete on carbonation or chloride penetration.” Cem. Concr. Res. 18 (6): 961–970. https://doi.org/10.1016/0008-8846(88)90033-6.
Ghanbari, A., and M. M. Attar. 2014. “Surface free energy characterization and adhesion performance of mild steel treated based on zirconium conversion coating: A comparative study.” Surf. Coat. Tech. 246 (May): 26–33. https://doi.org/10.1016/j.surfcoat.2014.02.057.
Guzmán, S., J. C. Gálvez, and J. M. Sancho. 2011. “Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration.” Cem. Concr. Res. 41 (8): 893–902. https://doi.org/10.1016/j.cemconres.2011.04.008.
Hill, J., A. W. Harris, M. Manning, A. Chambers, and S. W. Swanton. 2006. “The effect of sodium chloride on the dissolution of calcium silicate hydrate gels.” Waste Manage. 26 (7): 758–768. https://doi.org/10.1016/j.wasman.2006.01.022.
Kobayashi, Y., and Y. Fujiwara. 2006. “Effect of SO42−on the corrosion behavior of cerium-based conversion coatings on galvanized steel.” Electrochim. Acta 51 (20): 4236–4242. https://doi.org/10.1016/j.electacta.2005.11.043.
Li, Y. 2001. “Corrosion behaviour of hot dip zinc and zinc-aluminium coatings on steel in seawater.” Bull. Mater. Sci. 24 (4): 355–360. https://doi.org/10.1007/BF02708631.
Liu, X., D. He, Z. Zhou, G. Wang, Z. Wang, and X. Wu. 2019. “Study on phase structure of micro-plasma sprayed hydroxyapatite coatings by micro-Raman spectroscopy.” Mater. Rep. 33 (5): 1634–1639. https://doi.org/10.11896/cldb.18010273.
Liu, X. W., J. P. Xiong, Y. W. Lv, and Y. Zuo. 2009. “Study on corrosion electrochemical behavior of several different coating systems by EIS.” Prog. Org. Coat. 64 (4): 497–503. https://doi.org/10.1016/j.porgcoat.2008.08.012.
Luna, M. F. J., A. M. C. Alonso, E. Hernández, and H. C. López. 2017. “Galvanized steel in concrete: More durable structures maintaining the bond length.” J. Mater. Civ. Eng. 29 (8): 04017055. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001903.
Manning, D. G. 1996. “Corrosion performance of epoxy-coated reinforcing steel: North American experience.” Constr. Build. Mater. 10 (5): 349–365. https://doi.org/10.1016/0950-0618(95)00028-3.
Nancollas, G. H. 1983. “Phosphate precipitation in corrosion protection: Reaction mechanisms.” Corrosion 39 (3): 77–82. https://doi.org/10.5006/1.3580822.
Nmai, C. K. 2004. “Multi-functional organic corrosion inhibitor.” Cem. Concr. Compos. 26 (3): 199–207. https://doi.org/10.1016/S0958-9465(03)00039-8.
Pedeferri, P. 1996. “Cathodic protection and cathodic prevention.” Constr. Build. Mater. 10 (5): 391–402. https://doi.org/10.1016/0950-0618(95)00017-8.
Penel, G., G. Leroy, C. Rey, B. Sombret, J. P. Huvenne, and E. Bres. 1997. “Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders.” J. Mater. Sci. Mater. Med. 8 (5): 271–276. https://doi.org/10.1023/A:1018504126866.
Poupard, O., V. L’Hosti, S. Catinaud, and I. Petre-Lazar. 2006. “Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment.” Cem. Concr. Res. 36 (3): 504–520. https://doi.org/10.1016/j.cemconres.2005.11.004.
Qian, H., D. Yan, S. Chen, G. Chen, Y. Tian, and G. Chen. 2019. “Effect of high temperature exposure and strain rate on mechanical properties of high-strength steel rebars.” J. Mater. Civ. Eng. 31 (11): 04019261. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002906.
Refait, P. H., M. Jeannin, R. Sabot, H. Antony, and S. Pineau. 2015. “Corrosion and cathodic protection of carbon steel in the tidal zone: Products, mechanisms and kinetics.” Corros. Sci. 90 (Jan): 375–382. https://doi.org/10.1016/j.corsci.2014.10.035.
Sagoe-Crentsil, K. K., F. P. Glasser, and J. T. S. Irvine. 1992. “Electrochemical characteristics of reinforced concrete corrosion as determined by impedance spectroscopy.” Br. Corros. J. 27 (2): 113–118. https://doi.org/10.1179/bcj.1992.27.2.113.
Samiee, L., H. Sarpoolaky, and A. Mirhabibi. 2007. “Microstructure and adherence of cobalt containing and cobalt free enamels to low carbon steel.” Mater. Sci. Eng. A 458 (1–2): 88–95. https://doi.org/10.1016/j.msea.2006.12.108.
Schneider, H., R. X. Fischer, and J. Schreuer. 2015. “Mullite: Crystal structure and related properties.” J. Am. Ceram. Soc. 98 (10): 2948–2967. https://doi.org/10.1111/jace.13817.
Serdar, M., L. V. Žulj, and D. Bjegović. 2013. “Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment.” Corros. Sci. 69 (Apr): 149–157. https://doi.org/10.1016/j.corsci.2012.11.035.
Sudarsanan, K., P. E. Mackie, and R. A. Young. 1972. “Comparison of synthetic and mineral fluorapatite, Ca5 (PO4)3F, in crystallographic detail.” Mater. Res. Bull. 7 (11): 1331–1337. https://doi.org/10.1016/0025-5408(72)90113-4.
Sugiyama, D. 2008. “Chemical alteration of calcium silicate hydrate (C-S-H) in sodium chloride solution.” Cem. Concr. Res. 38 (11): 1270–1275. https://doi.org/10.1016/j.cemconres.2008.06.002.
Sun, L., C. C. Berndt, and C. P. Grey. 2003. “Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings.” Mater. Sci. Eng. A 360 (1–2): 70–84. https://doi.org/10.1016/S0921-5093(03)00439-8.
Tang, F., G. Chen, and R. K. Brow. 2016. “Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar.” Cem. Concr. Res. 82 (Apr): 58–73. https://doi.org/10.1016/j.cemconres.2015.12.015.
Tang, F., G. Chen, R. K. Brow, and M. L. Koenigstein. 2014. “Corrosion resistance of a sand particle-modified enamel coating applied to smooth steel bars.” Materials 7 (9): 6632–6645. https://doi.org/10.3390/ma7096632.
Tang, F., G. Chen, R. K. Brow, J. S. Volz, and M. Koenigstein. 2012a. “Corrosion resistance and mechanism of steel rebar coated with three types of enamel.” Corros. Sci. 59 (Jun): 157–168. https://doi.org/10.1016/j.corsci.2012.02.024.
Tang, F., G. Chen, J. S. Volz, R. K. Brow, and M. Koenigstein. 2012b. “Microstructure and corrosion resistance of enamel coatings applied to smooth reinforcing steel.” Constr. Build. Mater. 35 (Oct): 376–384. https://doi.org/10.1016/j.conbuildmat.2012.04.059.
Tang, F., G. Chen, J. S. Volz, R. K. Brow, and M. Koenigstein. 2013. “Cement-modified enamel coating for enhanced corrosion resistance of steel reinforcing bars.” Cement Concr. Compos. 35 (1): 171–180. https://doi.org/10.1016/j.cemconcomp.2012.08.009.
Tao, Z., X.-Q. Wang, and U. Brian. 2013. “Stress-strain curves of structural and reinforcing steels after exposure to elevated temperatures.” J. Mater. Civ. Eng. 25 (9): 1306–1316. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000676.
Vernè, E., M. Bosetti, C. V. Brovarone, C. Moisescu, F. Lupo, F. Spriano, and M. Cannas. 2002. “Fluoroapatite glass-ceramic coatings on alumina: Structural, mechanical and biological characterization.” Biomaterials 23: 3395–3403. https://doi.org/10.1016/S0142-9612(02)00040-6.
Wang, X.-H., and Y. Gao. 2016. “Corrosion behavior of epoxy-coated reinforced bars in RC test specimens subjected to pre-exposure loading and wetting-drying cycles.” Constr. Build. Mater. 119 (30): 185–205. https://doi.org/10.1016/j.conbuildmat.2016.05.066.
Wang, Y., W. T. Tian, T. Zhang, and Y. Yang. 2009. “Microstructure, spallation and corrosion of plasma sprayed Al2O313%TiO2 coatings.” Corros. Sci. 51 (12): 2924–2931. https://doi.org/10.1016/j.corsci.2009.08.005.
Wu, C., G. Chen, J. S. Volz, R. K. Brow, and M. Koenigstein. 2012. “Local bond strength of vitreous enamel coated rebar to concrete.” Constr. Build. Mater. 35 (Oct): 428–439. https://doi.org/10.1016/j.conbuildmat.2012.04.067.
Wu, C., G. Chen, J. S. Volz, R. K. Brow, and M. Koenigstein. 2013. “Global bond behavior of enamel-coated rebar in concrete beams with spliced reinforcement.” Constr. Build. Mater. 40 (7): 793–801. https://doi.org/10.1016/j.conbuildmat.2012.11.076.
Yan, D., S. Chen, G. Chen, and J. Baird. 2016a. “Static and dynamic behavior of concrete slabs reinforced with chemically reactive enamel-coated steel bars and fibers.” J. Zhejiang Univ.-SCI A. 17 (5): 366–377. https://doi.org/10.1631/jzus.A1500301.
Yan, D., Z. Huang, G. Chen, H. Qian, J. Deng, and Y. Liu. 2020. “Study on corrosion resistance of low-temperature sintered chemically reactive enamel coated rebars.” [In Chinese.] J. Zhejiang Univ. Eng. Sci. 54 (1): 1–8. https://doi.org/10.3785/j.issn.1008-973X.2020.01.007.
Yan, D., S. Reis, X. Tao, G. Chen, R. K. Brow, and M. Koenigstein. 2012. “Effect of chemically reactive enamel coating on bonding strength at steel/mortar interface.” Constr. Build. Mater. 28 (1): 512–518. https://doi.org/10.1016/j.conbuildmat.2011.08.075.
Yan, D., H. Yin, C. Wu, Y.-L. Li, and G. Chen. 2016b. “Blast response of full-size concrete walls with chemically reactive enamel (CRE)-coated steel reinforcement.” J. Zhejiang Univ.-SCI A. 17 (9): 689–701. https://doi.org/10.1631/jzus.A1600480.
Yang, F., D. Yang, F. Tang, G. Chen, Y. Liu, and S. Chen. 2020. “Effect of sintering temperature on the microstructure, corrosion resistance and crack susceptibility of chemically reactive enamel (CRE) coating.” Constr. Build. Mater. 238: 117720. https://doi.org/10.1016/j.conbuildmat.2019.117720.
Yang, X., A. R. Jha, R. Brydson, and R. C. Cochrane. 2003. “An analysis of the microstructure and interfacial chemistry of steel–enamel interface.” Thin Solid Films 443 (1–2): 33–45. https://doi.org/10.1016/S0040-6090(03)00973-8.
Yao, Z., Z. Jiang, and F. Wang. 2007. “Study on corrosion resistance and roughness of micro-plasma oxidation ceramic coatings on Ti alloy by EIS technique.” Electrochim. Acta 55 (21): 6218–6227. https://doi.org/10.1016/j.electacta.2006.12.052.
Zheng, H. B., W.-H. Li, B.-F. Ma, and Q.-L. Kong. 2014. “The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH)2 solutions.” Cem. Concr. Res. 55(1): 102–108. https://doi.org/10.1016/j.cemconres.2013.10.005.
Zhu, Y., Y. Zhu, X. Zhang, Y. Chen, Q. Xie, J. Lan, M. Qian, and N. He. 2009. “A comparative study on the dissolution and solubility of hydroxylapatite and fluorapatite at 25°C and 45°C.” Chem. Geol. 268 (1–2): 89–96. https://doi.org/10.1016/j.chemgeo.2009.07.014.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 9September 2020

History

Received: Dec 7, 2019
Accepted: Feb 24, 2020
Published online: Jun 26, 2020
Published in print: Sep 1, 2020
Discussion open until: Nov 26, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, College of Civil Engineering Architecture, Zhejiang Univ., Hangzhou 310058, China. ORCID: https://orcid.org/0000-0003-2522-3342. Email: [email protected]
Ph.D. Candidate, College of Civil Engineering Architecture, Zhejiang Univ., Hangzhou 310058, China. Email: [email protected]
Ph.D. Candidate, College of Civil Engineering Architecture, Zhejiang Univ., Hangzhou 310058, China. Email: [email protected]
Associate Professor, State Key Laboratory of Coastal and Offshore Engineering, School of Civil Engineering, Dalian Univ. of Technology, Dalian, Liaoning 116024, China (corresponding author). ORCID: https://orcid.org/0000-0002-3066-5041. Email: [email protected]
Associate Professor, Dept. of Materials Science Engineering, Zhejiang Univ., Hangzhou 310058, China. Email: [email protected]
Zhihao Huang [email protected]
Master Student, College of Civil Engineering Architecture, Zhejiang Univ., Hangzhou 310058, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share