Abstract

This paper analyzed the eco-efficiency of concretes (water/cement ratio = 0.50; cement content=350  kg/m3, and slump = 7 cm) with blended cement containing 25% by weight calcined pozzolan obtained from a low-grade kaolin (HKC) and an illitic shale (HIC) compared with ordinary portland cement concrete (HPC). The fresh, mechanical, and transport properties of these concretes were evaluated, as were the concrete efficiency parameters and the global warming potential (GWP) measured as CO2eq/m3 concrete. The results classify both blended concretes as acceptable for use in construction, whereas HIC performs better as fresh concrete and has a slightly higher resistance to chloride penetration, HKC performs better regarding to mechanical and water transport properties. The suitability of clay or shale depends on the availability and distance from the production center of the materials. The results obtained in this paper are useful for defining the suitable use of each calcined material and for optimizing the concrete mix design based on its advantages and properties.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This paper was made possible by the BAYLAT (Germany)–CONICET (Argentina) cooperation initiative. The Argentine researchers acknowledge the support received by the CICPBA and CONICET (PIO-004) and the Universidad Nacional del Centro de la Provincia de Buenos Aires (Project E02/122). They also are grateful to Loma Negra CIASA and Piedra Grande SA for the materials supplied.

References

Akhlaghi, O., T. Aytas, B. Tatli, D. Sezer, A. Hodaei, A. Favier, K. Scrivener, Y. Z. Menceloglu, and O. Akbulut. 2017. “Modified poly(carboxylate ether)-based superplasticizer for enhanced flowability of calcined clay-limestone-gypsum blended Portland cement.” Cem. Concr. Res. 101 (Nov): 114–122. https://doi.org/10.1016/j.cemconres.2017.08.028.
Alexander, M. G., and B. J. Magee. 1999. “Durability performance of concrete containing condensed silica fume.” Cem. Concr. Res. 29 (6): 917–922. https://doi.org/10.1016/S0008-8846(99)00064-2.
Allwood, J. M., M. F. Ashby, T. G. Gutowski, and E. Worrell. 2011. “Material efficiency: A white paper.” Resour. Conserv. Recycl. 55 (3): 362–381. https://doi.org/10.1016/j.resconrec.2010.11.002.
ASTM. 2013. Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM C1585. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for flow of hydraulic cement mortar. ASTM C1437. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard test method for amount of water required for normal consistency of hydraulic cement paste. ASTM C187. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion. ASTM C1556-11a. West Conshohocken, PA: ASTM.
Badogiannis, E., V. G. Papadakis, E. Chaniotakis, and S. Tsivilis. 2004. “Exploitation of poor Greek kaolins: Strength development of metakaolin concrete and evaluation by means of k-value.” Cem. Concr. Res. 34 (6): 1035–1041. https://doi.org/10.1016/j.cemconres.2003.11.014.
Beuntner, N. 2017. “Zur Eignung und Wirkungsweise calcinierter Tone als reaktive Bindemittelkomponente in Zement [On the suitability and mode of action of calcined clays as reactive binder components in cement].” Dr.-Ing. dissertation, Institute for Materials in Civil Engineering, Universität der Bundeswehr München.
Beuntner, N., A. Kustermann, and K.-C. Thienel. 2019. “Pozzolanic potential of calcined clay in high-performance concrete.” In Vol. 1 of Proc., Int. Conf. on Sustainable Materials, Systems and Structures, edited by M. Serdar, N. Štirmer, and J. Provis, 470–477. Paris, France: RILEM Publications.
Beuntner, N., and K. C. Thienel. 2015. “Properties of calcined Lias delta clay—Technological effects, physical characteristics and reactivity in cement.” In Proc., 1st Int. Conf. on Calcined Clays for Sustainable Concrete, edited by K. Scrivener and A. Favier, 43–50. Dordrecht, Netherlands: Springer.
Beuntner, N., and K. C. Thienel. 2017. “Performance and properties of concrete made with calcined clays.” In Proc., ACI SP 320—10th ACI/RILEM Int. Conf. on Cementitious Materials and Alternative Binders for Sustainabe Concrete, edited by A. Tagnit-Hamou, 7.1–7.12. Montreal: Sheridan Books.
Bonavetti, V., H. Donza, G. Menendez, O. Cabrera, and E. Irassar. 2003. “Limestone filler cement in low w/c concrete: A rational use of energy.” Cem. Concr. Res. 33 (6): 865–871. https://doi.org/10.1016/S0008-8846(02)01087-6.
Bucher, R., P. Diederich, M. Mouret, G. Escadeillas, and M. Cyr. 2015. “Self-compacting concrete using flash-metakaolin: Design method.” Mater. Struct. 48 (6): 1717–1737. https://doi.org/10.1617/s11527-014-0267-x.
Cordoba, G., A. Rossetti, D. Falcone, and E. F. Irassar. 2018. “Sulfate and alkali-silica performance of blended cements containing illitic calcined clays.” In Vol. 16 of Proc., 2nd Int. Conf. on Calcined Clays for Sustainable Concrete, edited by F. Martirena, A. Favier, and K. Scrivener, 117–123. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-024-1207-9_19.
Courard, L., A. Darimont, M. Schouterden, F. Ferauche, X. Willem, and R. Degeimbre. 2003. “Durability of mortars modified with metakaolin.” Cem. Concr. Res. 33 (9): 1473–1479. https://doi.org/10.1016/S0008-8846(03)00090-5.
Curcio, F., and B. A. DeAngelis. 1998. “Dilatant behavior of superplasticized cement pastes containing metakaolin.” Cem. Concr. Res. 28 (5): 629–634. https://doi.org/10.1016/S0008-8846(98)00046-5.
Cyr, M., P. Lawrence, and E. Ringot. 2006. “Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength.” Cem. Concr. Res. 36 (2): 264–277. https://doi.org/10.1016/j.cemconres.2005.07.001.
Danner, T. 2013. “Reactivity of calcined clays.” Ph.D. thesis, Faculty of Natural Science and Technology, Dept. of Natural Sciences and Engineering, Norwegian Univ. of Science and Technology.
Detwiler, R. J., J. I. Bhatty, and S. Bhattacharja. 1996. Supplementary cementing materials for use in blended cements. Skokie, IL: Portland Cement Association.
Dhandapani, Y., T. Sakthivel, M. Santhanam, R. Gettu, and R. G. Pillai. 2018. “Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3).” Cem. Concr. Res. 107 (May): 136–151. https://doi.org/10.1016/j.cemconres.2018.02.005.
DIN (Deutsches Institut für Normung). 1993. Bestimmung der Porenvolumenverteilung und der spezifischen Oberfläche von Feststoffen durch Quecksilberintrusion [Determination of pore volume distribution and specific surface area of solids by mercury intrusion]. DIN 66133. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2003. Determination of the specific surface area of solids by gas adsorption—BET method. DIN ISO 9277. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2006. Environmental management—Life cycle assessment—Principles and framework. DIN EN ISO 14040. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2008. Plain, reinforced and prestressed concrete structures. Part 1: Design and construction. DIN 1045-1. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2009. Testing fresh concrete—Part 5: Flow table test. DIN EN 12350-5. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2013. Concrete—Specification, performance, production and conformity. DIN EN 206. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2019. Testing hardened concrete—Part 8: Depth of penetration of water under pressure. DIN EN 12390-8. Berlin: DIN.
España, Ministerio de Fomento. 2008. Instrucción del Hormigón Estructural [Structural Concrete Instruction]. EHE-08. Madrid, Spain: Boletín Oficial de España.
Fernandez Lopez, R. 2009. “Calcined clayey soils as a potential replacement for cement in developing countries.” Ph.D. thesis, Faculté Sciences et Techniques de L’ingénieur Laboratoire des Matériaux de Construction, École Polytechnique Fédérale de Lausanne.
Ferreiro, S., D. Herfort, and J. S. Damtoft. 2017. “Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay—Limestone portland cements.” Cem. Concr. Res. 101 (Nov): 1–12. https://doi.org/10.1016/j.cemconres.2017.08.003.
Ferrer Polo, J., D. Aguado García, R. Barat Baviera, J. Serralta Sevilla, and E. Lapuente Ojeda. 2016. “Huella energética en el ciclo integral del agua en la comunidad de Madrid. [Energy footprint in the water cycle of Madrid community].” Madrid, España: Fundación Canal. http://www.madrid.org/bvirtual/BVCM019568.pdf.
Frías, M., and J. Cabrera. 2000. “Pore size distribution and degree of hydration of metakaolin–cement pastes.” Cem. Concr. Res. 30 (4): 561–569. https://doi.org/10.1016/S0008-8846(00)00203-9.
Frías, M., and M. I. Sánchez. 2013. Eco-efficient concrete. Cambridge, UK: Woodhead.
Gettu, R., R. G. Pillai, M. Santhanam, A. S. Basavaraj, S. Rathnarajan, and B. S. Dhanya. 2018. “Sustainability-based decision support framework for choosing concrete mixture proportions.” Mater. Struct. 51 (6): 165. https://doi.org/10.1617/s11527-018-1291-z.
Habert, G., N. Choupay, G. Escadeillas, D. Guillaume, and J. M. Montel. 2009. “Clay content of argillites: Influence on cement based mortars.” Appl. Clay Sci. 43 (3–4): 322–330. https://doi.org/10.1016/j.clay.2008.09.009.
Hasanbeigi, A., L. Price, and E. Lin. 2012. “Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review.” Renewable Sustainable Energy Rev. 16 (8): 6220–6238. https://doi.org/10.1016/j.rser.2012.07.019.
Hassan, S. 2005. “Techno-economic study of CO2 capture process for cement plants.” Master’s thesis, Dept. of Chemical Engineering, Univ. of Waterloo.
Herrmann, J., and J. Rickert. 2015. “Interactions between cements with calcined clay and superplasticizers.” In Proc., ACI SP 302—11th Int. Conf. on Superplasticizers and Other Chemical Admixtures in Concrete, edited by V. M. Malhotra, P. R. Gupta, and T. C. Holland, 299–314. Farmington Hill, MI: American Concrete Institute.
Ichimura, M., S. Nam, S. Bonjour, H. Rankine, B. Carisma, Y. Qiu, and R. Khrueachotikul. 2009. Eco-efficiency indicators: Measuring resource-use efficiency and the impact of economic activities on the environment. Bangkok, Thailand: Economic and Social Commission for Asia and the Pacific.
INTI (Instituto Nacional de Tecnología Industrial). 2005. Reglamento Argentino de Estructuras de Hormigón [Argentine Structural Concrete Code]. CIRSOC 201. Buenos Aires, Argentina: INTI.
IRAM (Instituto Argentino de Normalización y Certificación). 2004a. Concrete. Test method to determine the bleeding. IRAM 1604. Buenos Aires, Argentina: IRAM.
IRAM (Instituto Argentino de Normalización y Certificación). 2004b. Concrete. Test method to determine the capacity and the capillary water sorption rate in hardened concrete. IRAM 1871. Buenos Aires, Argentina: IRAM.
IRAM (Instituto Argentino de Normalización y Certificación). 2017. Cement. General use cement. Composition and requirements. IRAM 50000. Buenos Aires, Argentina: IRAM.
Irassar, E. F., V. Rahhal, C. Pedrajas, and R. Talero. 2014. “Rheology of portland cement pastes with calcined clays additions.” Chap. 8 in Cleantech 2014, 308–311. Washington, DC: CTSI Clean Technologies and Sustainable Industries Organization.
Irassar, E. F., A. Tironi, V. L. Bonavetti, M. A. Trezza, C. C. Castellano, V. F. Rahhal, H. A. Donza, and A. N. Scian. 2019. “Thermal treatment and pozzolanic activity of calcined clay and shale.” ACI Mater. J. 116 (4): 133–143. https://doi.org/10.14359/51716717.
Jansen, D., J. Neubauer, F. Goetz-Neunhoeffer, R. Haerzschel, and W. D. Hergeth. 2012. “Change in reaction kinetics of a portland cement caused by a superplasticizer—Calculation of heat flow curves from XRD data.” Cem. Concr. Res. 42 (2): 327–332. https://doi.org/10.1016/j.cemconres.2011.10.005.
Khatib, J. M., and S. Wild. 1996. “Pore size distribution of metakaolin paste.” Cem. Concr. Res. 26 (10): 1545–1553. https://doi.org/10.1016/0008-8846(96)00147-0.
Lothenbach, B., F. Winnefeld, and R. Figi. 2007. “The influence of superplasticizers on the hydration of portland cement.” In Proc., 12th Int. Conf. on the Chemistry of Cement. Montreal, QC: Cement Association of Canada.
Mailvaganam, N. P. 1999. “Admixture compatibility in special concretes.” In Vol. 186 of Proc., ACI SP 186—2nd CANMET/ACI Int. Conf. on High-Performance Concrete: Performance and Quality of Concrete, edited by V. M. Malhotra, P. Helene, L. R. Prudencio Jr., and D. C. C. Dal Molin, 615–634. Farmington Hill, MI: American Concrete Institute. https://doi.org/10.14359/5581.
Marchetti, G., J. Pokorny, A. Tironi, M. A. Trezza, V. F. Rahhal, Z. Pavlík, R. Černý, and E. F. Irassar. 2018. “Blended cements with calcined illitic clay: Workability and hydration.” In Vol. 16 of Proc., 2nd Int. Conf. on Calcined Clays for Sustainable Concrete, edited by F. Martirena, A. Favier, and K. Scrivener, 310–317. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-024-1207-9_50.
Mehta, P. K. 1999. “Advancements in concrete technology.” Concr. Int. 21 (6): 69–76.
Mehta, P. K., and P. J. M. Monteiro. 2006. Concrete—Microstructure, properties, and materials. New York: McGraw-Hill.
Mindess, S., F. Young, and D. Darwin. 2003. Concrete. 2nd ed. Upper Saddle River, NJ: Prentice Hall-Pearson Education.
Nguyen, Q. D., M. S. H. Khan, and A. Castel. 2018. “Engineering properties of limestone calcined clay concrete.” J. Adv. Concr. Technol. 16 (8): 343–357. https://doi.org/10.3151/jact.16.343.
Oey, T., A. Kumar, J. W. Bullard, N. Neithalath, and G. Sant. 2013. “The filler effect: The influence of filler content and surface area on cementitious reaction rates.” J. Am. Ceram. Soc. 96 (6): 1978–1990. https://doi.org/10.1111/jace.12264.
San Nicolas, R., M. Cyr, and G. Escadeillas. 2014. “Performance-based approach to durability of concrete containing flash-calcined metakaolin as cement replacement.” Constr. Build. Mater. 55 (Mar): 313–322. https://doi.org/10.1016/j.conbuildmat.2014.01.063.
Scherb, S., N. Beuntner, M. Köberl, and K.-C. Thienel. 2018. “The early hydration of cement with the addition of calcined clay—From single phyllosilicate to clay mixture.” In Vol. 1 of Proc., 20th Internationale Baustofftagung ibausil, edited by H.-B. Fischer and A. V. Weimar, 658–666. Weimar, Deutschland: F.A. Finger-Institut für Baustoffkunde.
Schmid, M., N. Beuntner, K.-C. Thienel, and J. Plank. 2018. “Amphoteric superplasticizers for cements blended with a calcined clay.” In Proc., ACI SP 329—Superplasticizers and Other Chemical Admixtures in Concrete, edited by J. Liu and J. Plank, 41–54. Farmington Hill, MI: American Concrete Institute.
Schmid, M., R. Sposito, K.-C. Thienel, and J. Plank. 2019. “Novel zwitterionic superplasticizers for cements blended with calcined clays.” In Proc., 15th Int. Cong. on the Chemistry of Cement, edited by L. Peřka and J. Gemrich, 8. Prague, Czech Republic: Research Institute of Binding Materials.
Swamy, R. N. 2008. “Sustainable concrete for the 21st century concept of strength through durability.” In Japan society of civil engineers concrete committee newsletter, 13. Sheffield, UK: Univ. of sheffield.
Szabó, L., I. Hidalgo, J. C. Císcar, A. Soria, and P. Russ. 2003. Energy consumption and CO2 emissions from the world cement industry. Brussels, Belgium: Joint Research Centre, European Commission.
Tang, L., L.-O. Nilsson, and P. M. Basheer. 2011. Resistance of concrete to chloride ingress: Testing and modelling. London: CRC Press.
Tatari, O., and M. Kucukvar. 2011. “Eco-efficiency of construction materials: Data envelopment analysis.” J. Constr. Eng. Manage. 138 (6): 733–741. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000484.
Thienel, K. C., and N. Beuntner. 2012. “Effects of calcined clay as low carbon cementing materials on the properties of concrete.” In Proc., Concrete in the Low Carbon Era, edited by M. R. Jones, M. D. Newlands, and J. E. Halliday, 504–518. Dundee, UK: Univ. of Dundee.
Tironi, A., C. C. Castellano, V. L. Bonavetti, M. A. Trezza, A. N. Scian, and E. F. Irassar. 2014. “Kaolinitic calcined clays—Portland cement system: Hydration and properties.” Constr. Build. Mater. 64 (Aug): 215–221. https://doi.org/10.1016/j.conbuildmat.2014.04.065.
Tironi, A., A. N. Scian, and E. F. Irassar. 2017. “Blended cements with limestone filler and kaolinitic calcined clay: Filler and pozzolanic effects.” J. Mater. Civ. Eng. 29 (9): 04017116. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001965.
Tironi, A., M. A. Trezza, A. N. Scian, and E. F. Irassar. 2012. “Kaolinitic calcined clays: Factors affecting its performance as pozzolans.” Constr. Build. Mater. 28 (1): 276–281. https://doi.org/10.1016/j.conbuildmat.2011.08.064.
Trümer, A., H. M. Ludwig, M. Schellhorn, and R. Diedel. 2019. “Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete.” Appl. Clay Sci. 168 (Feb): 36–42. https://doi.org/10.1016/j.clay.2018.10.015.
Vance, K., A. Kumar, G. Sant, and N. Neithalath. 2013. “The rheological properties of ternary binders containing portland cement, limestone, and metakaolin or fly ash.” Cem. Concr. Res. 52 (Oct): 196–207. https://doi.org/10.1016/j.cemconres.2013.07.007.
Vizcaíno Andrés, L. M., S. Sánchez Berriel, S. Damas Carrera, A. Pérez Hernández, K. L. Scrivener, and J. F. Martirena Hernández. 2015. “Industrial trial to produce a low clinker, low carbon cement.” Mater. Constr. 65 (317): 045. https://doi.org/10.3989/mc.2015.00614.
Winnefeld, F. 2012. “Interaction of superplasticizers with calcium sulfoaluminate cements.” In Proc., Supplementary Papers of 10th Int. Conf. on Superplasticizers and other Chemical Admixtures, edited by V. M. Malhotra, 21–36. Farmington Hill, MI: American Concrete Institute.
Worrell, E., and C. Galitsky. 2008. Energy efficiency improvement and cost saving opportunities for cement making. Berkeley, CA: Lawrence Berkeley National Laboratory.
Worrell, E., L. Price, N. Martin, C. Hendriks, and L. O. Meida. 2001. “Carbon dioxide emissions from the global cement industry.” Annu. Rev. Energy Env. 26 (1): 303–329. https://doi.org/10.1146/annurev.energy.26.1.303.
Zaribaf, B. H., and K. E. Kurtis. 2018. “Admixture compatibility in metakaolin–portland-limestone cement blends.” Mater. Struct. 51 (1): 13. https://doi.org/10.1617/s11527-018-1154-7.
Zaribaf, B. H., B. Uzal, and K. Kurtis. 2015. “Compatibility of superplasticizers with limestone-metakaolin blended cementitious system.” In Proc., 1st Int. Conf. on Calcined Clays for Sustainable Concrete, edited by K. Scrivener and A. Favier, 427–434. Dordrecht, Netherlands: Springer.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 8August 2020

History

Received: Jul 19, 2019
Accepted: Feb 6, 2020
Published online: May 30, 2020
Published in print: Aug 1, 2020
Discussion open until: Oct 30, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Facultad de Ingeniería, Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (Universidad Nacional del Centro de la Provincia de Buenos AIres—Comisión de Investigaciones Científicas Provincia de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas), B7400JWI Olavarría, Argentina. ORCID: https://orcid.org/0000-0003-1574-7716
Silvina V. Zito
CEng.
Ph.D. Student, Facultad de Ingeniería, Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (Universidad Nacional del Centro de la Provincia de Buenos AIres—Comisión de Investigaciones Científicas Provincia de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas), B7400JWI Olavarría, Argentina.
Ph.D. Student, Institut für Werkstoffe des Bauwesens, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany. ORCID: https://orcid.org/0000-0002-7213-1814
Viviana F. Rahhal, Dr.Eng.
Professor, Facultad de Ingeniería, Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (Universidad Nacional del Centro de la Provincia de Buenos AIres—Comisión de Investigaciones Científicas Provincia de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas), B7400JWI Olavarría, Argentina.
Alejandra Tironi, Dr.Eng.
Adjunct Researcher, Facultad de Ingeniería, Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (Universidad Nacional del Centro de la Provincia de Buenos AIres—Comisión de Investigaciones Científicas Provincia de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas), B7400JWI Olavarría, Argentina.
Christian Thienel, Dr.Eng. https://orcid.org/0000-0002-4087-6205
Professor, Institut für Werkstoffe des Bauwesens, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany. ORCID: https://orcid.org/0000-0002-4087-6205
Professor, Facultad de Ingeniería, Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (Universidad Nacional del Centro de la Provincia de Buenos AIres—Comisión de Investigaciones Científicas Provincia de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas), B7400JWI Olavarría, Argentina (corresponding author). ORCID: https://orcid.org/0000-0003-4488-0014. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share