State-of-the-Art Reviews
Mar 3, 2020

Microbially Induced Calcium Carbonate Precipitation in Construction Materials

Publication: Journal of Materials in Civil Engineering
Volume 32, Issue 5

Abstract

Biocementation or microbially induced calcium carbonate precipitation (MICCP) is a research domain explored by many researchers in the field of civil engineering. It has a significant potential to improve the mechanical properties of a wide range of construction materials. It can be an effective tool to increase the durability of structures. MICCP uses metabolic pathways of bacteria to form calcium carbonate, the crystals of which get deposited in the pores of the matrices of construction materials resulting in the improvement of matrix properties of construction materials. This article presents a review of the basics of biocementation by the ureolysis pathway. Major and minor influencing factors and techniques to practically apply biocementation to improve the properties of cement-based materials are presented and discussed in this article. Furthermore, advantages and limitations of biocementation from a practicability point of view are briefly discussed. An effort has been made to discuss most aspects of biocementation so that it can benefit the researchers to explore further possibilities of this technique for its field applications.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abo-El-Enein, S. A., A. H. Ali, and F. N. Talkhan. 2013. “Application of microbial biocementation to improve the physico-mechanical properties of cement mortar.” HBRC J. 9 (1): 36–40. https://doi.org/10.1016/j.conbuildmat.2018.09.159.
Abo-El-Enein, S. A., A. H. Ali, F. N. Talkhan, and H. A. Abdel-Gawwad. 2012. “Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation.” HBRC J. 8 (3): 185–192. https://doi.org/10.1016/j.hbrcj.2013.02.001.
Achal, V. 2010. “Microbial remediation of defects in building materials and structures.” Ph.D. thesis, Dept. of Biotechnology, Thapar Institute of Engineering and Technology.
Achal, V., A. Mukerjee, and M. Sudhakara Reddy. 2013. “Biogenic treatment improves the durability and remediates the cracks of concrete structures.” Constr. Build. Mater. 48 (Nov): 1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061.
Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. “Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii.” J. Ind. Microbiol. Biotechnol. 36 (3): 433–438. https://doi.org/10.1007/s10295-008-0514-7.
Achal, V., A. Mukherjee, and M. S. Reddy. 2010. “Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source.” Ind. Biotechnol. 6 (3): 170–174. https://doi.org/10.1089/ind.2010.6.170.
Achal, V., A. Mukherjee, and M. S. Reddy. 2011. “Effect of calcifying bacteria on permeation properties of concrete structures.” J. Ind. Microbiol. Biotechnol. 38 (9): 1229–1234. https://doi.org/10.1007/s10295-010-0901-8.
Achal, V., and X. Pan. 2014. “Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2.” Appl. Biochem. Biotechnol. 173 (1): 307–317. https://doi.org/10.1007/s12010-014-0842-1.
Afifudin, H., W. Nadzarah, M. S. Hamidah, and H. Noor Hana. 2011. “Microbial participation in the formation of calcium silicate hydrated (CSH) from Bacillus subtilis.” Procedia Eng. 20 (Jan): 159–165. https://doi.org/10.1016/j.proeng.2011.11.151.
Al-Salloum, Y., H. Abbas, Q. I. Sheikh, S. Hadi, S. Alsayed, and T. Almusallam. 2017. “Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar.” Saudi J. Biol. Sci. 24 (2): 286–294. https://doi.org/10.1016/j.sjbs.2016.01.016.
Anbu, P., C. H. Kang, Y. J. Shin, and J. S. So. 2016. Formations of calcium carbonate minerals by bacteria and its multiple applications. Berlin: Springer.
Andalib, R., M. Zaimi, A. Majid, M. Warid, M. Ponraj, A. Keyvanfar, J. Mirza, and H. Lee. 2016. “Optimum concentration of Bacillus megaterium for strengthening structural concrete.” Constr. Build. Mater. 118 (Aug): 180–193. https://doi.org/10.1016/j.conbuildmat.2016.04.142.
Arias, J., and M. S. Fernandez. 2008. “Polysaccharides and proteoglycans in calcium carbonate-based biomineralization.” Chem. Rev. 108 (11): 4475–4482. https://doi.org/10.1021/cr078269p.
Arunachalam, K. D., K. Sathyanarayanan, B. Darshan, and Rb Raja. 2010. “Studies on the characterisation of biosealant properties of Bacillus sphaericus.” Int. J. Eng. Sci. Technol. 2 (3): 270–277.
Bachmeier, K. L., A. E. Williams, J. R. Warmington, and S. S. Bang. 2002. “Urease activity in microbiologically-induced calcite precipitation.” J. Biotechnol. 93 (2): 171–181. https://doi.org/10.1016/S0168-1656(01)00393-5.
Bains, A., N. K. Dhami, A. Mukherjee, and M. S. Reddy. 2015. “Influence of exopolymeric materials on bacterially induced mineralization of carbonates.” Appl. Biochem. Biotechnol. 175 (7): 3531–3541. https://doi.org/10.1007/s12010-015-1524-3.
Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. “Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii.” Enzyme Microb. Technol. 28 (4–5): 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3.
Basaran Bundur, Z., M. J. Kirisits, and R. D. Ferron. 2015. “Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength.” Cem. Concr. Res. 67 (Jan): 237–245. https://doi.org/10.1016/j.cemconres.2014.10.002.
Bazylinski, D. A., R. B. Frankel, K. O. Konhauser, and A. T. G. Canada. 2002. “Modes of biomineralization of magnetite by microbes.” Geomicrobiol. J. 24 (6): 465–475. https://doi.org/10.1080/01490450701572259.
Benzerara, K., J. Miot, G. Morin, G. Ona-Nguema, F. Skouri-Panet, and C. Férard. 2011. “Significance, mechanisms and environmental implications of microbial biomineralization importance.” C. R. Geosci. 343 (2–3): 160–167. https://doi.org/10.1016/j.crte.2010.09.002.
Berryman, C., J. Zhu, W. Jensen, and M. Tadros. 2005. “High-percentage replacement of cement with fly ash for reinforced concrete pipe.” Cem. Concr. Res. 35 (6): 1088–1091. https://doi.org/10.1016/j.cemconres.2004.06.040.
Bhutange, S. P., M. V. Latkar, and T. Chakrabarti. 2019. “Role of biocementation to improve mechanical properties of mortar.” Sadhana 44 (2): 1–8. https://doi.org/10.1007/s12046-018-1023-7.
Bibi, S., M. Oualha, M. Y. Ashfaq, M. T. Suleiman, and N. Zouari. 2018. “Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization.” RSC Adv. 8 (11): 5854–5863. https://doi.org/10.1039/C7RA12758H.
Boquet, E., A. Boronat, and A. Ramos-Cormenzana. 1973. “Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon.” Nature 246 (5434): 527–529. https://doi.org/10.1038/246527a0.
Braissant, O., A. W. Decho, C. Dupraz, C. Glunk, K. M. Przekop, and P. T. Visscher. 2007. “Exopolymeric substances of sulfate-reducing bacteria : Interactions with calcium at alkaline pH and implication for formation of carbonate minerals.” Geobiology 5 (4): 401–411. https://doi.org/10.1111/j.1472-4669.2007.00117.x.
Castanier, S., G. Le Métayer-Levrel, G. Orial, J. F. Loubière, and J. P. Perthuisot. 2000. “Bacterial carbonatogenesis and applications to preservation and restoration of historic property.” In Of microbes and art, 203–218. Boston: Springer.
Castanier, S., G. Le Métayer-Levrel, and J. P. Perthuisot. 1999. “Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view.” Sediment. Geol. 126 (1–4): 9–23.
Chahal, N., R. Siddique, and A. Rajor. 2012. “Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume.” Constr. Build. Mater. 37 (Dec): 645–651. https://doi.org/10.1016/j.conbuildmat.2012.07.029.
Charpe, A. U., M. V. Latkar, and T. Chakrabarti. 2017. “Microbially assisted cementation—A biotechnological approach to improve mechanical properties of cement.” Constr. Build. Mater. 135 (Mar): 472–476.
Charpe, A. U., M. V. Latkar, and T. Chakrabarti. 2018. “Biocementation: An eco-friendly approach to strengthening concrete.” In Proc., Institution of Civil Engineers–Engineering Sustainability, 1–13. London: Thomas Telford.
Chen, H., C. Qian, and H. Huang. 2016. “Self-healing cementitious materials based on bacteria and nutrients immobilized respectively.” Constr. Build. Mater. 126 (Nov): 297–303. https://doi.org/10.1016/j.conbuildmat.2016.09.023.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Choi, S., S. Wu, and J. Chu. 2016. “Biocementation for sand using an eggshell as calcium source.” J. Geotech. Geoenviron. Eng. 142 (10): 06016010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534.
Choi, S. G., J. Chu, R. C. Brown, K. Wang, and Z. Wen. 2017a. “Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass.” ACS Sustainable Chem. Eng. 5 (6): 5183–5190. https://doi.org/10.1021/acssuschemeng.7b00521.
Choi, S. G., K. Wang, Z. Wen, and J. Chu. 2017b. “Mortar crack repair using microbial induced calcite precipitation method.” Cem. Concr. Compos. 83 (Oct): 209–221. https://doi.org/10.1016/j.cemconcomp.2017.07.013.
Chu, J. 2016. “Solutions to sustainability in construction: Some examples.” Procedia Eng. 145 (Jan): 1127–1134. https://doi.org/10.1016/j.proeng.2016.04.146.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and H. L. Liu. 2014. “Optimization of calcium-based bioclogging and biocementation of sand.” Acta Geotech. 9 (2): 277–285. https://doi.org/10.1007/s11440-013-0278-8.
Chunxiang, Q., W. Jianyun, W. Ruixing, and C. Liang. 2009. “Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii.” Mater. Sci. Eng. 29 (4): 1273–1280. https://doi.org/10.1016/j.msec.2008.10.025.
Clear, C. A. 1985. The effects of autogenous healing upon the leakage of water through cracks in concrete. Wexham Springs, Slough: Cement and Concrete Association.
Cuzman, O. A., K. Richter, L. Wittig, and P. Tiano. 2015. “Alternative nutrient sources for biotechnological use of Sporosarcina pasteurii.” World J. Microbiol. Biotechnol. 31 (6): 897–906. https://doi.org/10.1007/s11274-015-1844-z.
De Belie, N., et al. 2018. “A review of self-healing concrete for damage management of structures.” Adv. Mater. Interfaces 5 (17): 1800074. https://doi.org/10.1002/admi.201800074.
De Belie, N., and W. De Muynck. 2008. “Crack repair in concrete using biodeposition.” In Proc., Int. Conf., on Concrete Repair, Rehabilitation and Retrofitting II, 309–310. Abingdon, UK: Taylor & Francis.
Dejong, J. T., and B. M. Montoya. 2013. “Healing of biologically induced cemented sands.” Géotech. Lett. 3 (3): 147–151. https://doi.org/10.1680/geolett.13.00044.
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
De Muynck, W., K. Cox, N. De Belie, and W. Verstraete. 2008a. “Bacterial carbonate precipitation as an alternative surface treatment for concrete.” Constr. Build. Mater. 22 (5): 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011.
De Muynck, W., N. De Belie, and W. Verstraete. 2010. “Microbial carbonate precipitation in construction materials: A review.” Ecol. Eng. 36 (2): 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006.
De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008b. “Bacterial carbonate precipitation improves the durability of cementitious materials.” Cem. Concr. Res. 38 (7): 1005–1014. https://doi.org/10.1016/j.cemconres.2008.03.005.
Dessy, A., N. Abyor, and H. Hadi. 2011. “An overview of biocement production from microalgae.” Int. J. Sci. Eng. 2 (2): 31–33.
Dhami, N. K., A. Mukherjee, and M. S. Reddy. 2016. “Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria.” Ecol. Eng. 94 (Sep): 443–454. https://doi.org/10.1016/j.ecoleng.2016.06.013.
Dhami, N. K., M. S. Reddy, and M. S. Mukherjee. 2013. “Biomineralization of calcium carbonates and their engineered applications: A review.” Front. Microbiol. 4 (Oct): 1–13.
Dick, J., W. De Windt, B. De Graef, H. Saveyn, P. Van Der Meeren, N. De Belie, and W. Verstraete. 2006. “Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species.” Biodegradation 17 (4): 357–367. https://doi.org/10.1007/s10532-005-9006-x.
Dupraz, S., B. Ménez, P. Gouze, R. Leprovost, P. Bénézeth, O. S. Pokrovsky, and F. Guyot. 2009. “Experimental approach of CO2 biomineralization in deep saline aquifers.” Chem. Geol. 265 (1–2): 54–62. https://doi.org/10.1016/j.chemgeo.2008.12.012.
Fang, C., J. He, V. Achal, and G. Plaza. 2019. “Tofu wastewater as efficient nutritional source in biocementation for improved mechanical strength of cement mortars.” Geomicrobiol. J. 36 (6): 515–521. https://doi.org/10.1080/01490451.2019.1576804.
Frankel, R. B. 2003. “Biologically induced mineralization by bacteria.” Rev. Mineral. Geochem. 54 (1): 95–114. https://doi.org/10.2113/0540095.
Gat, D., M. Tsesarsky, D. Shamir, and Z. Ronen. 2014. “Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria.” Biogeosciences 11 (10): 2561–2569. https://doi.org/10.5194/bg-11-2561-2014.
Ghosh, P., S. Mandal, and B. D. Chattopadhyay, and S. Pal. 2005. “Use of microorganism to improve the strength of cement mortar.” Cem. Concr. Res. 35 (10): 1980–1983.
Gonsalves, G. M. 2011. “Bioconcrete—A sustainable substitute for concrete?” Master’s thesis, Univ. Politècnica de Catalunya, Institut Univ. de Recerca en Ciència i Tecnologies de la Sostenibilitat.
Grabiec, A. M., J. Klama, D. Zawal, and D. Krupa. 2012. “Modification of recycled concrete aggregate by calcium carbonate biodeposition.” Constr. Build. Mater. 34 (Sep): 145–150. https://doi.org/10.1016/j.conbuildmat.2012.02.027.
Gupta, S. G., C. Rathi, and S. Kapur. 2013. “Biologically induced self healing concrete: A futuristic solution for crack repair.” Int. J. Appl. Sci. Biotechnol. 1 (3): 85–89. https://doi.org/10.3126/ijasbt.v1i3.8582.
Hammes, F., N. Boon, J. De Villiers, W. Verstraete, and S. D. Siciliano. 2003. “Strain-specific ureolytic microbial calcium carbonate precipitation.” Appl. Environ. Microbiol. 69 (8): 4901–4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003.
Harbottle, M. J., M. Lam, S. P. Botusharova, and D. R. Gardner. 2014. “Self-healing soil: Biomimetic engineering of geotechnical structures to respond to damage.” In Proc., 7th Int. Congress on Environmental Geotechnics. Barton, Australia: Engineers Australia.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Biotechnol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Jagadeesha Kumar, B. G., R. Prabhakara, and H. Pushpa. 2013. “Effect of bacterial calcite precipitation on compressive strength of mortar cubes.” Int. J. Eng. Adv. Technol. 2 (3): 486–491.
Janssen, P. H. 2006. “Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes.” Appl. Environ. Microbiol. 72 (3): 1719–1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006.
Jonkers, H. M. 2007. “Self healing concrete: A biological approach, self-healing materials.” In An alternative approach to 20 centuries of materials science, 195–204. Berlin: Springer.
Jonkers, H. M., et al. 2010. “A two component bacteria-based self-healing concrete.” Asian J. Appl. Sci. 7 (4): 205–214.
Joshi, S., S. Goyal, A. Mukherjee, and M. S. Reddy. 2017. “Microbial healing of cracks in concrete: A review.” J. Ind. Microbiol. Biotechnol. 44 (11): 1511–1525. https://doi.org/10.1007/s10295-017-1978-0.
Kalhori, H., and R. Bagherpour. 2017. “Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete.” Constr. Build. Mater. 148 (Sep): 249–260. https://doi.org/10.1016/j.conbuildmat.2017.05.074.
Kashyap, V. N. 2013. “A study on effect of bacteria on cement composites.” Int. J. Res. Eng. Technol. 356–360.
Katare, V. D., and M. V. Madurwar. 2018. “Application of solid wastes for the production of sustainable concrete.” In Proc., 3rd Int. Sustainable Buildings Symp. (ISBS 2017), edited by J. Kinuthia and A. Abu-Tair, 108–121. Berlin: Springer.
Kaur, G., N. K. Dhami, S. Goyal, A. Mukherjee, and M. S. Reddy. 2016. “Utilization of carbon dioxide as an alternative to urea in biocementation.” Constr. Build. Mater. 123 (Oct): 527–533. https://doi.org/10.1016/j.conbuildmat.2016.07.036.
Kawaguchi, T., and A. W. Decho. 2002. “A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism.” J. Cryst. Growth 240 (1–2): 230–235. https://doi.org/10.1016/S0022-0248(02)00918-1.
Keykha, H. A., A. Asadi, and M. Zareian. 2017. “Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil.” Geomicrobiol. J. 34 (10): 889–894. https://doi.org/10.1080/01490451.2017.1291772.
Kim, G., and H. Youn. 2016. “Microbially induced calcite precipitation employing environmental isolates.” Materials 9 (6): 468.
Krajewska, B. 2017. “Urease-aided calcium carbonate mineralization for engineering applications: A review.” J. Adv. Res. 13 (Sep): 59–67.
Krishnapriya, S., and D. V. Babu. 2015. “Isolation and identification of bacteria to improve the strength of concrete.” Microbiol. Res. 174 (May): 48–55. https://doi.org/10.1016/j.micres.2015.03.009.
Kumar, J. B., R. Prabhakara, and H. Pushpa. 2013. “Bio mineralisation of calcium carbonate by different bacterial strains and their application.” Int. J. Adv. Eng. Technol. 6 (1): 202–213.
Le Métayer-Levrel, G., S. Castanier, G. Orial, J. F. Loubière, and J. P. Perthuisot. 1999. “Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony.” Sediment. Geol. 126 (1–4): 25–34. https://doi.org/10.1016/S0037-0738(99)00029-9.
Lian, B., Q. Hu, J. Chen, J. Ji, and H. H. Teng. 2006. “Carbonate biomineralization induced by soil bacterium Bacillus megaterium.” Geochim. Cosmochim. Acta 70 (22): 5522–5535. https://doi.org/10.1016/j.gca.2006.08.044.
Maheswaran, S., S. S. Dasuru, A. Rama Chandra Murthy, B. Bhuvaneshwari, V. Ramesh Kumar, G. S. Palani, N. R. Iyer, S. Krishnamoorthy, and S. Sandhya. 2014. “Strength improvement studies using new type wild strain Bacillus cereus on cement mortar.” Curr. Sci. 106 (1): 50–57.
Maier, R. M., and J. W. Neilson. 2015. “Extreme environments.” In Environmental microbiology, 139–153. Cambridge, MA: Academic Press.
McConnaughey, T. A., and J. F. Whelan. 1997. “Calcification generates protons for nutrient and bicarbonate uptake.” Earth Sci. Rev. 42 (1–2): 95–117. https://doi.org/10.1016/S0012-8252(96)00036-0.
Mitchell, J. K., and J. C. Santamarina. 2005. “Biological considerations in geotechnical engineering.” J. Geotech. Geoenviron. Eng. 131 (10): 1222–1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
Moon, H. Y., D. G. Shin, and D. S. Choi. 2007. “Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system.” Constr. Build. Mater. 21 (2): 362–369. https://doi.org/10.1016/j.conbuildmat.2005.08.012.
Mortensen, B. M., M. J. Haber, J. T. Dejong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Mujah, D., M. A. Shahin, and L. Cheng. 2017. “State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization.” Geomicrobiol. J. 34 (6): 524–537. https://doi.org/10.1080/01490451.2016.1225866.
Mukherjee, A. 2014. A biological route for producing low energy binders. In Vol. 2 of 23rd Australasian Conf. on the Mechanics of Structures and Materials (ACMSM23), edited by S. T. Smith, 893–898. Lismore, NSW, Australia: Southern Cross University.
Mukherjee, A., N. K. Dhami, B. V. V. Reddy, and M. S. Reddy. 2013. “Bacterial calcification for enhancing performance of low embodied energy soil-cement bricks.” In Proc., 3rd Int. Conf. on Sustainable Construction Materials and Technology, 18–21. Gandhinagar, India: Indian Institute of Technology.
Nam, I. H., C. M. Chon, K. Y. Jung, S. G. Choi, H. Choi, and S. S. Park. 2015. “Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials.” KSCE J. Civ. Eng. 19 (6): 1620–1625. https://doi.org/10.1007/s12205-014-0558-3.
Nemati, M., and G. Voordouw. 2003. “Modification of porous media permeability, using calcium carbonate produced enzymatically in situ.” Enzyme Microb. Technol. 33 (5): 635–642. https://doi.org/10.1016/S0141-0229(03)00191-1.
Neumeier, U. 1999. “Experimental modelling of beachrock cementation under microbial influence.” Sediment. Geol. 126 (1–4): 35–46. https://doi.org/10.1016/S0037-0738(99)00030-5.
Newnham, R. E. 1997. “Molecular smart materials.” MRS Bull. 22 (5): 20–34. https://doi.org/10.1557/S0883769400033170.
Ng, W., M. Lee, and S. Hii. 2012. “An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement.” Int. J. Civ. Environ. Eng. 6 (2): 188–194.
Okwadha, G. D. O., and J. Li. 2010. “Optimum conditions for microbial carbonate precipitation.” Chemosphere 81 (9): 1143–1148. https://doi.org/10.1016/j.chemosphere.2010.09.066.
Pei, R., J. Liu, S. Wang, and M. Yang. 2013. “Use of bacterial cell walls to improve the mechanical performance of concrete.” Cem. Concr. Compos. 39 (May): 122–130. https://doi.org/10.1016/j.cemconcomp.2013.03.024.
Qian, C., R. Wang, L. Cheng, and J. Wang. 2010. “Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects.” Chin. J. Chem. 28 (5): 847–857.
Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. “Remediation of concrete using micro-organisms.” ACI Mater. J. 98 (1): 3–9.
Ramakrishnan, V., R. K. Panchalan, and S. S. Bang. 2005a. “Bacterial concrete—A concrete for the future.” Spec. Publ. 225 (Mar): 37–54.
Ramakrishnan, V., R. K. Panchalan, and S. S. Bang. 2005b. “Improvement of concrete durability by bacterial mineral precipitation.” In Vol. 11 of Proc., Int. Conf. on Fracture, 357–367. New York: Verlag nicht ermittelbar.
Rebata-Landa, V. 2007. “Microbial activity in sediments: Effects on soil behavior.” Doctoral dissertation, Georgia Institute of Technology.
Reeburgh, W. S. 2007. “Oceanic methane biogeochemistry.” Chem. Rev. 107 (2): 486–513. https://doi.org/10.1021/cr050362v.
Reinhardt, H. W., and M. Jooss. 2003. “Permeability and self-healing of cracked concrete as a function of temperature and crack width.” Cem. Concr. Res. 33: 981–985.
Rivadeneyra, M. A., A. Ramos-Cormenzana, G. Delgado, and R. Delgado. 1996. “Process of carbonate precipitation by Deleya halophila.” Curr. Microbiol. 32 (6): 308–313. https://doi.org/10.1007/s002849900055.
Şahmaran, M., S. B. Keskin, G. Ozerkan, and I. O. Yaman. 2008. “Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash.” Cem. Concr. Compos. 30 (10): 872–879.
Schloss, P. D., R. Girard, T. Martin, J. Edwards, J. C. Thrash, A. Arbor, and B. Rouge. 2016. “The status of the microbial census : An update.” Preprint, submitted February 02, 2016. http://arxiv.org/abs/038646.
Senthilkumar, V., T. Palanisamy, and V. N. Vijayakumar. 2014. “Comparative studies on strength characteristics of microbial cement mortars.” Int. J. ChemTech Res. 6 (1): 578–590.
Stabnikov, V., V. Ivanov, and J. Chu. 2015. “Construction biotechnology: A new area of biotechnological research and applications.” World J. Microbiol. Biotechnol. 31 (9): 1303–1314. https://doi.org/10.1007/s11274-015-1881-7.
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. “Microbiological precipitation of CaCO3.” Soil Biol. Biochem. 31 (11): 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6.
Talaiekhozan, A., M. A. Fulazzaky, A. Keyvanfar, R. Andalib, M. Zaimi, and A. Majid. 2013. “Identification of gaps to conduct a study on biological self- healing concrete.” J. Environ. Treat. Tech. 1 (2): 62–68.
Talaiekhozan, A., A. Keyvanfar, A. Shafaghat, R. Andalib, M. Z. A. Majid, and M. A. Fulazzaky. 2014. “A review of self-healing concrete research development.” J. Environ. Treat. Tech. 2 (1): 1–11.
Tarczewski, R. 2015. “Formation of sustainable infrastructure using microbial methods and humanization of man-made environment.” Procedia Manuf. 3 (Jan): 1704–1711. https://doi.org/10.1016/j.promfg.2015.07.991.
Thompson, J. B. 1992. “Cyanobacterial precipitation of gypsum, calcite and magnesite from natural lake water.” Geology 18 (10): 995–998. https://doi.org/10.1130/0091-7613(1990)018%3C0995:CPOGCA%3E2.3.CO;2.
Tiano, P., L. Biagiotti, and G. Mastromei. 1999. “Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation.” J. Microbiol. Methods 36 (1–2): 139–145. https://doi.org/10.1016/S0167-7012(99)00019-6.
Vahabi, A., K. A. Noghabi, and A. A. Ramezanianpour. 2012. “Application of biotechnology-based method for enhancing concrete properties.” J. Med. Bioeng. 1 (1): 36–38. https://doi.org/10.12720/jomb.1.1.36-38.
van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. C. M. van Loosdrecht. 2010a. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36 (2): 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010b. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Van Tittelboom, K., and N. De Belie. 2013. “Self-healing in cementitious materials—A review.” Materials 6 (6): 2182–2217. https://doi.org/10.3390/ma6062182.
Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete. 2010. “Use of bacteria to repair cracks in concrete.” Cem. Concr. Res. 40 (1): 157–166. https://doi.org/10.1016/j.cemconres.2009.08.025.
Vempada, S., S. Reddy, M. Rao, and C. Sasikala. 2011. “Strength enhancement of cement mortar using microorganisms: An experimental study.” J. Earth Sci. Eng. 4 (6): 933–936.
Verma, R. K., L. Chaurasia, V. Bisht, and M. Thakur. 2015. “Bio-mineralization and bacterial carbonate precipitation in mortar and concrete.” Biosci. Bioeng. 1 (1): 5–11.
Wang, J., K. Van Tittelboom, N. De Belie, and W. Verstraete. 2012. “Use of silica gel or polyurethane immobilized bacteria for self-healing concrete.” Constr. Build. Mater. 26 (1): 532–540. https://doi.org/10.1016/j.conbuildmat.2011.06.054.
Warthmann, R., Y. V. Lith, C. Vasconcelos, J. A. McKenzie, and A. M. Karpoff. 2000. “Bacterially induced dolomite precipitation in anoxic culture experiments.” Geology 28 (12): 1091–1094. https://doi.org/10.1130/0091-7613(2000)28%3C1091:BIDPIA%3E2.0.CO;2.
Whiffin, V. S. 2004. “Microbial CaCO3 precipitation for the production of biocement.” Ph.D. thesis, School of Biological Sciences and Biotechnology, Murdoch Univ.
Wiktor, V., and H. M. Jonkers. 2011. “Quantification of crack-healing in novel bacteria-based self-healing concrete.” Cem. Concr. Compos. 33 (7): 763–770. https://doi.org/10.1016/j.cemconcomp.2011.03.012.
Wiktor, V., and H. M. Jonkers. 2015. “Field performance of bacteria-based repair system: Pilot study in a parking garage.” Case Stud. Constr. Mater. 2 (Jun): 11–17. https://doi.org/10.1016/j.cscm.2014.12.004.
Wong, L. S. 2015. “Microbial cementation of ureolytic bacteria from the genus Bacillus: A review of the bacterial application on cement-based materials for cleaner production.” J. Cleaner Prod. 93 (Apr): 5–17. https://doi.org/10.1016/j.jclepro.2015.01.019.
Xu, J., Y. Du, Z. Jiang, and A. She. 2015. “Effects of calcium source on biochemical properties of microbial CaCO3 precipitation.” Front. Microbiol. 6 (Dec): 1366.
Yoosathaporn, S., P. Tiangburanatham, S. Bovonsombut, A. Chaipanich, and W. Pathom-aree. 2016. “A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties.” Microbiol. Res. 186 (May): 132–138. https://doi.org/10.1016/j.micres.2016.03.010.
Zhao, Q., L. Li, C. Li, M. Li, F. Amini, and H. Zhang. 2014. “Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease.” J. Mater. Civ. Eng. 26 (12): 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.
Zhu, T., and M. Dittrich. 2016. “Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review.” Front. Bioeng. Biotechnol. 4 (Jan): 1–21.
Zoheir, A. E., I. A. Hammad, and F. N. Talkhan. 2013. “Urease activity and induction of calcium carbonate precipitation by Sporosarcina pasteurii NCIMB 8841.” J. Appl. Sci. Res. 9 (3): 1525–1533.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 5May 2020

History

Published online: Mar 3, 2020
Published in print: May 1, 2020
Discussion open until: Aug 3, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India (corresponding author). ORCID: https://orcid.org/0000-0002-5530-2335. Email: [email protected]
Associate Professor, Dept. of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India. ORCID: https://orcid.org/0000-0002-1798-0960. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share