Abstract

Clays and clay minerals are widely used as raw materials in different industrial processes due to their abundance. Generally, in road construction projects, clays are considered waste materials because they have some undesirable engineering properties (e.g., plasticity and swelling properties). For this reason, this material is generally discarded in landfills or dumps. However, taking advantage of its abundance, this material could be used as a substitute for natural aggregates of hot mix asphalt (HMA) production as long as their undesirable properties are eliminated. In this study, a bentonite was thermally treated (subjected to high temperatures) in order to be used as replacement for the total filler content of a natural aggregate in HMA. X-ray diffractometry (XRD), X-ray fluorescence (XRF), Atterberg limits, and free swelling index tests were carried out on bentonite (with and without thermal treatment). Marshall, indirect tensile strength (ITS) (under dry and wet conditions), resilient modulus, permanent deformation, resistance to fatigue, and Cantabro tests were carried out on HMA mixtures using thermally treated bentonite (BT) as filler. On all test results an ANOVA test was carried out. When BT replaced the total fraction of the natural filler, its resistance under monotonic load, stiffness under cyclic loading, and resistance to moisture damage increased remarkably. A similar resistance to fatigue and abrasion in the Cantabro test was observed. Based on the results obtained, BT could be considered a technically viable alternative as a substitute material for natural fillers in HMAs.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

AASHTO. 1991. Standard method of test for specific gravity and absorption of coarse aggregate. AASHTO T85. Washington, DC: AASHTO.
AASHTO. 1999. Standard method of test for soundness of aggregate by use of sodium sulfate or magnesium sulfate. AASHTO T104. Washington, DC: AASHTO.
AASHTO. 2000. Standard method of test for specific gravity and absorption of fine aggregate. AASHTO T84. Washington, DC: AASHTO.
AASHTO. 2002a. Standard method of test for plastic fines in graded aggregates and soils by use of the sand equivalent test. AASHTO T176. Washington, DC: AASHTO.
AASHTO. 2002b. Standard method of test for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. AASHTO T96. Washington, DC: AASHTO.
AASHTO. 2003. Standard method of test for specific gravity of soil solids by water pycnometer. AASHTO T100. Washington, DC: AASHTO.
AASHTO. 2005. Standard method of test for resistance of coarse aggregate to degradation by abrasion in the micro-deval apparatus. AASHTO T327. Washington, DC: AASHTO.
AASHTO. 2015. Standard method of test for resistance to plastic flow of bituminous mixtures using Marshall apparatus. AASHTO T245. Washington, DC: AASHTO.
Abuel-Naga, H. M., D. T. Bergado, G. V. Ramana, L. Grino, P. Rujivipat, and Y. Thet. 2006. “Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature.” J. Geotech. Geoenviron. Eng. 132 (7): 902–910. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(902).
Abu-Zreig, M. M., N. M. Al-Akhras, and M. F. Attom. 2001. “Influence of heat treatment on the behaviour of clayey soils.” Appl. Clay Sci. 20 (3): 129–135. https://doi.org/10.1016/S0169-1317(01)00066-7.
Akbar-Firoozi, A., M. R. Taha, A. Asghar-Firoozi, and A. Tanveer. 2014. “Assessment of heat treatment on clays mixed with silica sand.” Aust. J. Basic Appl. Sci. 8 (19): 310–314.
Akbari, A., and A. Modarres. 2018. “Fatigue response of HMA containing modified bitumen with nano-clay and nano-alumina and its relationship with surface free energy parameters.” Road Mater. Pavement Des. https://doi.org/10.1080/14680629.2018.1553733.
Al-Allam, A. M., M. Idrus, M. Masirin, M. E. Abdullah, and N. H. M. Kamaruddin. 2016. “Influence of using batu pahat soft clay on the mechanical properties of hot mix asphalt mixture.” ARPN J. Eng. Appl. Sci. 11 (4): 2380–2386.
Alizadeh, A., and A. Modarres. 2019. “Mechanical and microstructural study of RAP–Clay composites containing bitumen emulsion and lime.” J. Mater. Civ. Eng. 31 (2): 04018383. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002583.
Ashish, P. K., D. Singh, and S. Bohm. 2017. “Investigation on influence of nanoclay addition on rheological performance of asphalt binder.” Road Mater. Pavement Des. 18 (5): 1007–1026. https://doi.org/10.1080/14680629.2016.1201522.
ASTM. 1999. Standard test method for ductility of bituminous materials. ASTM D113. West Conshohocken, PA: ASTM.
ASTM. 2000. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2001a. Standard test method for determining the percentage of fractured particles in coarse aggregate. ASTM D5821. West Conshohocken, PA: ASTM.
ASTM. 2001b. Standard test method for flash and fire points by Cleveland open cup. ASTM D92. West Conshohocken, PA: ASTM.
ASTM. 2006. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). ASTM D2872-12e1. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for penetration of bituminous materials. ASTM D5/D5M. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for effect of moisture on asphalt concrete paving mixtures. ASTM D4867/D4867M. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402/D4402M. West Conshohocken, PA: ASTM.
Bani-Baker, M. I., R. M. Abendeh, and T. A. S. Obaidat. 2018. “Employing natural bentonite clay as partial replacement of mineral filler in asphalt mixtures.” J. Mater. Civ. Eng. 30 (8): 04018167. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002375.
Brindley, G. W. 1975. “Thermal transformations of clays and layer silicates.” In Proc., Int. Clay Conf., edited by S. W. Bailey, 119–129. Wilmette, IL: Applied Publishing.
BSI (British Standards Institution). 2005a. Bituminous mixtures test methods for hot mix asphalt—Part 24: Resistance to fatigue. BS EN 12697-26. London: BSI.
BSI (British Standards Institution). 2005b. Bituminous mixtures test methods for hot mix asphalt—Part 25: Cyclic compression test. BS EN 12697-25. London: BSI.
BSI (British Standards Institution). 2005c. Bituminous mixtures test methods for hot mix asphalt—Part 26: Stiffness. BS EN 12697-26. London: BSI.
Chen, C.-W., V. Gaudefroy, M. Duc, Y. Descantes, F. Hammoum, and J. P. Magnan. 2015. “A mineralogical approach of the interactions between bitumen, clay and water in hot mix asphalt (HMA).” In Vol. 11 of Proc., 8th RILEM Int. Symp. on Testing and Characterization of Sustainable and Innovative Bituminous Materials, edited by F. Canestrari and M. Partl, 61–72. Dordrecht, Netherlands: Springer.
Cheng, Y., J. Tao, Y. Jiao, G. Tan, Q. Guo, S. Wang, and P. Ni. 2016. “Influence of the properties of filler on high and medium temperature performances of asphalt mastic.” Constr. Build. Mater. 118 (Aug): 268–275. https://doi.org/10.1016/j.conbuildmat.2016.05.041.
Cho, W. J., J. O. Lee, and K. S. Chun. 1999. “The temperature effects on hydraulic conductivity of compacted bentonite.” Appl. Clay Sci. 14 (1–3): 47–58. https://doi.org/10.1016/S0169-1317(98)00047-7.
Cox, B. C., B. T. Smith, I. L. Howard, and R. S. James. 2017. “State of knowledge for Cantabro testing of dense graded asphalt.” J. Mater. Civ. Eng. 29 (10): 04017174. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002020.
Crucho, J. M. L., J. M. C. das Neves, S. D. Capitão, and L. G. de Picado-Santos. 2018. “Mechanical performance of asphalt concrete modified with nanoparticles: Nanosilica, zero-valent iron and nanoclay.” Constr. Build. Mater. 181 (Aug): 309–318. https://doi.org/10.1016/j.conbuildmat.2018.06.052.
Da Silva, C. L., H. O. da Frota, and C. A. da Frota. 2015. “Sintered calcined clay as an alternative coarse aggregate for asphalt pavement construction.” Open J. Civ. Eng. 5 (3): 281–288. https://doi.org/10.4236/ojce.2015.53028.
De Souza Campelo, N., A. M. L. da Silva Campos, and A. F. Aragão. 2018. “Utilization of synthetic coarse aggregate of calcined clay in asphalt mixtures in the Amazon region.” J. Geol. Resour. Eng. 6 (1): 30–36. https://doi.org/10.17265/2328-2193/2018.01.005.
De Souza Campelo, N., A. M. L. da Silva Campos, and A. F. Aragão. 2019. “Comparative analysis of asphalt concrete mixtures employing pebbles and synthetic coarse aggregate of calcined clay in the Amazon region.” Int. J. Pavement Eng. 20 (5): 507–518. https://doi.org/10.1080/10298436.2017.1309199.
Di Benedetto, H., C. De la Roche, H. Baaj, A. Pronk, and R. Lundstrom. 2004. “Fatigue of bituminous mixtures.” Mater. Struct. 37 (4): 202–216. https://doi.org/10.1007/BF02481620.
DNER (Departamento Nacional de Estradas de Rodagem). 1998. Avaliação da resistência mecânica pelo método dos 10% de finos [Evaluation of mechanical resistance to coarse aggregate using 10% method]. DNER-ME 096. Rio de Janeiro, Brazil: Departamento Nacional de Infraestrutura de Transporte.
Drits, V. A., G. Besson, and F. Muller. 1995. “An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates.” Clays Clay Miner. 43 (6): 718–731. https://doi.org/10.1346/CCMN.1995.0430608.
Elimbi, A., H. K. Tchakoute, and D. Njopwouo. 2011. “Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements.” Constr. Build. Mater. 25 (6): 2805–2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055.
Gadzama, E. W., I. Nuhu, and P. Yohanna. 2017. “Influence of temperature on the engineering properties of selected tropical black clays.” Arabian J. Sci. Eng. 42 (9): 3829–3838. https://doi.org/10.1007/s13369-017-2485-3.
Geng, J., and Q. Sun. 2018. “Effects of high temperature treatment on physical-thermal properties of clay.” Thermochim. Acta 666 (Aug): 148–155. https://doi.org/10.1016/j.tca.2018.06.018.
Goodman, C. C., N. Latifi, and F. Vahedifard. 2018. “Effects of temperature on microstructural properties of unsaturated clay.” In Proc., Installation, Testing, and Analysis of Deep Foundations—IFCEE 2018, 343–352. Reston, VA: ASCE.
Han, J., Q. Sun, H. Xing, Y. Zhang, and H. Sun. 2017. “Experimental study on thermophysical properties of clay after high temperature.” Appl. Therm. Eng. 111 (Jan): 847–854. https://doi.org/10.1016/j.applthermaleng.2016.09.168.
INVIAS (Instituto Nacional de Vías). 2013. Especificaciones generales de construcción de carreteras. Bogotá D.C., Colombia: INVIAS.
Jefferson, I., and C. D. Foss-Rogers. 1998. “Liquid limit and the temperature sensitivity of clays.” Eng. Geol. 49 (2): 95–109. https://doi.org/10.1016/S0013-7952(97)00077-X.
Joshi, R. C., G. Achari, D. Horsfield, and T. S. Nagaraj. 1994. “Effect of heat treatment on strength of clays.” J. Geotech. Geoenviron. Eng. 120 (6): 1080–1088. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1080).
Laughlin, G. R. 1959. The effect of thermal treatment on the engineering properties of clays. Lexington, KY: Univ. of Kentucky.
Little, D. N., and D. R. Jones IV. 2003. “Chemical and mechanical processes of moisture damage in hot-mix asphalt pavements.” In Proc., Moisture Sensitivity of Asphalt Pavements: A National Seminar, 37–70. Washington, DC: Transportation Research Board.
Losa, M., P. Leandri, and R. Bacci. 2008. “Mechanical and performance-related properties of asphalt mixes containing expanded clay aggregate.” Transp. Res. Rec. 2051 (1): 23–30. https://doi.org/10.3141/2051-04.
Ma, C., and T. Hueckel. 1992. “Effects of inter phase mass transfer in heated clays: A mixture theory.” Int. J. Eng. Sci. 30 (11): 1567–1582. https://doi.org/10.1016/0020-7225(92)90126-2.
Mitchell, J. K. 1969. Temperature effects on the engineering properties and behaviour of soils. Washington, DC: Highway Research Board.
Modarres, A., and M. Rahmanzadeh. 2014. “Application of coal waste powder as filler in hot mix asphalt.” Constr. Build. Mater. 66 (Sep): 476–483. https://doi.org/10.1016/j.conbuildmat.2014.06.002.
Mohd-Satar, M. K. I., R. P. Jaya, M. H. Rafsanjani, N. CheMat, M. R. Hainin, M. A. Aziz, M. E. Abdullah, and D. S. Jayanti. 2018. “Performance of kaolin clay on hot-mix asphalt properties.” In Vol. 1049 of Proc., Int. Postgraduate Conf. on Applied Science and Physics 2017, 012002. Johor, Malaysia: Institute of Physics Publishing.
Muniandy, R., E. Aburkaba, and L. Mahdi. 2013. “Effect of mineral filler type and particle size on asphalt-filler mastic and stone mastic asphalt laboratory measured properties.” Aust. J. Basic Appl. Sci. 7 (11): 475–487.
Muniz de Farias, M., F. Quiñonez, and H. A. Rondón. 2019. “Behavior of a hot-mix asphalt made with recycled concrete aggregate and crumb rubber.” Can. J. Civ. Eng. 46 (6): 544–551. https://doi.org/10.1139/cjce-2018-0443.
NLT (Normas del Laboratorio de Transporte). 1986. Caracterización de las mezclas bituminosas abiertas por medio del ensayo cántabro de pérdida por desgaste [Porous mix asphalt characterization using Cantabro loss test method]. Normas NLT-352. Madrid, Spain: NLT.
NLT (Normas del Laboratorio de Transporte). 1988. Método para determinar la variación de la consistencia del betún asfáltico con los cambios de temperatura (susceptibilidad) [Method to determine the variation in the consistency of asphalt bitumen with temperature changes (susceptibility)]. Normas NLT-181. Madrid, Spain: NLT.
Omar, H. A., N. I. Yusoff, H. Ceylan, I. A. Rahman, Z. Sajuri, F. M. Jakarni, and A. Ismail. 2018. “Determining the water damage resistance of nano-clay modified bitumens using the indirect tensile strength and surface free energy methods.” Constr. Build. Mater. 167 (Apr): 391–402. https://doi.org/10.1016/j.conbuildmat.2018.02.011.
Panduro, E. C., and J. B. Cabrejos. 2010. “Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment.” Hyperfine Interact. 195 (1–3): 55–62. https://doi.org/10.1007/s10751-009-0101-y.
Sangiorgi, C., P. Tataranni, A. Simone, V. Vignali, C. Lantieri, and G. Dondi. 2014. “Waste bleaching clays as fillers in hot bituminous mixtures.” Constr. Build. Mater. 73 (Dec): 320–325. https://doi.org/10.1016/j.conbuildmat.2014.09.076.
Sangiorgi, C., P. Tataranni, A. Simone, V. Vignali, C. Lantieri, and G. Dondi. 2016. “Assessment of waste bleaching clay as alternative filler for the production of porous asphalts.” Constr. Build. Mater. 109 (Apr): 1–7. https://doi.org/10.1016/j.conbuildmat.2016.01.052.
Scott, J. A. N. 1978. “Adhesion and disbonding mechanisms of asphalt used in highway construction and maintenance.” In Vol. 47 of Proc., Association of Asphalt Paving Technologists, 19–48. Lake Buena Vista, FL: Association of Asphalt Paving Technologists.
Shariatmadari, N., and S. Saeidijam. 2012. “The effect of thermal history on thermo-mechanical behavior of bentonite-sand mixture.” Int. J. Civ. Eng. 10 (2): 162–167.
Siddig, E. A. A., C. P. Feng, and L. Y. Ming. 2018. “Effects of ethylene vinyl acetate and nanoclay additions on high-temperature performance of asphalt binders.” Constr. Build. Mater. 169 (Apr): 276–282. https://doi.org/10.1016/j.conbuildmat.2018.03.012.
Sun, Q., W. Zhang, Y. Zhang, and L. Yang. 2016. “Variations of strength, resistivity and thermal parameters of clay after high temperature treatment.” Acta Geophys. 64 (6): 2077–2091. https://doi.org/10.1515/acgeo-2016-0090.
Tan, Ö., L. Yılmaz, and A. S. Zaimoğlu. 2004. “Variation of some engineering properties of clays with heat treatment.” Mater. Lett. 58 (7–8): 1176–1179. https://doi.org/10.1016/j.matlet.2003.08.030.
Taylor, M. A., and N. P. Khosla. 1983. “Stripping of asphalt pavements: State of the art.” Transp. Res. Rec. 911: 150–158.
Towhata, I., P. Kuntiwattanaku, I. Seko, and K. Ohishi. 1993. “Volume change of clays induced by heating as observed in consolidation tests.” Soils Found. 33 (4): 170–183. https://doi.org/10.3208/sandf1972.33.4_170.
Uddin, F. 2008. “Clays, nanoclays, and montmorillonite minerals.” Metall. Mater. Trans. A 39 (12): 2804–2814. https://doi.org/10.1007/s11661-008-9603-5.
Varlakov, A., I. Sobolev, A. Barinov, S. Dmitriev, S. Karlin, and V. Flit. 1997. “Method of treatment of radioactive silts and soils.” In Proc., 1996 MRS Fall Meeting, Moscow, Russia, 591–594. Pittsburgh: Materials Research Society.
Wang, L. Z., K. J. Wang, and Y. Hong. 2016. “Modeling temperature-dependent behavior of soft clay.” J. Eng. Mech. 142 (8): 04016054. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001108.
Wasilewska, M., D. Małaszkiewicz, and N. Ignatiuk. 2017. “Evaluation of different mineral filler aggregates for asphalt mixtures.” IOP Conf. Ser.: Mater. Sci. Eng. 245 (2): 022042. https://doi.org/10.1088/1757-899X/245/2/022042.
Xie, J., S. Wu, J. Lin, J. Cai, Z. Chen, and W. Wei. 2012. “Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization & moisture damage investigation.” Constr. Build. Mater. 36 (Nov): 467–474. https://doi.org/10.1016/j.conbuildmat.2012.06.023.
Yanti, E. D., and I. Pratiwi. 2018. “Correlation between thermal behavior of clays and their chemical and mineralogical composition: A review.” IOP Conf. Ser.: Earth Environ. Sci. 118: 012078. https://doi.org/10.1088/1755-1315/118/1/012078.
Yilmaz, G. 2011. “The effects of temperature on the characteristics of kaolinite and bentonite.” Sci. Res. Essays 6 (9): 1928–1939. https://doi.org/10.5897/SRE10.727.
Yu, J., X. Zeng, S. Wu, L. Wang, and G. Liu. 2007. “Preparation and properties of montmorillonite modified asphalts.” Mater. Sci. Eng. A 447 (1–2): 233–238. https://doi.org/10.1016/j.msea.2006.10.037.
Yusoff, N. I. M., A. A. S. Breem, H. N. Alattug, A. Hamim, and J. Ahmad. 2014. “The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures.” Constr. Build. Mater. 72 (Dec): 139–147. https://doi.org/10.1016/j.conbuildmat.2014.09.014.
Zare-Shahabadi, A., A. Shokuhfar, and S. Ebrahimi-Nejad. 2010. “Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles.” Constr. Build. Mater. 24 (7): 1239–1244. https://doi.org/10.1016/j.conbuildmat.2009.12.013.
Ziari, H., R. Babagoli, M. Ameri, and A. Akbari. 2014. “Evaluation of fatigue behavior of hot mix asphalt mixtures prepared by bentonite modified bitumen.” Constr. Build. Mater. 68 (Oct): 685–691. https://doi.org/10.1016/j.conbuildmat.2014.06.066.
Zibouche, F., H. Kerdjoudj, J. B. d’Espinose de Lacaillerie, and H. Van Damme. 2009. “Geopolymers from Algerian metakaolin. Influence of secondary minerals.” Appl. Clay Sci. 43 (3–4): 453–458. https://doi.org/10.1016/j.clay.2008.11.001.
Živica, V., and M. Palou. 2016. “Influence of heat treatment on the pore structure of some clays-Precursors for geopolymer synthesis.” Procedia Eng. 151: 141–148. https://doi.org/10.1016/j.proeng.2016.07.401.
Zuzana, O., M. Annamária, D. Silvia, and B. Jaroslav. 2012. “Effect of thermal treatment on the bentonite properties.” Arhiv za tehničke nauke 7 (1): 49–56. https://doi.org/10.5825/afts.2012.0407.0490.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 32Issue 5May 2020

History

Received: Jun 29, 2019
Accepted: Sep 17, 2019
Published online: Feb 19, 2020
Published in print: May 1, 2020
Discussion open until: Jul 19, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Hugo Alexander Rondón-Quintana, Ph.D. [email protected]
Civil Engineer, Faculty of Environment and Natural Resources, Universidad Distrital Francisco José de Caldas, Carrera 5 Este N° 15-82, Bogotá, DC 110131, Colombia; mailing address: Carrera 5 Este 15-82, Universidad Distrital, Bogotá, DC 110231, Colombia (corresponding author). Email: [email protected]; [email protected]
Juan Carlos Ruge-Cárdenas, Ph.D. [email protected]
Geotechnical Engineer, Civil Engineering Program, Faculty of Engineering, Universidad Militar Nueva Granada, Carrera 11 No. 101 80, Bogotá, DC 110111, Colombia. Email: [email protected]
Juan Gabriel Bastidas-Martínez, Ph.D. [email protected]
Geotechnical Engineer, Civil Engineering Program, Faculty of Engineering, Universidad Católica de Colombia, Diagonal 46A 15B-10, El Claustro, Bogotá, DC 110231, Colombia. Email: [email protected]
Michael Yesid Velandia-Castelblanco [email protected]
Civil Engineer, Faculty of Technology, Universidad Distrital Francisco José de Caldas, Calle 68D Bis A Sur # 49F-70, Bogotá, DC 110621, Colombia. Email: [email protected]
Márcio Muniz de Farias, Ph.D. [email protected]
Geotechnical Engineer, Faculty of Technology, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP, Brasília, DF 70910-900, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share