Technical Papers
Jun 18, 2019

Laboratory and Field Evaluation of KR Slag–Stabilized Soil for Paving Applications

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 9

Abstract

The use of soil stabilization in place of cutting out and replacing the existing subgrade soil can save significant amounts of resources in roadway construction projects. Also, the possibility of stabilizing a low-grade soil using by-products is economically and environmentally attractive. Considering that, the main objective of this study is to show the technical feasibility of using desulfurization steel slag from the Kambara reactor process (KR slag) as a soil stabilizer. A total of nine soil mixes were evaluated in the laboratory, varying the type of soil and the percentage and type of additives (KR slag and portland cement) used. After laboratory evaluation, two field sections were constructed. The trial sections were subject to repetitive traffic loading using a heavy-vehicle simulator (HVS). Weekly measurements were taken according to the following tests: Benkelman beam, British portable tester, and rutting depth measurements. The soil-KR mix designed with 20% KR slag addition and a poor-grade soil (clay) performed as well as the typical soil modified by cement solution designed with a better-quality soil (sand) modified by 3% cement. The clay soil did not meet standard requirements even when mixed with 10% portland cement. However, the clay soil modified by KR slag not only presented satisfactory laboratory results for roadway use in the base and/or subbase utilization, it also showed excellent field performance.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank Eco Rodovias and ArcelorMittal Tubarão for their financial support in this research study.

References

AASHTO. 1991. Standard specification for classification of soils and soil-aggregate mixtures for highway construction purposes. AASHTO M 145. Washington, DC: AASHTO.
ABNT (Brazilian Association of Technical Standards). 2001. Agregado graúdo: Ensaio de abrasão Los Angeles. [In Portuguese.] ABNT NBR NM 51. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2006. Agregados graúdo—Determinação da massa unitária e do volume de vazios. [In Portuguese.] ABNT NBR NM 045. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2009. Agregado graúdo—Determinação da massa específica, massa específica aparente e absorção de água. [In Portuguese.] ABNT NBR NM 053. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2012a. Solo-Cimento—Dosagem para emprego como camada de pavimento. [In Portuguese.] ABNT NBR 12253. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2012b. Solo-Cimento—Ensaio de compressão simples de corpos de prova cilíndricos. [In Portuguese.] ABNT NBR 12025. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2016a. Determinação da massa específica. [In Portuguese.] ABNT NBR 6458. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2016b. Solo–Determinação do limite de liquidez. [In Portuguese.] ABNT NBR 6459. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2016c. Solo–Determinação do limite de plasticidade. [In Portuguese.] ABNT NBR 7180. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2016d. Solo–Ensaio de Compactação. [In Portuguese.] ABNT NBR 7182. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2016e. Solo–Indice de suporte Califórnia (ISC). [In Portuguese.] ABNT NBR 9895. São Paulo, Brazil: ABNT.
ABNT (Brazilian Association of Technical Standards). 2018. Cimento Portland—Requisitos. [In Portuguese.] ABNT NBR 16697. São Paulo, Brazil: ABNT.
Baghini, M. S., A. Ismail, M. R. Karim, F. Shokri, and A. A. Firoozi. 2014. “Effect of styrene-butadiene copolymer latex on properties and durability of road base stabilized with portland cement additive.” Constr. Build. Mater. 68: 740–749. https://doi.org/10.1016/j.conbuildmat.2014.06.061.
Balaguera, A., G. I. Carvajal, J. Albertí, and P. Fullana-i-Palmer. 2018. “Life cycle assessment of road construction alternative materials: A literature review.” Resour. Conserv. Recycl. 132: 37–48. https://doi.org/10.1016/j.resconrec.2018.01.003.
Behnood, A. 2018. “Soil and clay stabilization with calcium- and non–calcium-based additives: A state-of-the-art review of challenges, approaches and techniques.” Transp. Geotech. 17: 14–32. https://doi.org/10.1016/j.trgeo.2018.08.002.
Beshears, S., and A. Tutumluer. 2013. “Reclaimed asphalt pavement with steel slag aggregate successful use in Illinois pavements.” TR News 288: 46–47.
Cho, B., and H. Choi. 2016. “Physical and chemical properties of concrete using GGBFS-KR slag-gypsum binder.” Constr. Build. Mater. 123: 436–443. https://doi.org/10.1016/j.conbuildmat.2016.07.023.
CNT (National Confederation of Transport). 2017. CNT research on highways 2017. Brasília, Brazil: CNT.
Coleri, E., M. Kayhanian, J. T. Harvey, K. Yang, and J. M. Boone. 2013. “Clogging evaluation of open graded friction course pavements tested under rainfall and heavy vehicle simulators.” J. Environ. Manage. 129: 164–172. https://doi.org/10.1016/j.jenvman.2013.07.005.
Consoli, N. C., D. Winter, A. S. Rilho, L. Festugato, and B. dos Santos Teixeira. 2015. “A testing procedure for predicting strength in artificially cemented soft soils.” Eng. Geol. 195: 327–334. https://doi.org/10.1016/j.enggeo.2015.06.005.
DNER (National Department of Roads). 1994a. Agregados–Avaliação da durabilidade pelo emprego de soluções de Sulfato de sódio ou de magnésio. [In Portuguese.] DNER ME 089. São Paulo, Brazil: DNER.
DNER (National Department of Roads). 1994b. Escória de Aciaria para Pavimento Rodoviário. [In Portuguese.] DNIT EM 262. Brasília, Brazil: DNER.
DNIT (National Department for Transportation Infrastructure). 2009. Pavimentação Rodoviária—Agregado Artificial—Avaliação do Potencial de Expansão de Escória de Aciaria—Método De Ensaio. [In Portuguese.] DNIT ME 113. Brasília, Brazil: DNIT.
DNIT (National Department of Infrastructure and Transport). 2010a. Pavimentação–Base de solo melhorado com cimento—Especificação de serviço. [In Portuguese.] DNIT ES 142. Rio de Janeiro, Brazil: DNIT.
DNIT (National Department of Infrastructure and Transport). 2010b. Pavimentação—Solos—Determinação do módulo de resiliência—Método de ensaio. [In Portuguese.] DNIT ME 134. Rio de Janeiro, Brazil: DNIT.
du Plesses, L., W. A. Nokes, N. Burmas, T. J. Holland, and E. B. Lee. 2011. “A case study of economy benefits assessment of APT research in California.” In Proc., 90th Annual Meeting at the Transportation Research Board. Washington, DC: Transportation Research Board.
du Plessis, L., A. Ulloa-Calderon, J. T. Harvey, and N. F. Coetzee. 2018. “Accelerated pavement testing efforts using the heavy vehicle simulator.” Int. J. Pavement Res. Technol. 11 (4): 327–338. https://doi.org/10.1016/j.ijprt.2017.09.016.
Eren, S., and M. Filiz. 2009. “Comparing the conventional soil stabilization methods to the consoled system used as an alternative admixture matter in Isparta Daridere material.” Constr. Build. Mater. 23 (7): 2473–2480. https://doi.org/10.1016/j.conbuildmat.2009.01.002.
Halsted, G. E., W. S. Adaska, and W. T. McConnell. 2008. Guide to cement-modified soil (CMS). Skokie, IL: Portland Cement Association.
Ho, L. S., K. Nakarai, M. Duc, A. Le Kouby, A. Maachi, and T. Sasaki. 2018. “Analysis of strength development in cement-treated soils under different curing conditions through microstructural and chemical investigations.” Constr. Build. Mater. 166: 634–646. https://doi.org/10.1016/j.conbuildmat.2018.01.112.
Ho, L. S., K. Nakarai, Y. Ogawa, T. Sasaki, and M. Morioka. 2017. “Strength development of cement-treated soils: Effects of water contente, carbonation, and pozzolanic reaction under drying curing condition.” Constr. Build. Mater. 134: 703–712. https://doi.org/10.1016/j.conbuildmat.2016.12.065.
Lee, K. W., K. Wilson, and S. A. Hassan. 2017. “Prediction of performance and evaluation of flexible pavement rehabilitation strategies.” J. Traffic Transp. Eng. 4 (2): 178–184. https://doi.org/10.1016/j.jtte.2017.03.005.
Leiva-Villacorta, F., A. Vargas-Nordcbeck, J. P. Aguiar-Moya, and L. G. Loría-Salazar. 2016. “Calibration of a mechanistic-empirical fatigue model using the pavelab heavy vehicle simulator.” In Proc., 95th Annual Meeting of the Transportation Research Board. Washington, DC: Transportation Research Board.
Magadi, K. L., N. Anirudh, and K. M. Mallesh. 2016. “Evaluation of bitumious concrete mixture properties with steel slag.” Transp. Res. Procedia 17: 174–183. https://doi.org/10.1016/j.trpro.2016.11.073.
NSA (Nippon Slag Association). 2018. “Characteristics and applications of iron and steel slag.” Accessed July 18, 2018. http://www.slg.jp/e/slag/usage.html.
Ojuri, O. O., A. A. Adavi, and O. E. Oluwatuyi. 2017. “Geotechnical and environmental evaluation of lime-cement stabilized soil-mine tailing mixtures for highway construction.” Transp. Geotech. 10: 1–12. https://doi.org/10.1016/j.trgeo.2016.10.001.
Onyelowe, K. C., and F. O. Okoafor. 2012. “Geochemistry of soil stabilization.” ARPN J. Earth Sci. 1 (2): 32–35.
Rezende, L. R., T. S. Curado, M. V. Silva, M. M. A. Mascarenha, D. A. N. Metogo, M. P. Cordão Neto, and L. L. Bernucci. 2017. “Laboratory study of phosphogypsum, stabilizers, and tropical soil mixtures.” J. Mater. Civ. Eng. 29 (1): 04016188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001711.
Sabat, A. K., and S. A. Pati. 2014. “Review of literature on stabilization of expansive soil using solid wastes.” Electron. J. Geotech. Eng. 19: 6251–6267.
Sharma, L. K., N. N. Sirdesai, K. M. Sharma, and T. N. Singh. 2018. “Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study.” Appl. Clay Sci. 152: 183–195. https://doi.org/10.1016/j.clay.2017.11.012.
Sheng, G., P. Huang, S. Wang, and G. Chen. 2014. “Potential reuse of slag from the Kambara reactor desulfurization process of iron in an acidic mine drainage treatment.” J. Environ. Eng. 140 (7): 04014023. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000841.
Sirin, O., T. Mang, R. Roque, and B. Choubane. 2007. “Evaluation of performance characteristics of the heavy vehicle simulator in Florida.” Build. Environ. 42 (3): 1270–1277. https://doi.org/10.1016/j.buildenv.2005.11.030.
Sorlini, S., A. Sanzeni, and L. Rondi. 2012. “Reuse of steel slag in bituminous paving mixtures.” J. Hazard. Mater. 209–210: 84–91. https://doi.org/10.1016/j.jhazmat.2011.12.066.
TAC (Transportation Association of Canada). 1997. Pavement design and management guide. Ottawa: TAC.
Tong, Z., G. Ma, X. Cai, Z. Xue, W. Wang, and X. Zhangl. 2016. “Characterization and valorization of kanbara reactor desulfurization waste slag of hot metal pretreatment.” Waste Biomass Value 7 (1): 1–8. https://doi.org/10.1007/s12649-015-9429-5.
Wang, G., and J. Emery. 2004. “Technology of slag utilization in highway construction.” In Proc., Annual Conf. of Transportation Association of Canadá. Ottawa: Transportation Association of Canada.
Wu, S., Y. Xue, Q. Ye, and Y. Chen. 2007. “Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures.” Build. Environ. 42 (7): 2580–2585. https://doi.org/10.1016/j.buildenv.2006.06.008.
Yoder, E. J., M. W. Witczak. 1975. Principles of pavement design. 2nd ed. New York: Wiley.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 9September 2019

History

Received: Oct 30, 2018
Accepted: Mar 5, 2019
Published online: Jun 18, 2019
Published in print: Sep 1, 2019
Discussion open until: Nov 18, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Patrício Moreira Pires, D.Sc. [email protected]
Assistant Professor, Programa de Pós-graduaçao em Engenharia Civil, Universidade Federal do Espírito Santo, Vitória, ES 29060-970, Brazil. Email: [email protected]
Jamilla Emi Sudo Lutif Teixeira, Ph.D., M.ASCE https://orcid.org/0000-0001-7805-4218 [email protected]
Assistant Professor, Programa de Pós-graduaçao em Engenharia Civil, Universidade Federal do Espírito Santo, Vitória, ES 29060-970, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-7805-4218. Email: [email protected]
Daiana Valt Nepomuceno [email protected]
Graduate Student, Programa de Pós-graduaçao em Engenharia Civil, Universidade Federal do Espírito Santo, Vitória, ES 29060-970, Brazil. Email: [email protected]
Elaine Cristina Furieri [email protected]
Graduate Student, Programa de Pós-graduaçao em Engenharia Civil, Universidade Federal do Espírito Santo, Vitória, ES 29060-970, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share