Technical Papers
May 25, 2019

Experimental Study of Geopolymer Binder Synthesized with Copper Mine Tailings and Low-Calcium Copper Slag

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 8

Abstract

The use of waste materials in construction is gaining increasing interest due to the development of new technologies. This paper presents an experimental study on geopolymer binder produced with copper mine tailings (MT) and low-calcium slag (SG) for potential applications in road construction. The study systematically investigated the effects of water-to-solid ratio (w/s), SG content (0%, 25%, and 50%), sodium hydroxide (NaOH) concentration (5, 10 and 15 M), and the ratio of sodium silicate (SS) to sodium hydroxide (0.0, 0.5, 1.0, and 1.5) on the unconfined compressive strength (UCS) of synthesized geopolymer binder specimens. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses were also performed to characterize the microstructure and phase composition of the geopolymer specimens. The results show that the inclusion of SG improves UCS and reduces the initial water content required for achieving a certain workability of the geopolymer paste. The geopolymer binder specimens prepared at 50% SG, 10-M NaOH, SS/NaOH=1.0, and cured at 60°C for seven days reached the highest UCS of 23.5 MPa. The geopolymer paste prepared at 50% SG, 15-M NaOH concentration, and SS/NaOH ratios of 0.5 and 1.0 showed flash setting, which led to poorer quality specimens and lower UCS. The SEM, EDS, and XRD analyses clearly showed the participation of iron dissolved from SG in the formation of geopolymer gels. This research helps promote the reuse of MT and SG through geopolymerization and contributes to the knowledge of geopolymer materials.

Get full access to this article

View all available purchase options and get full access to this article.

References

Ahmari, S., R. Chen, and L. Zhang. 2012a. “Utilization of mine tailings as road base material.” In Geocongress 2012, 3654–3661. Reston, VA: ASCE.
Ahmari, S., K. Parameswaran, and L. Zhang. 2014. “Alkali activation of copper mine tailings and low-calcium flash-furnace copper smelter slag.” J. Mater. Civ. Eng. 27 (6): 1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001159.
Ahmari, S., and L. Zhang. 2012. “Production of eco-friendly bricks from copper mine tailings through geopolymerization.” Constr. Build. Mater. 29: 323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048.
Ahmari, S., and L. Zhang. 2013. “Durability and leaching behavior of mine tailings-based geopolymer bricks.” Constr. Build. Mater. 44: 743–750. https://doi.org/10.1016/j.conbuildmat.2013.03.075.
Ahmari, S., L. Zhang, and J. Zhang. 2012b. “Effects of activator type/concentration and curing temperature on alkali-activated binder based on copper mine tailings.” J. Mater. Sci. 47 (16): 5933–5945. https://doi.org/10.1007/s10853-012-6497-9.
Altan, E., and S. T. Erdoǧan. 2012. “Alkali activation of a slag at ambient and elevated temperatures.” Cem. Concr. Compos. 34 (2): 131–139. https://doi.org/10.1016/j.cemconcomp.2011.08.003.
Antoni, A., S. W. Wijaya, and D. Hardjito. 2016. “Factors affecting the setting time of fly ash-based geopolymer.” Mater. Sci. Forum 841: 90–97. https://doi.org/10.4028/www.scientific.net/MSF.841.90.
ASTM. 2007. Standard test method for particle-size analysis of soils. ASTM D422-63. West Conshohocken, PA: ASTM.
ASTM. 2009. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913-04. West Conshohocken, PA: ASTM.
Athulya, G. K., S. Dutta, and J. N. Mandal. 2017. “Performance evaluation of stabilised soil—Slag mixes as highway construction material.” Int. J. Geotech. Eng. 11 (1): 51–61. https://doi.org/10.1080/19386362.2016.1184874.
Babaee, M., M. S. H. Khan, and A. Castel. 2018. “Passivity of embedded reinforcement in carbonated low-calcium fly ash-based geopolymer concrete.” Cem. Concr. Compos. 85: 32–43. https://doi.org/10.1016/j.cemconcomp.2017.10.001.
Cheng, T. W., and J. P. Chiu. 2003. “Fire-resistant geopolymer produced by granulated blast furnace slag.” Miner. Eng. 16 (3): 205–210. https://doi.org/10.1016/S0892-6875(03)00008-6.
Cho, Y. K., S. W. Yoo, S. H. Jung, K. M. Lee, and S. J. Kwon. 2017. “Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer.” Constr. Build. Mater. 145: 253–260. https://doi.org/10.1016/j.conbuildmat.2017.04.004.
Cyr, M., R. Idir, and T. Poinot. 2012. “Properties of inorganic polymer (geopolymer) mortars made of glass cullet.” J. Mater. Sci. 47 (6): 2782–2797. https://doi.org/10.1007/s10853-011-6107-2.
Davidovits, J. 1991. “Geopolymers: Inorganic polymeric new materials.” J. Therm. Anal. 37 (8): 1633–1656. https://doi.org/10.1007/BF01912193.
De Silva, P., K. Sagoe-Crenstil, and V. Sirivivatnanon. 2007. “Kinetics of geopolymerization: Role of Al2O3 and SiO2.” Cem. Concr. Res. 37 (4): 512–518. https://doi.org/10.1016/j.cemconres.2007.01.003.
Dimas, D., I. Giannopoulou, and D. Panias. 2009. “Polymerization in sodium silicate solutions: A fundamental process in geopolymerization technology.” J. Mater. Sci. 44 (14): 3719–3730. https://doi.org/10.1007/s10853-009-3497-5.
Drechsler, M., and A. Graham. 2005. “Innovative material technologies: Bringing resources sustainability to construction and mining industries.” In Proc., 48th Institute of Quarrying Conf. Adelaide, Australia.
Duxson, P., S. Mallicoat, G. Lukey, W. Kriven, and J. Van Deventer. 2007. “The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers.” Colloids Surf., A 292 (1): 8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044.
Ekaputri, J. J., and S. Junaedi. 2017. “Effect of curing temperature and fiber on metakaolin-based geopolymer.” Procedia Eng. 171: 572–583. https://doi.org/10.1016/j.proeng.2017.01.376.
Gomaa, E., S. Sargon, C. Kashosi, and M. ElGawady. 2017. “Fresh properties and compressive strength of high calcium alkali activated fly ash mortar.” J. King Saud Univ. Eng. Sci. 29 (4): 356–364. https://doi.org/10.1016/j.jksues.2017.06.001.
Gomes, K. C., G. S. T. Lima, S. M. Torres, S. De Barros, I. F. Vasconcelos, and N. P. Barbosa. 2010. “Iron distribution in geopolymer with ferromagnetic rich precursor.” Mater. Sci. Forum 643: 131–138. https://doi.org/10.4028/www.scientific.net/MSF.643.131.
Gorakhki, M. H., and C. A. Bareither. 2017. “Unconfined compressive strength of synthetic and natural mine tailings amended with fly ash and cement.” J. Geotech. Geoenviron. Eng. 143 (7): 04017017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001678.
Guo, X., H. Shi, and W. A. Dick. 2010. “Compressive strength and microstructural characteristics of class C fly ash geopolymer.” Cem. Concr. Comp. 32 (2): 142–147. https://doi.org/10.1016/j.cemconcomp.2009.11.003.
Hardjito, D., S. E. Wallah, D. M. Sumajouw, and B. V. Rangan. 2004. “On the development of fly ash-based geopolymer concrete.” ACI Mater. J. 101 (6): 467–471.
Heah, C. Y., H. Kamarudin, A. M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C. M. Ruzaidi, and Y. M. Liew. 2012. “Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers.” Constr. Build. Mater. 35: 912–922. https://doi.org/10.1016/j.conbuildmat.2012.04.102.
Hou, Y., D. Wang, W. Zhou, H. Lu, and L. Wang. 2009. “Effect of activator and curing mode on fly ash-based geopolymers.” J. Wuhan Univ. Tech.-Mater. Sci. Ed. 24: 711–715. https://doi.org/10.1007/s11595-009-5711-3.
Huang, D., S. H. Chen, and H. H. Mon. 2013. “The preliminary study on re-utilization of ferrous-nickel slag to replace conventional construction material for road construction (sub-grade layer improvement).” Adv. Mater. Res. 723: 694–702. https://doi.org/10.4028/www.scientific.net/AMR.723.694.
Hudson-Edwards, K. A., H. E. Jamieson, and B. G. Lottermoser. 2011. “Mine wastes: Past, present, future.” Elements 7 (6): 375–380. https://doi.org/10.2113/gselements.7.6.375.
Jang, J. G., N. K. Lee, and H. K. Lee. 2014. “Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers.” Constr. Build. Mater. 50: 169–176. https://doi.org/10.1016/j.conbuildmat.2013.09.048.
Joseph, B., and G. Mathew. 2012. “Influence of aggregate content on the behavior of fly ash based geopolymer concrete.” Scientia Iranica 19 (5): 1188–1194. https://doi.org/10.1016/j.scient.2012.07.006.
Koleżyński, A., M. Król, and M. Żychowicz. 2018. “The structure of geopolymers: Theoretical studies.” J. Mol. Struct. 1163: 465–471. https://doi.org/10.1016/j.molstruc.2018.03.033.
Komnitsas, K., D. Zaharaki, and V. Perdikatsis. 2007. “Geopolymerisation of low calcium ferronickel slags.” J. Mater. Sci. 42 (9): 3073–3082. https://doi.org/10.1007/s10853-006-0529-2.
Komnitsas, K., D. Zaharaki, and V. Perdikatsis. 2009. “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers.” J. Hazardous Mater. 161 (2–3): 760–768. https://doi.org/10.1016/j.jhazmat.2008.04.055.
Kumar, S., R. Kumar, and S. P. Mehrotra. 2010. “Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer.” J. Mater. Sci. 45 (3): 607–615. https://doi.org/10.1007/s10853-009-3934-5.
Li, Z., Z. Ding, and Y. Zhang. 2004. “Development of sustainable cementitious materials.” In Proc., Int. Workshop on Sustainable Development and Concrete Technology, 55–76. Ames, IA: Iowa State Univ.
Liew, Y. M., H. Kamarudin, A. M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, C. M. Ruzaidi, and C. Y. Heah. 2012. “Processing and characterization of calcined kaolin cement powder.” Constr. Build. Mater. 30: 794–802. https://doi.org/10.1016/j.conbuildmat.2011.12.079.
Lloyd, N., and V. Rangan. 2009. “Geopolymer concrete: Sustainable cementless concrete.” Proc., 10th ACI Int. Conf., 33–53. Farmington Hills, MI: American Concrete Institute.
Lloyd, R. R., J. L. Provis, and J. S. J. Van Deventer. 2009. “Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles.” J. Mater. Sci. 44 (2): 608–619. https://doi.org/10.1007/s10853-008-3077-0.
Lolli, F., H. Manzano, J. L. Provis, M. C. Bignozzi, and E. Masoero. 2018. “Atomistic simulations of geopolymer models: The impact of disorder on structure and mechanics.” ACS Appl. Mater. Interfaces 10 (26): 22809–22820. https://doi.org/10.1021/acsami.8b03873.
Maddalena, R., J. J. Roberts, and A. Hamilton. 2018. “Can portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements.” J. Cleaner Prod. 186: 933–942. https://doi.org/10.1016/j.jclepro.2018.02.138.
Mahmood, A. A., and C. N. Mulligan. 2007. “Investigation of the use of mine tailings for unpaved road base.” In Vol. 12 of Proc., Annual Int. Conf. on Soils, Sediments, Water and Energy, 107–117. Berkeley, CA: Berkeley Electronic Press.
Manjarrez, L., and L. Zhang. 2018. “Utilization of copper mine tailings as road base construction material through geopolymerization.” J. Mater. Civ. Eng. 30 (9): 04018201. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002397.
Maragkos, I., I. P. Giannopoulou, and D. Panias. 2009. “Synthesis of ferronickel slag-based geopolymers.” Miner. Eng. 22 (2): 196–203. https://doi.org/10.1016/j.mineng.2008.07.003.
Memon, F. A., M. F. Nuruddin, S. Demie, and N. Shafiq. 2011. “Effect of curing conditions on strength of fly ash based self compacting geopolymer concrete.” Int. J. Civ., Environ., Struct., Constr. Archit. Eng. 5 (8): 342–345.
Mermerdaş, K., Z. Algın, S. M. Oleiwi, and D. E. Nassani. 2017. “Optimization of lightweight GGBFS and FA geopolymer mortars by response surface method.” Constr. Build. Mater. 139: 159–171. https://doi.org/10.1016/j.conbuildmat.2017.02.050.
Mudd, G., and D. V. Boger. 2013. “The ever growing case for paste and thickened tailings: Towards more sustainable mine waste management.” Aust. J. Civ. Eng. 2: 56–59.
Nath, P., and P. K. Sarker. 2012. “Geopolymer concrete for ambient curing condition.” In Australian Structural Engineering Conf. 2012. Perth.
Ojuri, O., A. Adavi, and O. Oluwatuyi. 2017. “Geotechnical and environmental evaluation of lime–cement stabilized soil–mine tailing mixtures for highway construction.” Transp. Geotech. 10: 1–12. https://doi.org/10.1016/j.trgeo.2016.10.001.
Osinubi, K. J., P. Yohanna, and A. O. Eberemu. 2015. “Cement modification of tropical black clay using iron ore tailings as admixture.” Transp. Geotech. 5: 35–49. https://doi.org/10.1016/j.trgeo.2015.10.001.
Pacheco-Torgal, F., J. Castro-Gomes, and S. Jalali. 2008. “Properties of tungsten mine waste geopolymeric binder.” Constr. Build. Mater. 22 (6): 1201–1211. https://doi.org/10.1016/j.conbuildmat.2007.01.022.
Pamukcu, S., and A. Tuncan. 1993. “Laboratory characterization of cement-stabilized iron-rich slag for reuse in transportation facilities.” Transp. Res. Rec. 1424: 25–33.
Pan, Z., Z. Tao, Y. F. Cao, R. Wuhrer, and T. Murphy. 2018. “Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature.” Cem. Concr. Comp. 86: 9–18. https://doi.org/10.1016/j.cemconcomp.2017.09.011.
Passuello, A., E. D. Rodríguez, E. Hirt, M. Longhi, S. A. Bernal, J. L. Provis, and A. P. Kirchheim. 2017. “Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators.” J. Cleaner Prod. 166: 680–689. https://doi.org/10.1016/j.jclepro.2017.08.007.
Perera, D. S., O. Uchida, E. R. Vance, and K. S. Finnie. 2007. “Influence of curing schedule on the integrity of geopolymers.” J. Mater. Sci. 42 (9): 3099–3106. https://doi.org/10.1007/s10853-006-0533-6.
Puligilla, S., and P. Mondal. 2013. “Role of slag in microstructural development and hardening of fly ash-slag geopolymer.” Cem. Concr. Res. 43 (1): 70–80. https://doi.org/10.1016/j.cemconres.2012.10.004.
Qian, G., T. Huang, and S. Bai. 2011. “Use of cement-stabilized granite mill tailings as pavement subbase.” J. Mater. Civ. Eng. 23 (11): 1575–1578. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000276.
Rattanasak, U., K. Pankhet, and P. Chindaprasirt. 2011. “Effect of chemical admixtures on properties of high-calcium fly ash geopolymer.” Int. J. Mine. Metall. Mater. 18 (3): 364–369. https://doi.org/10.1007/s12613-011-0448-3.
Ravikumar, D., and N. Neithalath. 2012. “Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH.” Cem. Concr. Comp. 34 (7): 809–818. https://doi.org/10.1016/j.cemconcomp.2012.03.006.
Ren, X. 2015. “Complete recycling and utilization of waste concrete through geopolymerization.” Ph.D. thesis, Dept. of Civil Engineering and Engineering Mechanics, Univ. of Arizona.
Ren, X., L. Zhang, and D. Ramey. 2015. “Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer.” J. Mater. Sci. 50: 1370–1381. https://doi.org/10.1007/s10853-014-8697-y.
Ryu, G. S., Y. B. Lee, K. T. Koh, and Y. S. Chung. 2013. “The mechanical properties of fly ash based geopolymer concrete with alkaline activators.” Constr. Build. Mater. 47: 409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069.
Sadat, M. R., S. Bringuier, A. Asaduzzaman, K. Muralidharan, and L. Zhang. 2016. “A molecular dynamics study of the role of molecular water on the structure and mechanics of amorphous geopolymer binders.” J. Chem. Phys. 145 (13): 134706. https://doi.org/10.1063/1.4964301.
Sathonsaowaphak, A., P. Chindaprasirt, and K. Pimraksa. 2009. “Workability and strength of lignite bottom ash geopolymer mortar.” J. Hazard. Mater. 168 (1): 44–50. https://doi.org/10.1016/j.jhazmat.2009.01.120.
Shadnia, R., and L. Zhang. 2017. “Experimental study of geopolymer synthesized with Class F fly ash and low-calcium slag.” J. Mater. Civ. Eng. 29 (10): 04017195. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002065.
Shadnia, R., L. Zhang, and P. Li. 2015. “Experimental study of geopolymer mortar with incorporated PCM.” Constr. Build. Mater. 84: 95–102. https://doi.org/10.1016/j.conbuildmat.2015.03.066.
Shi, C., and A. Fernandez-Jimenez. 2006. “Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.” J. Hazardous Mater. 137 (3): 1656–1663. https://doi.org/10.1016/j.jhazmat.2006.05.008.
Sindhunata, J. S. J., G. C. Lukey, and H. Xu. 2006. “Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization.” Ind. Eng. Chem. Res. 45 (10): 3559–3568. https://doi.org/10.1021/ie051251p.
Singh, S. P., D. P. Tripathy, and P. G. Ranjith. 2008. “Performance evaluation of cement stabilized fly ash–GBFS mixes as a highway construction material.” Waste Manage. (Oxford) 28 (8): 1331–1337. https://doi.org/10.1016/j.wasman.2007.09.017.
Slabbert, M. C. 2008. “Utilising waste products from Kwinana industries to manufacture low specification geopolymer concrete.” M.S. thesis, Dept. of Civil Engineering, Curtin Univ. of Technology.
Souto-Martinez, A., E. A. Delesky, K. E. O. Foster, and W. V. Srubar. 2017. “A mathematical model for predicting the carbon sequestration potential of ordinary portland cement (OPC) concrete.” Constr. Build. Mater. 147: 417–427. https://doi.org/10.1016/j.conbuildmat.2017.04.133.
Steveson, M., and K. Sagoe-Crentsil. 2005. “Relationships between composition, structure and strength of inorganic polymers, Part 2: Fly ash-derived inorganic polymers.” J. Mater. Sci. 40 (16): 4247–4259. https://doi.org/10.1007/s10853-005-2794-x.
Sultan, H. 1979. “Stabilized copper mill tailings for highway construction.” Transp. Res. Rec. 734: 1–7.
Swami, R. K., N. K. S. Pundhir, and S. Mathur. 2007. “Kimberlite tailings, a road construction material.” Transp. Res. Rec. 2 (1): 131–134. https://doi.org/10.3141/1989-56.
Thakur, R. N., and S. Ghosh. 2009. “Effect of mix composition on compressive strength and microstructure of fly ash based geopolymer composites.” J. Eng. Appl. Sci. 4 (4): 68–74.
Topark-Ngarm, P., P. Chindaprasirt, and V. Sata. 2014. “Setting time, strength, and bond of high calcium fly ash geopolymer concrete.” J. Mater. Civ. Eng. 27 (7): 04014198. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001157.
Tuyan, M., Ö. Andiç-Çakir, and K. Ramyar. 2018. “Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer.” Composites Part B 135: 242–252. https://doi.org/10.1016/j.compositesb.2017.10.013.
Van Deventer, J. S. J., J. Provis, P. Duxson, and G. C. Lukey. 2006. “Technological, environmental and commercial drivers for the use of geopolymers in a sustainable material industry.” In Proc., Int. Symp. of Advanced Processing of Metals and Materials, 241–252. Pittsburgh: Minerals, Metals & Materials Society.
Van Oss, H. G. 2017. Iron and steel slag.
Villa, C., E. T. Pecina, R. Torres, and L. Gómez. 2010. “Geopolymer synthesis using alkaline activation of natural zeolite.” Constr. Build. Mater. 24 (11): 2084–2090. https://doi.org/10.1016/j.conbuildmat.2010.04.052.
Xie, T., and T. Ozbakkaloglu. 2015. “Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature.” Ceram. Int. 41: 5945–5958. https://doi.org/10.1016/j.ceramint.2015.01.031.
Zhang, L. 2013. “Production of bricks from waste materials: A review.” Constr. Build. Mater. 47: 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043.
Zhang, L., S. Ahmari, and J. Zhang. 2011. “Synthesis and characterization of fly ash modified mine tailings–based geopolymers.” Constr. Build. Mater. 25 (9): 3773–3781. https://doi.org/10.1016/j.conbuildmat.2011.04.005.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 8August 2019

History

Received: Oct 15, 2018
Accepted: Mar 4, 2019
Published online: May 25, 2019
Published in print: Aug 1, 2019
Discussion open until: Oct 25, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Student, Dept. of Civil and Architectural Engineering and Mechanics, Univ. of Arizona, Tucson, AZ 85721. ORCID: https://orcid.org/0000-0003-1346-7622. Email: [email protected]
Graduate Student, Dept. of Civil and Architectural Engineering and Mechanics, Univ. of Arizona, Tucson, AZ 85721. ORCID: https://orcid.org/0000-0002-1934-4036. Email: [email protected]
Rasoul Shadnia, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering, Hakim Sabzevari Univ., Sabzevar, Iran. Email: [email protected]
Lianyang Zhang, Ph.D., M.ASCE [email protected]
P.E.
Delbert R. Lewis Distinguished Professor, Dept. of Civil and Architectural Engineering and Mechanics, Univ. of Arizona, Tucson, AZ 85721 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share