Technical Papers
Jun 18, 2019

Development of Discharge-Based Thresholding Algorithm for Pervious Concrete Pavement Mixtures

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 9

Abstract

The functional performance of pervious concrete pavement surfaces (such as hydraulic, acoustic, and frictional performances) is greatly influenced by the properties of its internal pore structure (such as effective porosity, intrinsic permeability, tortuosity, and pore size distribution). Nondestructive evaluation (NDE) using X-ray computed tomography (CT) and digital image processing (DIP) involves the crucial step of image segmentation of grayscale histograms, which can significantly affect subsequent pore structure analysis and fluid flow simulations. This paper presents a new discharge-based segmentation algorithm capable of predicting non-Darcy permeability of pervious concrete mixtures. The algorithm uses X-ray CT image–based finite-volume permeability simulations to determine the specific discharge at various hydraulic gradients. Experimental results of a falling-head permeability test were used to calibrate and validate the developed finite-volume models. The permeability simulation results from the developed thresholding algorithm were compared against simulation results obtained from 10 different global thresholding algorithms. It was found from the analyses that the developed discharge-based thresholding algorithm predicts non-Darcy permeability characteristics and the effective porosity of the pervious concrete mixtures more accurately than other global thresholding algorithms.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abera, K. A., K. N. Manahiloh, and M. M. Nejad. 2017. “The effectiveness of global thresholding techniques in segmenting two-phase porous media.” Constr. Build. Mater. 142 (Jul): 256–267. https://doi.org/10.1016/j.conbuildmat.2017.03.046.
ACI (American Concrete Institute). 2010. Report on pervious concrete. ACI 522R. Farmington Hills, MI: ACI.
Association of Japan Highway. 1996. Guide for porous asphalt pavement. Tokyo: Maruzen Corporation.
ASTM. 2012. Standard test method for density and void content of hardened pervious concrete. ASTM C1754-12/C1754M. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for relative density (specific gravity) and absorption of coarse aggregate. ASTM C127. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard practice for making and curing concrete test specimens in the laboratory. ASTM C192/C192M. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard specification for Portland cement. ASTM C150/C150M-16E1. West Conshohocken, PA: ASTM.
Berengier, M. C., M. R. Stinson, G. A. Daigle, and J. F. Hamet. 1997. “Porous road pavements: Acoustical characterization and propagation effects.” J. Acoust. Soc. Am. 101 (1): 155–162. https://doi.org/10.1121/1.417998.
Carrara, P., R. Kruse, D. P. Bentz, M. Lunardelli, T. Leusmann, P. A. Varady, and L. De Lorenzis. 2018. “Improved mesoscale segmentation of concrete from 3D X-ray images using contrast enhancers.” Cem. Concr. Compos. 93 (Oct): 30–42. https://doi.org/10.1016/j.cemconcomp.2018.06.014.
Chandrappa, A. K., and K. P. Biligiri. 2016. “Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach.” Constr. Build. Mater. 123 (Oct): 627–637. https://doi.org/10.1016/j.conbuildmat.2016.07.035.
Chandrappa, A. K., and K. P. Biligiri. 2017. “Relationships between structural, functional, and X-ray microcomputed tomography parameters of pervious concrete for pavement applications.” Transp. Res. Rec. 2629: 51–62. https://doi.org/10.3141/2629-08.
Chen, L., and Y. Wang. 2017. “Improved image unevenness reduction and thresholding methods for effective asphalt X-Ray CT image segmentation.” J. Comput. Civ. Eng. 31 (4): 04017002. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000631.
Chuai, C. T. 1999. “Measurement of drainage properties of porous asphalt mixtures.” Ph.D. dissertation, Dept. of Civil Engineering, National Univ. of Singapore.
Chung, S. Y., T. S. Han, S. Y. Kim, and T. H. Lee. 2014. “Investigation of the permeability of porous concrete reconstructed using probabilistic description methods.” Constr. Build. Mater. 66 (Sep): 760–770. https://doi.org/10.1016/j.conbuildmat.2014.06.013.
Coleri, E., J. T. Harvey, K. Yang, and J. M. Boone. 2012. “Development of a micromechanical finite element model from computed tomography images for shear modulus simulation of asphalt mixtures.” Constr. Build. Mater. 30: 783–793.https://doi.org/10.1016/j.conbuildmat.2011.12.071.
Coleri, E., J. T. Harvey, K. Yang, and J. M. Boone. 2013a. “Micromechanical investigation of open-graded asphalt friction courses’ rutting mechanisms.” Constr. Build. Mater. 44 (Jul): 25–34. https://doi.org/10.1016/j.conbuildmat.2013.03.027.
Coleri, E., M. Kayhanian, J. T. Harvey, K. Yang, and J. M. Boone. 2013b. “Clogging evaluation of open graded friction course pavements tested under rainfall and heavy vehicle simulators.” J. Environ. Manage. 129: 164–172.https://doi.org/10.1016/j.jenvman.2013.07.005.
Ćosić, K., L. Korat, V. Ducman, and I. Netinger. 2015. “Influence of aggregate type and size on properties of pervious concrete.” Constr. Build. Mater. 78 (Mar): 69–76. https://doi.org/10.1016/j.conbuildmat.2014.12.073.
Ferguson, B. K. 2005. Porous pavements. Boca Raton, FL: Taylor & Francis.
Fwa, T., S. Tan, and C. Chuai. 1998. “Permeability measurement of base materials using falling-head test apparatus.” Transp. Res. Rec. 1615: 94–99. https://doi.org/10.3141/1615-13.
Fwa, T. F., S. A. Tan, C. T. Chuai, and Y. K. Guwe. 2001. “Expedient permeability measurement for porous pavement surface.” Int. J. Pavement Eng. 2 (4): 259–270. https://doi.org/10.1080/10298430108901731.
Gao, L., F. Ni, H. Luo, H. Wang, and Y. Chen. 2014. “Evaluation of coarse aggregate in cold recycling mixes using X-ray CT scanner and image analysis.” J. Test. Eval. 44 (3): 1239–1249. https://doi.org/10.1520/JTE20140231.
Gruber, I., I. Zinovik, L. Holzer, A. Flisch, and L. D. Poulikakos. 2012. “A computational study of the effect of structural anisotropy of porous asphalt on hydraulic conductivity.” Constr. Build. Mater. 36 (Nov): 66–77. https://doi.org/10.1016/j.conbuildmat.2012.04.094.
Hassanizadeh, S. M., and W. G. Gray. 1987. “High velocity flow in porous media.” Transp. Porous Media 2 (6): 521–531. https://doi.org/10.1007/BF00192152.
Hu, J., P. Liu, D. Wang, and M. Oeser. 2018. “Influence of aggregates’ spatial characteristics on air-voids in asphalt mixture.” Road Mater. Pavement Des. 19 (4): 837–855. https://doi.org/10.1080/14680629.2017.1279072.
Iassonov, P., T. Gebrenegus, and M. Tuller. 2009. “Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures.” Water Resour. Res. 45 (9): 1–12. https://doi.org/10.1029/2009WR008087.
Kapur, J. N., P. K. Sahoo, and A. K. Wong. 1985. “A new method for gray-level picture thresholding using the entropy of the histogram.” Comput. Vision Graphics Image Process. 29 (3): 273–285. https://doi.org/10.1016/0734-189X(85)90125-2.
Kayhanian, M., D. Anderson, J. T. Harvey, D. Jones, and B. Muhunthan. 2012. “Permeability measurement and scan imaging to assess clogging of pervious concrete pavements in parking lots.” J. Environ. Manage. 95 (1): 114–123. https://doi.org/10.1016/j.jenvman.2011.09.021.
Kim, K. Y., T. S. Yun, J. Choo, D. H. Kang, and H. S. Shin. 2012. “Determination of air-void parameters of hardened cement-based materials using X-ray computed tomography.” Constr. Build. Mater. 37 (Dec): 93–101. https://doi.org/10.1016/j.conbuildmat.2012.07.012.
Klenzendorf, J. B., R. J. Charbeneau, and M. E. Barrett. 2010. Hydraulic conductivity measurement of permeable friction course (PFC) experiencing two-dimensional nonlinear flow effects. Austin, TX: Center for Research in Water Resources, Univ. of Texas at Austin.
Król, J. B., R. Khan, and A. C. Collop. 2017. “The study of the effect of internal structure on permeability of porous asphalt.” Road Mater. Pavement Des. 19 (4): 935–951. https://doi.org/10.1080/14680629.2017.1283355.
Kuang, X., G. Ying, V. Ranieri, and J. Sansalone. 2015. “Examination of pervious pavement pore parameters with X-ray tomography.” J. Environ. Eng. 141 (10): 04015021. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000826.
Kutay, M. E., and A. H. Aydilek. 2007. “Dynamic effects on moisture transport in asphalt concrete.” J. Transp. Eng. 133 (7): 406–414. https://doi.org/10.1061/(ASCE)0733-947X(2007)133:7(406).
Kutay, M. E., A. H. Aydilek, and E. Masad. 2006. “Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials.” Comput. Geotech. 33 (8): 381–395. https://doi.org/10.1016/j.compgeo.2006.08.002.
Kutay, M. E., A. H. Aydilek, E. Masad, and T. Harman. 2007. “Computational and experimental evaluation of hydraulic conductivity anisotropy in hot-mix asphalt.” Int. J. Pavement Eng. 8 (1): 29–43. https://doi.org/10.1080/10298430600819147.
Li, C. H., and P. K. S. Tam. 1998. “An iterative algorithm for minimum cross entropy thresholding.” Pattern Recognit. Lett. 19 (8): 771–776. https://doi.org/10.1016/S0167-8655(98)00057-9.
Mahmud, M. Z. H., N. A. Hassan, M. R. Hainin, and C. R. Ismail. 2017. “Microstructural investigation on air void properties of porous asphalt using virtual cut section.” Constr. Build. Mater. 155 (Nov): 485–494. https://doi.org/10.1016/j.conbuildmat.2017.08.103.
Manahiloh, K. N., B. Muhunthan, M. Kayhanian, and S. Y. Gebremariam. 2012. “X-ray computed tomography and nondestructive evaluation of clogging in porous concrete field samples.” J. Mater. Civ. Eng. 24 (8): 1103–1109. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000484.
Masad, E., A. Al Omari, and H. C. Chen. 2007. “Computations of permeability tensor coefficients and anisotropy of asphalt concrete based on microstructure simulation of fluid flow.” Comput. Mater. Sci. 40 (4): 449–459. https://doi.org/10.1016/j.commatsci.2007.01.015.
Masad, E., B. Muhunthan, N. Shashidhar, and T. Harman. 1999. “Quantifying laboratory compaction effects on the internal structure of asphalt concrete.” Transp. Res. Rec. 1681: 179–185. https://doi.org/10.3141/1681-21.
McGhee, K., and T. Clark. 2010. “Functionally optimized wearing course: Installation report.” Transp. Res. Rec. 2180: 150–155. https://doi.org/10.3141/2180-17.
McLemore, A. J. 2017. “Evaluation of established low impact development techniques: Assessing aged bioretention cells and clogging pervious concrete.” Ph.D. dissertation, Graduate College, Oklahoma State Univ.
Moon, K. H., A. C. Falchetto, and J. H. Jeong. 2013. “Microstructural analysis of asphalt mixtures using digital image processing techniques.” Can. J. Civ. Eng. 41 (1): 74–86. https://doi.org/10.1139/cjce-2013-0250.
Neithalath, N., M. S. Sumanasooriya, and O. Deo. 2010. “Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction.” Mater. Charact. 61 (8): 802–813. https://doi.org/10.1016/j.matchar.2010.05.004.
Otsu, N. 1979. “A threshold selection method from gray-level histograms.” IEEE Trans. Syst. Man Cybern. Part B Cybern. 9 (1): 62–66. https://doi.org/10.1109/TSMC.1979.4310076.
Prewitt, J., and M. L. Mendelsohn. 1966. “The analysis of cell images.” Ann. N.Y. Acad. Sci. 128 (1): 1035–1053. https://doi.org/10.1111/j.1749-6632.1965.tb11715.x.
Ridler, T. W., and S. Calvard. 1978. “Picture thresholding using an iterative selection method.” IEEE Trans. Syst. Man. Cybern. 8 (8): 630–632. https://doi.org/10.1109/TSMC.1978.4310039.
Sahoo, P., C. Wilkins, and J. Yeager. 1997. “Threshold selection using Renyi’s entropy.” Pattern Recognit. 30 (1): 71–84. https://doi.org/10.1016/S0031-3203(96)00065-9.
Sansalone, J., X. Kuang, and V. Ranieri. 2008. “Permeable pavement as a hydraulic and filtration interface for urban drainage.” J. Irrig. Drain. Eng. 134 (5): 666–674. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:5(666).
Sezgin, M., and B. Sankur. 2004. “Survey over image thresholding techniques and quantitative performance evaluation.” J. Electron. Imaging 13 (1): 146–166. https://doi.org/10.1117/1.1631315.
Stamati, O., E. Roubin, E. Andò, and Y. Malecot. 2018. “Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography.” Cem. Concr. Compos. 88 (Apr): 8–16. https://doi.org/10.1016/j.cemconcomp.2017.12.011.
Sumanasooriya, M. S., D. P. Bentz, and N. Neithalath. 2010. “Planar image-based reconstruction of pervious concrete pore structure and permeability prediction.” ACI Mater. J. 107 (4): 413–421.
Tan, S. A., T. F. Fwa, and C. T. Chuai. 1997. “A new apparatus for measuring the drainage properties of porous asphalt mixes.” J. Test. Eval. 25 (4): 370–377. https://doi.org/10.1520/JTE11872J.
Tan, S. A., T. F. Fwa, and C. T. Chuai. 1999. “Automatic field permeameter for drainage properties of porous asphalt mixes.” J. Test. Eval. 27 (1): 57–62. https://doi.org/10.1520/JTE12160J.
Taniguchi, S., K. Ogawa, J. Otani, and I. Nishizaki. 2013. “A study on quality evaluation for bituminous mixture using X-ray CT.” Front. Struct. Civ. Eng. 7 (2): 89–101. https://doi.org/10.1007/s11709-013-0197-7.
Xu, H., X. Yao, D. Wang, and Y. Tan. 2017. “Investigation of anisotropic flow in asphalt mixtures using the X-ray image technique: Pore structure effect.” Road Mater. Pavement Des. 20 (3): 491–508. https://doi.org/10.1080/14680629.2017.1397047.
Yen, J. C., F. J. Chang, and S. Chang. 1995. “A new criterion for automatic multilevel thresholding.” IEEE Trans. Image Process. 4 (3): 370–378. https://doi.org/10.1109/83.366472.
You, T., R. K. A. Al-Rub, M. K. Darabi, E. A. Masad, and D. N. Little. 2012. “Three-dimensional microstructural modeling of asphalt concrete using a unified viscoelastic–viscoplastic–viscodamage model.” Constr. Build. Mater. 28 (1): 531–548. https://doi.org/10.1016/j.conbuildmat.2011.08.061.
Yue, Z. Q., S. Chen, and L. G. Tham. 2003. “Finite element modeling of geomaterials using digital image processing.” Comput. Geotech. 30 (5): 375–397. https://doi.org/10.1016/S0266-352X(03)00015-6.
Yun, T. S., K. Y. Kim, J. Choo, and D. H. Kang. 2012. “Quantifying the distribution of paste-void spacing of hardened cement paste using X-ray computed tomography.” Mater. Charact. 73 (Nov): 137–143. https://doi.org/10.1016/j.matchar.2012.08.008.
Zelelew, H. M., and A. T. Papagiannakis. 2011. “A volumetrics thresholding algorithm for processing asphalt concrete X-ray CT images.” Int. J. Pavement Eng. 12 (6): 543–551. https://doi.org/10.1080/10298436.2011.561345.
Zhang, J., G. Ma, R. Ming, X. Cui, L. Li, and H. Xu. 2018. “Numerical study on seepage flow in pervious concrete based on 3D CT imaging.” Constr. Build. Mater. 161 (Feb): 468–478. https://doi.org/10.1016/j.conbuildmat.2017.11.149.
Zhang, Y., W. Verwaal, M. F. C. Van de Ven, A. A. A. Molenaar, and S. P. Wu. 2015. “Using high-resolution industrial CT scan to detect the distribution of rejuvenation products in porous asphalt concrete.” Constr. Build. Mater. 100 (Dec): 1–10. https://doi.org/10.1016/j.conbuildmat.2015.09.064.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 9September 2019

History

Received: Jul 4, 2018
Accepted: Mar 4, 2019
Published online: Jun 18, 2019
Published in print: Sep 1, 2019
Discussion open until: Nov 18, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Ajayshankar Jagadeesh, S.M.ASCE [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, National Univ. of Singapore, Block E1A, #07-03, 1 Engineering Dr. 2, Singapore 117576. Email: [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, National Univ. of Singapore, Block E1A, #07-03, 1 Engineering Dr. 2, Singapore 117576 (corresponding author). ORCID: https://orcid.org/0000-0003-3045-4030. Email: [email protected]
Yu-Min Su, Ph.D., Aff.M.ASCE [email protected]
Assistant Professor, Dept. of Civil Engineering, National Kaohsiung Univ. of Science and Technology, 415, Chien-Kung Rd., Sanmin, Kaohsiung 80778, Taiwan. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share