State-of-the-Art Reviews
Jun 17, 2019

Autogenous Self-Healing: A Better Solution for Concrete

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 9

Abstract

Self-healing can be defined as the ability of a material to repair inner damage without any external intervention. In the case of concrete, the process can be autogenous, based on optimized mix composition, or autonomous, when using additionally incorporated capsules containing a healing agent and/or bacteria spores. The first process uses unhydrated cement particles as the healing material while the other utilizes a synthetic material or bacteria released into the crack from a broken capsule or activated through access of water and oxygen. The critical reviewing of both methods indicates that the autogenous self-healing is more efficient, more cost effective, safer, and easier to implement in full-scale applications. Nevertheless, a better understanding of the mechanism and factors affecting the effectiveness of the process is needed. The main weaknesses of the autonomous method were identified as loss of workability, worsened mechanical properties, low efficiency and low probability of the healing to occur, low survivability of the capsules and bacteria in harsh concrete environment, very high price, and lack of full-scale evaluation.

Get full access to this article

View all available purchase options and get full access to this article.

References

Ahn, T., and T. Kishi. 2009. “The effect of geo-materials on the autogenous healing behavior of cracked concrete.” In Concrete repair, rehabilitation and retrofitting II. Boca Raton, FL: CRC Press.
Ahn, T., and T. Kishi. 2010. “Crack self-healing behavior of cementitious composites incorporating various mineral admixtures.” J. Adv. Concr. Technol. 8 (2): 171–186. https://doi.org/10.3151/jact.8.171.
Ait Ouarabi, M., P. Antonaci, F. Boubenider, A. S. Gliozzi, and M. Scalerandi. 2017. “Ultrasonic monitoring of the interaction between cement matrix and alkaline silicate solution in self-healing systems.” Materials 10 (1): 46. https://doi.org/10.3390/ma10010046.
Al-Ansari, M., A. G. Abu-Taqa, M. M. Hassan, A. Senouci, and J. Milla. 2017. “Performance of modified self-healing concrete with calcium nitrate microencapsulation.” Constr. Build. Mater. 149: 525–534. https://doi.org/10.1016/j.conbuildmat.2017.05.152.
Alghamri, R., A. Kanellopoulos, and A. Al-Tabbaa. 2016. “Impregnation and encapsulation of lightweight aggregates for self-healing concrete.” Constr. Build. Mater. 124: 910–921. https://doi.org/10.1016/j.conbuildmat.2016.07.143.
Alyousif, A., M. Lachemi, G. Yildirim, and M. Şahmaran. 2015. “Effect of self-healing on the different transport properties of cementitious composites.” J. Adv. Concr. Technol. 13 (3): 112–123. https://doi.org/10.3151/jact.13.112.
Araújo, M., K. Van Tittelboom, P. Dubruel, S. Van Vlierberghe, and N. De Belie. 2017. “Acrylate-endcapped polymer precursors: Effect of chemical composition on the healing efficiency of active concrete cracks.” Smart Mater. Struct. 26 (5): 055031. https://doi.org/10.1088/1361-665X/aa64cb.
Araújo, M., S. Van Vlierberghe, J. Feiteira, G. Graulus, K. Van Tittelboom, J. C. Martins, P. Dubruel, and N. De Belie. 2016. “Cross-linkable polyethers as healing/sealing agents for self-healing of cementitious materials.” Mater. Des. 98: 215–222. https://doi.org/10.1016/j.matdes.2016.03.005.
Arce, G. A., M. M. Hassan, L. N. Mohammad, and T. Rupnow. 2017. “Characterization of self-healing processes induced by calcium nitrate microcapsules in cement mortar.” J. Mater. Civ. Eng. 29 (1): 04016189. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001717.
Bhaskar, S., K. M. A. Hossain, M. Lachemi, G. Wolfaardt, and M. O. Kroukamp. 2017. “Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites.” Cem. Concr. Compos. 82: 23–33. https://doi.org/10.1016/j.cemconcomp.2017.05.013.
Bui, V. K., M. R. Geiker, and S. P. Shah. 2003. “Rheology of fiber-reinforced cementitious materials.” In Proc., Conf. of High Performance Fiber-Reinforced Cement Composites (HPFRCC4), 221–231. Delft, Netherlands: Springer.
Bundur, Z. B., A. Amiri, Y. C. Ersan, N. Boon, and N. De Belie. 2017a. “Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability.” Cem. Concr. Res. 98: 44–49. https://doi.org/10.1016/j.cemconres.2017.04.005.
Bundur, Z. B., S. Bae, M. J. Kirisits, and R. D. Ferron. 2017b. “Biomineralization in self-healing cement-based materials: Investigating the temporal evolution of microbial metabolic state and material porosity.” J. Mater. Civ. Eng. 29 (8): 04017079. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001838.
Bundur, Z. B., M. J. Kirisits, and R. D. Ferron. 2017c. “Use of pre-wetted lightweight fine expanded shale aggregates as internal nutrient reservoirs for microorganisms in bio-mineralized mortar.” Cem. Concr. Compos. 84: 167–174. https://doi.org/10.1016/j.cemconcomp.2017.09.003.
Cailleux, E., and V. Pollet. 2009. “Investigations on the development of self-healing properties in protective coatings for concrete and repair mortars.” In Proc., 2nd Int. Conf. on Self-Healing Materials. Dordrecht, Netherlands: Springer.
Chahal, N., R. Siddique, and A. Rajor. 2012. “Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume.” Constr. Build. Mater. 37: 645–651. https://doi.org/10.1016/j.conbuildmat.2012.07.029.
Chen, H., C. Qian, and H. Huang. 2016. “Self-healing cementitious materials based on bacteria and nutrients immobilized respectively.” Constr. Build. Mater. 126: 297–303. https://doi.org/10.1016/j.conbuildmat.2016.09.023.
Choi, H., H. Choi, M. Inoue, and R. Sengoku. 2017a. “Control of the polymorphism of calcium carbonate produced by self-healing in the cracked part of cementitious materials.” Appl. Sci. 7 (6): 546. https://doi.org/10.3390/app7060546.
Choi, H., M. Inoue, S. Kwon, H. Choi, and M. Lim. 2016. “Effective crack control of concrete by self-healing of cementitious composites using synthetic fiber.” Materials 9 (4): 248. https://doi.org/10.3390/ma9040248.
Choi, Y., S. Oh, and B. Choi. 2017b. “A study on the manufacturing properties of crack self-healing capsules using cement powder for addition to cement composites.” Adv. Mater. Sci. Eng. 2017: 1–10. https://doi.org/10.1155/2017/5187543.
Darquennes, A., K. Olivier, F. Benboudjema, and R. Gagné. 2016. “Self-healing at early-age, a way to improve the chloride resistance of blast-furnace slag cementitious materials.” Constr. Build. Mater. 113: 1017–1028. https://doi.org/10.1016/j.conbuildmat.2016.03.087.
Da Silva, F. B., N. De Belie, N. Boon, and W. Verstraete. 2015. “Production of non-axenic ureolytic spores for self-healing concrete applications.” Constr. Build. Mater. 93: 1034–1041. https://doi.org/10.1016/j.conbuildmat.2015.05.049.
De Koster, S., R. Mors, H. Nugteren, H. Jonkers, G. Meesters, and J. Van Ommen. 2015. “Geopolymer coating of bacteria-containing granules for use in self-healing concrete.” Procedia Eng. 102: 475–484. https://doi.org/10.1016/j.proeng.2015.01.193.
De Rooij, M., K. Van Tittelboom, N. De Belie, and E. Schlangen. 2013. Self-healing phenomena in cement-based materials: State-of-the-art report of RILEM technical committee 221-SHC: Self-healing phenomena in cement-based materials. Dordrecht, Netherlands: Springer.
Dhir, R. K., C. M. Sangha, and J. G. Munday. 1973. “Strength and deformation properties of autogenously healed mortars.” J. Proc. 70 (3): 231–236.
Dong, B., W. Ding, S. Qin, N. Han, G. Fang, Y. Liu, F. Xing, and S. Hong. 2018. “Chemical self-healing system with novel microcapsules for corrosion inhibition of rebar in concrete.” Cem. Concr. Compos. 85: 83–91. https://doi.org/10.1016/j.cemconcomp.2017.09.012.
Dong, B., G. Fang, W. Ding, Y. Liu, J. Zhang, N. Han, and F. Xing. 2016. “Self-healing features in cementitious material with urea-formaldehyde/epoxy microcapsules.” Constr. Build. Mater. 106: 608–617. https://doi.org/10.1016/j.conbuildmat.2015.12.140.
Dong, B., G. Fang, Y. Wang, Y. Liu, S. Hong, J. Zhang, S. Lin, and F. Xing. 2017. “Performance recovery concerning the permeability of concrete by means of a microcapsule based self-healing system.” Cem. Concr. Compos. 78: 84–96. https://doi.org/10.1016/j.cemconcomp.2016.12.005.
Dong, B., Y. Wang, G. Fang, N. Han, F. Xing, and Y. Lu. 2015. “Smart releasing behavior of a chemical self-healing microcapsule in the stimulated concrete pore solution.” Cem. Concr. Compos. 56: 46–50. https://doi.org/10.1016/j.cemconcomp.2014.10.006.
Ducasse-Lapeyrusse, J., R. Gagné, C. Lors, and D. Damidot. 2017. “Effect of calcium gluconate, calcium lactate, and urea on the kinetics of self-healing in mortars.” Constr. Build. Mater. 157: 489–497. https://doi.org/10.1016/j.conbuildmat.2017.09.115.
Edvardsen, C. 1999. “Water permeability and autogenous healing of cracks in concrete.” Mater. J. 96 (4): 448–454.
Escobar, M. M., S. Vago, and A. Vázquez. 2013. “Self-healing mortars based on hollow glass tubes and epoxy-amine systems.” Composites Part B 55: 203–207. https://doi.org/10.1016/j.compositesb.2013.06.023.
Feiteira, J., E. Gruyaert, and N. De Belie. 2016. “Self-healing of moving cracks in concrete by means of encapsulated polymer precursors.” Constr. Build. Mater. 102: 671–678. https://doi.org/10.1016/j.conbuildmat.2015.10.192.
Feiteira, J., E. Tsangouri, E. Gruyaert, C. Lors, G. Louis, and N. De Belie. 2017. “Monitoring crack movement in polymer-based self-healing concrete through digital image correlation, acoustic emission analysis and SEM in-situ loading.” Mater. Des. 115: 238–246. https://doi.org/10.1016/j.matdes.2016.11.050.
Ferrara, L., V. Krelani, and M. Carsana. 2014. “A ‘fracture testing’ based approach to assess crack healing of concrete with and without crystalline admixtures.” Constr. Build. Mater. 68: 535–551. https://doi.org/10.1016/j.conbuildmat.2014.07.008.
Ferrara, L., V. Krelani, and F. Moretti. 2016a. “Autogenous healing on the recovery of mechanical performance of high performance fibre reinforced cementitious composites (HPFRCCs): Part 2—Correlation between healing of mechanical performance and crack sealing.” Cem. Concr. Compos. 73: 299–315. https://doi.org/10.1016/j.cemconcomp.2016.08.003.
Ferrara, L., V. Krelani, and F. Moretti. 2016b. “On the use of crystalline admixtures in cement based construction materials: From porosity reducers to promoters of self healing.” Smart Mater. Struct. 25 (8): 084002. https://doi.org/10.1088/0964-1726/25/8/084002.
Ferrara, L., V. Krelani, F. Moretti, M. R. Flores, and P. S. Ros. 2017. “Effects of autogenous healing on the recovery of mechanical performance of high performance fibre reinforced cementitious composites (HPFRCCs): Part 1.” Cem. Concr. Compos. 83: 76–100. https://doi.org/10.1016/j.cemconcomp.2017.07.010.
Formia, A., S. Irico, F. Bertola, F. Canonico, P. Antonaci, N. M. Pugno, and J. Tulliani. 2016. “Experimental analysis of self-healing cement-based materials incorporating extruded cementitious hollow tubes.” J. Intell. Mater. Syst. Struct. 27 (19): 2633–2652. https://doi.org/10.1177/1045389X16635847.
Formia, A., S. Terranova, P. Antonaci, N. M. Pugno, and J. M. Tulliani. 2015. “Setup of extruded cementitious hollow tubes as containing/releasing devices in self-healing systems.” Materials 8 (4): 1897–1923. https://doi.org/10.3390/ma8041897.
Fukuda, D., M. Maruyama, Y. Nara, D. Hayashi, H. Ogawa, and K. Kaneko. 2014. “Observation of fracture sealing in high-strength and ultra-low-permeability concrete by micro-focus X-ray CT and SEM/EDX.” Int. J. Fract. 188 (2): 159–171. https://doi.org/10.1007/s10704-014-9952-6.
Fukuda, D., Y. Nara, D. Hayashi, H. Ogawa, and K. Kaneko. 2013. “Influence of fracture width on sealability in high-strength and ultra-low-permeability concrete in seawater.” Materials 6 (7): 2578–2594. https://doi.org/10.3390/ma6072578.
Gagné, R., and M. Argouges. 2012. “A study of the natural self-healing of mortars using air-flow measurements.” Mater. Struct. 45 (11): 1625–1638. https://doi.org/10.1617/s11527-012-9861-y.
Giannaros, P., A. Kanellopoulos, and A. Al-Tabbaa. 2016. “Sealing of cracks in cement using microencapsulated sodium silicate.” Smart Mater. Struct. 25 (8): 084005. https://doi.org/10.1088/0964-1726/25/8/084005.
Gilabert, F. A., D. Garoz, and W. Van Paepegem. 2015. “Stress concentrations and bonding strength in encapsulation-based self-healing materials.” Mater. Des. 67: 28–41. https://doi.org/10.1016/j.matdes.2014.11.012.
Gilford, J., III, M. M. Hassan, T. Rupnow, M. Barbato, A. Okeil, and S. Asadi. 2014. “Dicyclopentadiene and sodium silicate microencapsulation for self-healing of concrete.” J. Mater. Civ. Eng. 26 (5): 886–896. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000892.
Granger, S., A. Loukili, G. Pijaudier-Cabot, and G. Chanvillard. 2007. “Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis.” Cem. Concr. Res. 37 (4): 519–527. https://doi.org/10.1016/j.cemconres.2006.12.005.
Gruyaert, E., et al. 2017. “Evaluation of the performance of self-healing concrete at small and large scale under laboratory conditions.” In Proc., Durability of Building Materials and Components (XIV DBMC), 1–12. Ghent, Belgium: RILEM Publications.
Gruyaert, E., B. Debbaut, D. Snoeck, P. Díaz, A. Arizo, E. Tziviloglou, E. Schlangen, and N. De Belie. 2016a. “Self-healing mortar with ph-sensitive superabsorbent polymers: Testing of the sealing efficiency by water flow tests.” Smart Mater. Struct. 25 (8): 084007. https://doi.org/10.1088/0964-1726/25/8/084007.
Gruyaert, E., K. Van Tittelboom, H. Rahier, and N. D. Belie. 2015. “Activation of pozzolanic and latent-hydraulic reactions by alkalis in order to repair concrete cracks.” J. Mater. Civ. Eng. 27 (7): 04014208. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001162.
Gruyaert, E., K. Van Tittelboom, J. Sucaet, J. Anrijs, S. Van Vlierberghe, P. Dubruel, B. De Geest, J. Remon, and N. De Belie. 2016b. “Capsules with evolving brittleness to resist the preparation of self-healing concrete.” Materiales De Construcción 66 (323): e092. https://doi.org/10.3989/mc.2016.07115.
Hasholt, M. T., O. M. Jensen, K. Kovler, and S. Zhutovsky. 2012. “Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?” Constr. Build. Mater. 31: 226–230. https://doi.org/10.1016/j.conbuildmat.2011.12.062.
Hilloulin, B., K. Van Tittelboom, E. Gruyaert, N. De Belie, and A. Loukili. 2015. “Design of polymeric capsules for self-healing concrete” Cem. Concr. Compos. 55: 298–307.
Hearn, N., and C. Morley. 1997. “Self-sealing property of concrete—Experimental evidence.” Mater. Struct. 30 (7): 404–411. https://doi.org/10.1007/BF02498563.
Herbert, E., and V. Li. 2012. “Self-healing of engineered cementitious composites in the natural environment.” In Proc., High Performance Fiber Reinforced Cement Composites, 155–162. Berlin: Springer.
Herbert, E., and V. Li. 2013. “Self-healing of microcracks in engineered cementitious composites (ECC) under a natural environment.” Materials 6 (7): 2831–2845. https://doi.org/10.3390/ma6072831.
Hilloulin, B., D. Hilloulin, F. Grondin, A. Loukili, and N. De Belie. 2016a. “Mechanical regains due to self-healing in cementitious materials: Experimental measurements and micro-mechanical model.” Cem. Concr. Res. 80: 21–32. https://doi.org/10.1016/j.cemconres.2015.11.005.
Hilloulin, B., J. Legland, E. Lys, O. Abraham, A. Loukili, F. Grondin, O. Durand, and V. Tournat. 2016b. “Monitoring of autogenous crack healing in cementitious materials by the nonlinear modulation of ultrasonic coda waves, 3D microscopy and X-ray microtomography.” Constr. Build. Mater. 123: 143–152. https://doi.org/10.1016/j.conbuildmat.2016.06.138.
Homma, D., H. Mihashi, and T. Nishiwaki. 2009. “Self-healing capability of fibre reinforced cementitious composites.” J. Adv. Concr. Technol. 7 (2): 217–228. https://doi.org/10.3151/jact.7.217.
Huang, H., and G. Ye. 2015. “Self-healing of cracks in cement paste affected by additional Ca2+ ions in the healing agent.” J. Intell. Mater. Syst. Struct. 26 (3): 309–320. https://doi.org/10.1177/1045389X14525490.
Huang, H., G. Ye, and D. Damidot. 2013. “Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste.” Cem. Concr. Res. 52: 71–81. https://doi.org/10.1016/j.cemconres.2013.05.003.
Huang, H., G. Ye, and D. Damidot. 2014. “Effect of blast furnace slag on self-healing of microcracks in cementitious materials.” Cem. Concr. Res. 60: 68–82. https://doi.org/10.1016/j.cemconres.2014.03.010.
Huang, H., G. Ye, and L. Pel. 2016a. “New insights into autogenous self-healing in cement paste based on nuclear magnetic resonance (NMR) tests.” Mater. Struct. 49 (7): 2509–2524. https://doi.org/10.1617/s11527-015-0664-9.
Huang, H., G. Ye, C. Qian, and E. Schlangen. 2016b. “Self-healing in cementitious materials: Materials, methods and service conditions.” Mater. Des. 92: 499–511. https://doi.org/10.1016/j.matdes.2015.12.091.
Hung, C., and Y. Su. 2016. “Medium-term self-healing evaluation of engineered cementitious composites with varying amounts of fly ash and exposure durations.” Constr. Build. Mater. 118: 194–203. https://doi.org/10.1016/j.conbuildmat.2016.05.021.
Hung, C., Y. Su, and Y. Su. 2018. “Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials.” Composites Part B 133: 15–25. https://doi.org/10.1016/j.compositesb.2017.09.005.
Irico, S., A. Bovio, G. Paul, E. Boccaleri, D. Gastaldi, L. Marchese, L. Buzzi, and F. Canonico. 2017. “A solid-state NMR and X-ray powder diffraction investigation of the binding mechanism for self-healing cementitious materials design: The assessment of the reactivity of sodium silicate based systems.” Cem. Concr. Compos. 76: 57–63. https://doi.org/10.1016/j.cemconcomp.2016.11.006.
Jacobsen, S., J. Marchand, and H. Hornain. 1995. “SEM observations of the microstructure of frost deteriorated and self-healed concretes.” Cem. Concr. Res. 25 (8): 1781–1790. https://doi.org/10.1016/0008-8846(95)00174-3.
Jacobsen, S., and E. J. Sellevold. 1996. “Self healing of high strength concrete after deterioration by freeze/thaw.” Cem. Concr. Res. 26 (1): 55–62. https://doi.org/10.1016/0008-8846(95)00179-4.
Jiang, Z., W. Li, and Z. Yuan. 2015. “Influence of mineral additives and environmental conditions on the self-healing capabilities of cementitious materials.” Cem. Concr. Compos. 57: 116–127. https://doi.org/10.1016/j.cemconcomp.2014.11.014.
Jiang, Z., W. Li, Z. Yuan, and Z. Yang. 2014. “Self-healing of cracks in concrete with various crystalline mineral additives in underground environment.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 29 (5): 938. https://doi.org/10.1007/s11595-014-1024-2.
Jo, B. W., M. A. Sikandar, Z. Balochb, and R. A. Khan. 2015. “Effect of incorporation of self healing admixture (SHA) on physical and mechanical properties of mortars.” J. Ceram. Process. Res. 16: 138–143.
Jonkers, H. M. 2007. “Self healing concrete: A biological approach.” In Self healing materials, 195–204. Dordrecht, Netherlands: Springer.
Jonkers, H. M. 2011. “Bacteria-based self-healing concrete.” Heron 56 (1/2): 1–12.
Jonkers, H. M., and E. Schlangen. 2007. “Crack repair by concrete-immobilized bacteria.” In Proc., 1st Int. Conf. on Self Healing Materials, edited by A. J. M. Schmets and S. Van der Zwaag, 18–20. New York: Springer.
Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangen. 2010. “Application of bacteria as self-healing agent for the development of sustainable concrete.” Ecol. Eng. 36 (2): 230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036.
Joseph, C., A. D. Jefferson, B. Isaacs, R. J. Lark, and D. R. Gardner. 2010. “Experimental investigation of adhesive-based self-healing of cementitious materials.” Mag. Concr. Res. 62 (11): 831–843. https://doi.org/10.1680/macr.2010.62.11.831.
Juenger, M. C., and R. Siddique. 2015. “Recent advances in understanding the role of supplementary cementitious materials in concrete.” Cem. Concr. Res. 78: 71–80. https://doi.org/10.1016/j.cemconres.2015.03.018.
Justs, J., M. Wyrzykowski, D. Bajare, and P. Lura. 2015. “Internal curing by superabsorbent polymers in ultra-high performance concrete.” Cem. Concr. Res. 76: 82–90. https://doi.org/10.1016/j.cemconres.2015.05.005.
Kan, L., and H. Shi. 2012. “Investigation of self-healing behavior of engineered cementitious composites (ECC) materials.” Constr. Build. Mater. 29: 348–356. https://doi.org/10.1016/j.conbuildmat.2011.10.051.
Kan, L., H. Shi, A. R. Sakulich, and V. C. Li. 2010. “Self-healing characterization of engineered cementitious composite materials.” ACI Mater. J. 107 (6): 617.
Kanellopoulos, A., P. Giannaros, and A. Al-Tabbaa. 2016. “The effect of varying volume fraction of microcapsules on fresh, mechanical and self-healing properties of mortars.” Constr. Build. Mater. 122: 577–593. https://doi.org/10.1016/j.conbuildmat.2016.06.119.
Kanellopoulos, A., P. Giannaros, D. Palmer, A. Kerr, and A. Al-Tabbaa. 2017. “Polymeric microcapsules with switchable mechanical properties for self-healing concrete: Synthesis, characterisation and proof of concept.” Smart Mater. Struct. 26 (4): 045025. https://doi.org/10.1088/1361-665X/aa516c.
Kanellopoulos, A., T. Qureshi, and A. Al-Tabbaa. 2015. “Glass encapsulated minerals for self-healing in cement based composites.” Constr. Build. Mater. 98: 780–791. https://doi.org/10.1016/j.conbuildmat.2015.08.127.
Keskin, S. B., O. K. Keskin, O. Anil, M. Şahmaran, A. Alyousif, M. Lachemi, L. Amleh, and A. F. Ashour. 2016. “Self-healing capability of large-scale engineered cementitious composites beams.” Composites Part B 101: 1–13. https://doi.org/10.1016/j.compositesb.2016.06.073.
Kim, D. J., S. H. Kang, and T. Ahn. 2014. “Mechanical characterization of high-performance steel-fiber reinforced cement composites with self-healing effect.” Materials 7 (1): 508–526. https://doi.org/10.3390/ma7010508.
Kim, H. G., A. Qudoos, and J. S. Ryou. 2018. “Self-healing performance of GGBFS based cementitious mortar with granulated activators exposed to a seawater environment.” Constr. Build. Mater. 188: 569–582. https://doi.org/10.1016/j.conbuildmat.2018.08.092.
Kuder, K. G., N. Ozyurt, E. B. Mu, and S. P. Shah. 2007. “Rheology of fiber-reinforced cementitious composites.” Cem. Concr. Res. 37 (2): 191–199. https://doi.org/10.1016/j.cemconres.2006.10.015.
Lauer, K. R. 1956. “Autogenous healing of cement paste.” J. Proc. 52 (6): 1083–1098.
Lee, H., H. Wong, and N. Buenfeld. 2016. “Self-sealing of cracks in concrete using superabsorbent polymers.” Cem. Concr. Res. 79: 194–208. https://doi.org/10.1016/j.cemconres.2015.09.008.
Lee, Y., and J. Ryou. 2016. “Crack healing performance of PVA-coated granules made of cement, CSA, and Na2CO3 in the cement matrix.” Materials 9 (7): 555. https://doi.org/10.3390/ma9070555.
Li, M., and V. C. Li. 2013. “Rheology, fiber dispersion, and robust properties of engineered cementitious composites.” Mater. Struct. 46 (3): 405–420. https://doi.org/10.1617/s11527-012-9909-z.
Li, V. C. 2012. “Tailoring ECC for special attributes: A review.” Int. J. Concr. Struct. Mater. 6 (3): 135–144. https://doi.org/10.1007/s40069-012-0018-8.
Li, V. C., S. Wang, and C. Wu. 2001. “Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC).” ACI Mater. J. 98 (6): 483–492.
Li, W., Z. Jiang, and Z. Yang. 2017. “Acoustic characterization of damage and healing of microencapsulation-based self-healing cement matrices.” Cem. Concr. Compos. 84: 48–61. https://doi.org/10.1016/j.cemconcomp.2017.08.013.
Li, W., Z. Jiang, Z. Yang, N. Zhao, and W. Yuan. 2013. “Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: Mechanical restoration and healing process monitored by water absorption.” PLoS One 8 (11): e81616. https://doi.org/10.1371/journal.pone.0081616.
Li, W., X. Zhu, N. Zhao, and Z. Jiang. 2016. “Preparation and properties of melamine urea-formaldehyde microcapsules for self-healing of cementitious materials.” Materials 9 (3): 152. https://doi.org/10.3390/ma9030152.
Li, Z. Q., Z. H. Zhou, D. Y. Xu, and J. H. Yu. 2011. “Influence of cement coarse particle on the self-healing ability of concrete based on ultrasonic method.” In Proc., Advanced Materials Research, 526–529. Zürich, Switzerland: Trans Tech Publications.
Liu, H., Q. Zhang, C. Gu, H. Su, and V. Li. 2017. “Self-healing of microcracks in engineered cementitious composites under sulfate and chloride environment.” Constr. Build. Mater. 153: 948–956. https://doi.org/10.1016/j.conbuildmat.2017.07.126.
Luo, J., X. Chen, J. Crump, H. Zhou, D. G. Davies, G. Zhou, N. Zhang, and C. Jin. 2018. “Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete.” Constr. Build. Mater. 164: 275–285. https://doi.org/10.1016/j.conbuildmat.2017.12.233.
Luo, M., and C. Qian. 2016a. “Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength.” Constr. Build. Mater. 121: 659–663. https://doi.org/10.1016/j.conbuildmat.2016.06.075.
Luo, M., C. Qian, and R. Li. 2015a. “Factors affecting crack repairing capacity of bacteria-based self-healing concrete.” Constr. Build. Mater. 87: 1–7. https://doi.org/10.1016/j.conbuildmat.2015.03.117.
Luo, M., C. Qian, R. Li, and H. Rong. 2015b. “Efficiency of concrete crack-healing based on biological carbonate precipitation.” J. Wuhan Univ. Technol. -Mater. Sci. Ed. 30 (6): 1255–1259. https://doi.org/10.1007/s11595-015-1304-5.
Luo, M., and C. X. Qian. 2016b. “Performance of two bacteria-based additives used for self-healing concrete.” J. Mater. Civ. Eng. 28 (12): 04016151. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001673.
Lv, L., E. Schlangen, Z. Yang, and F. Xing. 2016a. “Micromechanical properties of a new polymeric microcapsule for self-healing cementitious materials.” Materials 9 (12): 1025. https://doi.org/10.3390/ma9121025.
Lv, L., Z. Yang, G. Chen, G. Zhu, N. Han, E. Schlangen, and F. Xing. 2016b. “Synthesis and characterization of a new polymeric microcapsule and feasibility investigation in self-healing cementitious materials.” Constr. Build. Mater. 105: 487–495. https://doi.org/10.1016/j.conbuildmat.2015.12.185.
Ma, H., S. Qian, and Z. Zhang. 2014. “Effect of self-healing on water permeability and mechanical property of medium-early-strength engineered cementitious composites.” Constr. Build. Mater. 68: 92–101. https://doi.org/10.1016/j.conbuildmat.2014.05.065.
Maes, M., K. Van Tittelboom, and N. De Belie. 2014. “The efficiency of self-healing cementitious materials by means of encapsulated polyurethane in chloride containing environments.” Constr. Build. Mater. 71: 528–537. https://doi.org/10.1016/j.conbuildmat.2014.08.053.
Mauludin, L. M., and C. Oucif. 2018a. “Interaction between matrix crack and circular capsule under uniaxial tension in encapsulation-based self-healing concrete.” Underground Space 3 (3): 181–189. https://doi.org/10.1016/j.undsp.2018.04.004.
Mauludin, L. M., and C. Oucif. 2018b. “The effects of interfacial strength on fractured microcapsule.” Front. Struct. Civ. Eng. 13 (2): 1–11. https://doi.org/10.1007/s11709-018-0469-3.
Medjigbodo, S., A. Z. Bendimerad, E. Rozière, and A. Loukili. 2018. “How do recycled concrete aggregates modify the shrinkage and self-healing properties?” Cem. Concr. Compos. 86: 72–86. https://doi.org/10.1016/j.cemconcomp.2017.11.003.
Mehdipour, I., R. Zoughi, and K. H. Khayat. 2018. “Feasibility of using near-field microwave reflectometry for monitoring autogenous crack healing in cementitious materials.” Cem. Concr. Compos. 85: 161–173. https://doi.org/10.1016/j.cemconcomp.2017.10.014.
Mignon, A., D. Devisscher, J. Vermeulen, M. Vagenende, J. Martins, P. Dubruel, N. De Belie, and S. Van Vlierberghe. 2017a. “Characterization of methacrylated polysaccharides in combination with amine-based monomers for application in mortar.” Carbohydr. Polym. 168: 173–181. https://doi.org/10.1016/j.carbpol.2017.03.037.
Mignon, A., G. J. Graulus, D. Snoeck, J. Martins, N. De Belie, P. Dubruel, and S. Van Vlierberghe. 2015a. “pH-sensitive superabsorbent polymers: A potential candidate material for self-healing concrete.” J. Mater. Sci. 50 (2): 970–979. https://doi.org/10.1007/s10853-014-8657-6.
Mignon, A., D. Snoeck, D. Schaubroeck, N. Luickx, P. Dubruel, S. Van Vlierberghe, and N. De Belie. 2015b. “pH-responsive superabsorbent polymers: A pathway to self-healing of mortar.” React. Funct. Polym. 93: 68–76. https://doi.org/10.1016/j.reactfunctpolym.2015.06.003.
Mignon, A., J. Vermeulen, D. Snoeck, P. Dubruel, S. Van Vlierberghe, and N. De Belie. 2017b. “Mechanical and self-healing properties of cementitious materials with ph-responsive semi-synthetic superabsorbent polymers.” Mater. Struct. 50 (6): 238. https://doi.org/10.1617/s11527-017-1109-4.
Milla, J., M. M. Hassan, and T. Rupnow. 2017. “Evaluation of self-healing concrete with microencapsulated calcium nitrate.” J. Mater. Civ. Eng. 29 (12): 04017235. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002072.
Minnebo, P., G. Thierens, G. De Valck, K. Van Tittelboom, N. De Belie, D. Van Hemelrijck, and E. Tsangouri. 2017. “A novel design of autonomously healed concrete: Towards a vascular healing network.” Materials 10 (1): 49. https://doi.org/10.3390/ma10010049.
Mors, R., and H. Jonkers. 2017. “Feasibility of lactate derivative based agent as additive for concrete for regain of crack water tightness by bacterial metabolism.” Ind. Crops Prod. 106: 97–104. https://doi.org/10.1016/j.indcrop.2016.10.037.
Mostavi, E., S. Asadi, M. M. Hassan, and M. Alansari. 2015. “Evaluation of self-healing mechanisms in concrete with double-walled sodium silicate microcapsules.” J. Mater. Civ. Eng. 27 (12): 04015035. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001314.
Na, S. H., Y. Hama, M. Taniguchi, O. Katsura, T. Sagawa, and M. Zakaria. 2012. “Experimental investigation on reaction rate and self-healing ability in fly ash blended cement mixtures.” J. Adv. Concr. Technol. 10 (7): 240–253. https://doi.org/10.3151/jact.10.240.
Nishiwaki, T., M. Koda, M. Yamada, H. Mihashi, and T. Kikuta. 2012. “Experimental study on self-healing capability of FRCC using different types of synthetic fibers.” J. Adv. Concr. Technol. 10 (6): 195–206. https://doi.org/10.3151/jact.10.195.
Nishiwaki, T., S. Kwon, D. Homma, M. Yamada, and H. Mihashi. 2014. “Self-healing capability of fiber-reinforced cementitious composites for recovery of watertightness and mechanical properties.” Materials 7 (3): 2141–2154. https://doi.org/10.3390/ma7032141.
Nishiwaki, T., H. Sasaki, and K. Sukmin. 2015. “Experimental study on self-healing effect of FRCC with PVA fibers and additives.” J. Ceram. Process. Res. 16 (1): 89–94.
Olivier, K., A. Darquennes, F. Benboudjema, and R. Gagné. 2016. “Early-age self-healing of cementitious materials containing ground granulated blast-furnace slag under water curing.” J. Adv. Concr. Technol. 14 (11): 717–727. https://doi.org/10.3151/jact.14.717.
Özbay, E., M. Šahmaran, M. Lachemi, and H. E. Yücel. 2013a. “Self-healing of microcracks in high-volume fly-ash-incorporated engineered cementitious composites.” ACI Mater. J. 110 (1): 33–44.
Özbay, E., M. Şahmaran, H. E. Yücel, T. K. Erdem, M. Lachemi, and V. C. Li. 2013b. “Effect of sustained flexural loading on self-healing of engineered cementitious composites.” J. Adv. Concr. Technol. 11 (5): 167–179. https://doi.org/10.3151/jact.11.167.
Paine, K. 2016. “Bacteria-based self-healing concrete: Effects of environment, exposure and crack size.” In Proc., RILEM Conf. on Microorganisms-Cementitious Materials Interactions. Paris: RILEM.
Palin, D., V. Wiktor, and H. M. Jonkers. 2017. “A bacteria-based self-healing cementitious composite for application in low-temperature marine environments.” Biomimetics 2 (3): 13. https://doi.org/10.3390/biomimetics2030013.
Pan, Z., C. Wu, J. Liu, W. Wang, and J. Liu. 2015. “Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC).” Constr. Build. Mater. 78: 397–404. https://doi.org/10.1016/j.conbuildmat.2014.12.071.
Pang, B., Z. Zhou, P. Hou, P. Du, L. Zhang, and H. Xu. 2016. “Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete.” Constr. Build. Mater. 107: 191–202. https://doi.org/10.1016/j.conbuildmat.2015.12.191.
Pelto, J., M. Leivo, E. Gruyaert, B. Debbaut, D. Snoeck, and N. De Belie. 2017. “Application of encapsulated superabsorbent polymers in cementitious materials for stimulated autogenous healing.” Smart Mater. Struct. 26 (10): 105043. https://doi.org/10.1088/1361-665X/aa8497.
Perez, G., E. Erkizia, J. Gaitero, I. Kaltzakorta, I. Jimenez, and A. Guerrero. 2015a. “Synthesis and characterization of epoxy encapsulating silica microcapsules and amine functionalized silica nanoparticles for development of an innovative self-healing concrete.” Mater. Chem. Phys. 165: 39–48. https://doi.org/10.1016/j.matchemphys.2015.08.047.
Perez, G., J. Gaitero, E. Erkizia, I. Jimenez, and A. Guerrero. 2015b. “Characterisation of cement pastes with innovative self-healing system based in epoxy-amine adhesive.” Cem. Concr. Compos. 60: 55–64. https://doi.org/10.1016/j.cemconcomp.2015.03.010.
Qian, C., H. Chen, L. Ren, and M. Luo. 2015. “Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism.” Front. Microbiol. 6: 1225. https://doi.org/10.3389/fmicb.2015.01225.
Qian, S., J. Zhou, M. De Rooij, E. Schlangen, G. Ye, and K. Van Breugel. 2009. “Self-healing behavior of strain hardening cementitious composites incorporating local waste materials.” Cem. Concr. Compos. 31 (9): 613–621. https://doi.org/10.1016/j.cemconcomp.2009.03.003.
Qian, S., J. Zhou, and E. Schlangen. 2010. “Influence of curing condition and precracking time on the self-healing behavior of engineered cementitious composites.” Cem. Concr. Compos. 32 (9): 686–693. https://doi.org/10.1016/j.cemconcomp.2010.07.015.
Qiu, J., H. S. Tan, and E. Yang. 2016. “Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites.” Cem. Concr. Compos. 73: 203–212. https://doi.org/10.1016/j.cemconcomp.2016.07.013.
Qureshi, T., and A. Al-Tabbaa. 2016. “Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO.” Smart Mater. Struct. 25 (8): 084004. https://doi.org/10.1088/0964-1726/25/8/084004.
Qureshi, T., A. Kanellopoulos, and A. Al-Tabbaa. 2016. “Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete.” Constr. Build. Mater. 121: 629–643. https://doi.org/10.1016/j.conbuildmat.2016.06.030.
Reinhardt, H., and M. Jooss. 2003. “Permeability and self-healing of cracked concrete as a function of temperature and crack width.” Cem. Concr. Res. 33 (7): 981–985. https://doi.org/10.1016/S0008-8846(02)01099-2.
Roig-Flores, M., S. Moscato, P. Serna, and L. Ferrara. 2015. “Self-healing capability of concrete with crystalline admixtures in different environments.” Constr. Build. Mater. 86: 1–11. https://doi.org/10.1016/j.conbuildmat.2015.03.091.
Roig-Flores, M., F. Pirritano, P. Serna, and L. Ferrara. 2016. “Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests.” Constr. Build. Mater. 114: 447–457. https://doi.org/10.1016/j.conbuildmat.2016.03.196.
Ryou, J., S. Ha, T. Ahn, S. Bang, and K. B. Shim. 2015. “Effects of air-cooled blast furnace slag fine aggregate in mortar with self-healing capability exposed to sulfuric acid attack.” J. Ceram. Process. Res. 16: 45–49.
Şahmaran, M., H. A. Christianto, and İ. Ö. Yaman. 2006. “The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars.” Cem. Concr. Compos. 28 (5): 432–440. https://doi.org/10.1016/j.cemconcomp.2005.12.003.
Şahmaran, M., S. B. Keskin, G. Ozerkan, and I. O. Yaman. 2008. “Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash.” Cem. Concr. Compos. 30 (10): 872–879. https://doi.org/10.1016/j.cemconcomp.2008.07.001.
Şahmaran, M., G. Yildirim, and T. K. Erdem. 2013. “Self-healing capability of cementitious composites incorporating different supplementary cementitious materials.” Cem. Concr. Compos. 35 (1): 89–101. https://doi.org/10.1016/j.cemconcomp.2012.08.013.
Şahmaran, M., G. Yildirim, R. Noori, E. Ozbay, and M. Lachemi. 2015. “Repeatability and pervasiveness of self-healing in engineered cementitious composites.” Mater. J. 112 (4): 513–522. https://doi.org/10.14359/51687308.
Şahmaran, M., G. Yildirim, E. Ozbay, K. Ahmed, and M. Lachemi. 2014. “Self-healing ability of cementitious composites: Effect of addition of pre-soaked expanded perlite.” Mag. Concr. Res. 66 (8): 409–419. https://doi.org/10.1680/macr.13.00250.
Sarkar, M., D. Adak, A. Tamang, B. Chattopadhyay, and S. Mandal. 2015. “Genetically-enriched microbe-facilitated self-healing concrete—A sustainable material for a new generation of construction technology.” RSC Adv. 5 (127): 105363–105371. https://doi.org/10.1039/C5RA20858K.
Schlangen, E., N. Ter Heide, and K. Van Breugel. 2006. “Crack healing of early age cracks in concrete.” In Measuring, monitoring and modeling concrete properties, 273–284. Dordrecht, Netherlands: Springer.
Seifan, M., A. Ebrahiminezhad, Y. Ghasemi, A. K. Samani, and A. Berenjian. 2018a. “Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete.” Appl. Microbial. Biotechnol. 102 (1): 175–184. https://doi.org/10.1007/s00253-017-8611-z.
Seifan, M., A. K. Sarmah, A. Ebrahiminezhad, Y. Ghasemi, A. K. Samani, and A. Berenjian. 2018b. “Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles.” Appl. Microbial. Biotechnol. 102 (5): 2167–2178. https://doi.org/10.1007/s00253-018-8782-2.
Seifan, M., A. K. Sarmah, A. K. Samani, A. Ebrahiminezhad, Y. Ghasemi, and A. Berenjian. 2018c. “Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles.” Appl. Microbial. Biotechnol. 102 (10): 1–10. https://doi.org/10.1007/s00253-018-8913-9.
Sherir, M. A., K. M. Hossain, and M. Lachemi. 2016. “Self-healing and expansion characteristics of cementitious composites with high volume fly ash and MgO-type expansive agent.” Constr. Build. Mater. 127: 80–92. https://doi.org/10.1016/j.conbuildmat.2016.09.125.
Sherir, M. A., K. M. Hossain, and M. Lachemi. 2017a. “Development and recovery of mechanical properties of self-healing cementitious composites with MgO expansive agent.” Constr. Build. Mater. 148: 789–810. https://doi.org/10.1016/j.conbuildmat.2017.05.063.
Sherir, M. A., K. M. Hossain, and M. Lachemi. 2017b. “The influence of MgO-type expansive agent incorporated in self-healing system of engineered cementitious composites.” Constr. Build. Mater. 149: 164–185. https://doi.org/10.1016/j.conbuildmat.2017.05.109.
Siad, H., A. Alyousif, O. K. Keskin, S. B. Keskin, M. Lachemi, M. Şahmaran, and K. M. A. Hossain. 2015. “Influence of limestone powder on mechanical, physical and self-healing behavior of engineered cementitious composites.” Constr. Build. Mater. 99: 1–10. https://doi.org/10.1016/j.conbuildmat.2015.09.007.
Siad, H., M. Lachemi, M. Şahmaran, and K. M. A. Hossain. 2017. “Mechanical, physical, and self-healing behaviors of engineered cementitious composites with glass powder.” J. Mater. Civ. Eng. 29 (6): 04017016. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001864.
Siddique, R., A. Jameel, M. Singh, D. Barnat-Hunek, A. Aït-Mokhtar, R. Belarbi, and A. Rajor. 2017. “Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete.” Constr. Build. Mater. 142: 92–100. https://doi.org/10.1016/j.conbuildmat.2017.03.057.
Sisomphon, K., O. Copuroglu, and E. Koenders. 2012. “Self-healing of surface cracks in mortars with expansive additive and crystalline additive.” Cem. Concr. Compos. 34 (4): 566–574. https://doi.org/10.1016/j.cemconcomp.2012.01.005.
Sisomphon, K., O. Copuroglu, and E. Koenders. 2013. “Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials.” Constr. Build. Mater. 42: 217–224. https://doi.org/10.1016/j.conbuildmat.2013.01.012.
Snoeck, D. 2015. “Self-healing and microstructure of cementitious materials with microfibres and superabsorbent polymers.” Ph.D. dissertation, Dept. of Structural Engineering, Ghent Univ.
Snoeck, D., and N. De Belie. 2012. “Mechanical and self-healing properties of cementitious composites reinforced with flax and cottonised flax, and compared with polyvinyl alcohol fibres.” Biosyst. Eng. 111 (4): 325–335. https://doi.org/10.1016/j.biosystemseng.2011.12.005.
Snoeck, D., and N. De Belie. 2016. “Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers.” J. Mater. Civ. Eng. 28 (1): 04015086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001360.
Snoeck, D., J. Dewanckele, V. Cnudde, and N. De Belie. 2016. “X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers.” Cem. Concr. Compos. 65: 83–93. https://doi.org/10.1016/j.cemconcomp.2015.10.016.
Snoeck, D., K. Van Tittelboom, S. Steuperaert, P. Dubruel, and N. De Belie. 2014. “Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers.” J. Intell. Mater. Syst. Struct. 25 (1): 13–24. https://doi.org/10.1177/1045389X12438623.
Suleiman, A. R., and M. L. Nehdi. 2018. “Effect of environmental exposure on autogenous self-healing of cracked cement-based materials.” Cem. Concr. Res. 111: 197–208. https://doi.org/10.1016/j.cemconres.2018.05.009.
Suryanto, B., J. Buckman, P. Thompson, M. Bolbol, and W. McCarter. 2016. “Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscope.” Mater. Charact. 119: 175–185. https://doi.org/10.1016/j.matchar.2016.07.021.
Swamy, R. N., and P. S. Mangat. 1974. “Influence of fiber-aggregate interaction on some properties of steel fiber reinforced concrete.” Mater. Struct. 7 (5): 307–314. https://doi.org/10.1007/BF02473840.
Teall, O., R. Davies, M. Pilegis, A. Kanellopoulos, T. Sharma, K. Paine, A. Jefferson, R. Lark, D. Gardner, and A. Al-Tabbaa. 2016. “Self-healing concrete full-scale site trials.” In Proc., 11th fib Int. PhD Symp. in Civil Engineering, fib 2016, edited by K. Maekawa, A. Kasuga, and J. Yamazaki639–646. Rotterdam, Netherlands: A.A. Balkema.
Termkhajornkit, P., T. Nawa, Y. Yamashiro, and T. Saito. 2009. “Self-healing ability of fly ash-cement systems.” Cem. Concr. Compos. 31 (3): 195–203. https://doi.org/10.1016/j.cemconcomp.2008.12.009.
Thakur, V. K., and M. R. Kessler. 2015. “Self-healing polymer nanocomposite materials: A review.” Polymer 69: 369–383. https://doi.org/10.1016/j.polymer.2015.04.086.
Thiyagarajan, H., S. Maheswaran, M. Mapa, S. Krishnamoorthy, B. Balasubramanian, A. R. Murthy, and N. R. Iyer. 2016. “Investigation of bacterial activity on compressive strength of cement mortar in different curing media.” J. Adv. Concr. Technol. 14 (4): 125–133. https://doi.org/10.3151/jact.14.125.
Van den Heede, P., B. Van Belleghem, N. Alderete, K. Van Tittelboom, and N. De Belie. 2016. “Neutron radiography based visualization and profiling of water uptake in (un)cracked and autonomously healed cementitious materials.” Materials 9 (5): 311. https://doi.org/10.3390/ma9050311.
Van Stappen, J., et al. 2016. “The microstructure of capsule containing self-healing materials: A micro-computed tomography study.” Mater. Charact. 119: 99–109. https://doi.org/10.1016/j.matchar.2016.07.014.
Van Tittelboom, K., et al. 2016. “Comparison of different approaches for self-healing concrete in a large-scale lab test.” Constr. Build. Mater. 107: 125–137. https://doi.org/10.1016/j.conbuildmat.2015.12.186.
Van Tittelboom, K., K. Adesanya, P. Dubruel, P. Van Puyvelde, and N. De Belie. 2011a. “Methyl methacrylate as a healing agent for self-healing cementitious materials.” Smart Mater. Struct. 20 (12): 125016. https://doi.org/10.1088/0964-1726/20/12/125016.
Van Tittelboom, K., N. De Belie, W. De Muynck, and W. Verstraete. 2010. “Use of bacteria to repair cracks in concrete.” Cem. Concr. Res. 40 (1): 157–166. https://doi.org/10.1016/j.cemconres.2009.08.025.
Van Tittelboom, K., N. De Belie, D. Van Loo, and P. Jacobs. 2011b. “Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent.” Cem. Concr. Compos. 33 (4): 497–505. https://doi.org/10.1016/j.cemconcomp.2011.01.004.
Van Tittelboom, K., E. Gruyaert, H. Rahier, and N. De Belie. 2012. “Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation.” Constr. Build. Mater. 37: 349–359. https://doi.org/10.1016/j.conbuildmat.2012.07.026.
Van Tittelboom, K., E. Tsangouri, D. Van Hemelrijck, and N. De Belie. 2015. “The efficiency of self-healing concrete using alternative manufacturing procedures and more realistic crack patterns.” Cem. Concr. Compos. 57: 142–152. https://doi.org/10.1016/j.cemconcomp.2014.12.002.
Wang, C., Y. Bu, and L. Zhao. 2017a. “Properties and self-healing behavior of oil absorbent microspheres modified cement.” Smart Mater. Struct. 26 (9): 095010. https://doi.org/10.1088/1361-665X/aa7917.
Wang, C., C. Yang, F. Liu, C. Wan, and X. Pu. 2012a. “Preparation of ultra-high performance concrete with common technology and materials.” Cem. Concr. Compos. 34 (4): 538–544. https://doi.org/10.1016/j.cemconcomp.2011.11.005.
Wang, D., C. Shi, Z. Wu, J. Xiao, Z. Huang, and Z. Fang. 2015. “A review on ultra high performance concrete. Part II: Hydration, microstructure and properties.” Constr. Build. Mater. 96: 368–377. https://doi.org/10.1016/j.conbuildmat.2015.08.095.
Wang, J., N. De Belie, and W. Verstraete. 2012b. “Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete.” J. Ind. Microbiol. Biotechnol. 39 (4): 567–577. https://doi.org/10.1007/s10295-011-1037-1.
Wang, J., J. Dewanckele, V. Cnudde, S. Van Vlierberghe, W. Verstraete, and N. De Belie. 2014a. “X-ray computed tomography proof of bacterial-based self-healing in concrete.” Cem. Concr. Compos. 53: 289–304. https://doi.org/10.1016/j.cemconcomp.2014.07.014.
Wang, J., D. Snoeck, S. Van Vlierberghe, W. Verstraete, and N. De Belie. 2014b. “Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete.” Constr. Build. Mater. 68: 110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018.
Wang, J., H. Soens, W. Verstraete, and N. De Belie. 2014c. “Self-healing concrete by use of microencapsulated bacterial spores.” Cem. Concr. Res. 56: 139–152. https://doi.org/10.1016/j.cemconres.2013.11.009.
Wang, J., K. Van Tittelboom, N. De Belie, and W. Verstraete. 2012c. “Use of silica gel or polyurethane immobilized bacteria for self-healing concrete.” Constr. Build. Mater. 26 (1): 532–540. https://doi.org/10.1016/j.conbuildmat.2011.06.054.
Wang, X., P. Sun, N. Han, and F. Xing. 2017b. “Experimental study on mechanical properties and porosity of organic microcapsules based self-healing cementitious composite.” Materials 10 (1): 20. https://doi.org/10.3390/ma10010020.
Wang, X., F. Xing, M. Zhang, N. Han, and Z. Qian. 2013. “Experimental study on cementitious composites embedded with organic microcapsules.” Materials 6 (9): 4064–4081. https://doi.org/10.3390/ma6094064.
Wang, X. F., J. H. Zhang, W. Zhao, R. Han, N. X. Han, and F. Xing. 2018. “Permeability and pore structure of microcapsule-based self-healing cementitious composite.” Constr. Build. Mater. 165: 149–162. https://doi.org/10.1016/j.conbuildmat.2017.12.008.
White, S. R., N. Sottos, P. Geubelle, J. Moore, M. Kessler, S. Sriram, E. Brown, and S. Viswanathan. 2001. “Autonomic healing of polymer composites.” Nature 409 (6822): 794–797. https://doi.org/10.1038/35057232.
Wiktor, V., and H. M. Jonkers. 2011. “Quantification of crack-healing in novel bacteria-based self-healing concrete.” Cem. Concr. Compos. 33 (7): 763–770. https://doi.org/10.1016/j.cemconcomp.2011.03.012.
Williams, S. L., M. J. Kirisits, and R. D. Ferron. 2017. “Influence of concrete-related environmental stressors on biomineralizing bacteria used in self-healing concrete.” Constr. Build. Mater. 139: 611–618. https://doi.org/10.1016/j.conbuildmat.2016.09.155.
Wu, M., B. Johannesson, and M. Geiker. 2012. “A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material.” Constr. Build. Mater. 28 (1): 571–583. https://doi.org/10.1016/j.conbuildmat.2011.08.086.
Xu, J., and W. Yao. 2014. “Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent.” Cem. Concr. Res. 64: 1–10. https://doi.org/10.1016/j.cemconres.2014.06.003.
Yang, E. H., Y. Yang, and V. C. Li. 2007. “Use of high volumes of fly ash to improve ECC mechanical properties and material greenness.” ACI Mater. J. 104 (6): 620. https://doi.org/10.14359/18966.
Yang, Y., M. D. Lepech, E. Yang, and V. C. Li. 2009a. “Autogenous healing of engineered cementitious composites under wet-dry cycles.” Cem. Concr. Res. 39 (5): 382–390. https://doi.org/10.1016/j.cemconres.2009.01.013.
Yang, Y., E. Yang, and V. C. Li. 2011a. “Autogenous healing of engineered cementitious composites at early age.” Cem. Concr. Res. 41 (2): 176–183. https://doi.org/10.1016/j.cemconres.2010.11.002.
Yang, Z., J. Hollar, X. He, and X. Shi. 2009b. “Feasibility investigation of self-healing cementitious composite using oil core/silica gel shell passive smart microcapsules.” In Vol. 7493 of Proc., SPIE, 2nd Int. Conf. on Smart Materials and Nanotechnology in Engineering. Paris: SPIE.
Yang, Z., J. Hollar, X. He, and X. Shi. 2011b. “A self-healing cementitious composite using oil core/silica gel shell microcapsules.” Cem. Concr. Compos. 33 (4): 506–512. https://doi.org/10.1016/j.cemconcomp.2011.01.010.
Yildirim, G., M. Şahmaran, and H. U. Ahmed. 2015. “Influence of hydrated lime addition on the self-healing capability of high-volume fly ash incorporated cementitious composites.” J. Mater. Civ. Eng. 27 (6): 04014187. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001145.
Young, J. F. 1972. “A review of the mechanisms of set-retardation in portland cement pastes containing organic admixtures.” Cem. Concr. Res. 2 (4): 415–433. https://doi.org/10.1016/0008-8846(72)90057-9.
Yu, J. H., W. Chen, M. X. Yu, and Y. E. Hua. 2010. “The microstructure of self-healed PVA ECC under wet and dry cycles.” Mater. Res. 13 (2): 225–231. https://doi.org/10.1590/S1516-14392010000200017.
Yu, K., L. Li, J. Yu, Y. Wang, J. Ye, and Q. Xu. 2018. “Direct tensile properties of engineered cementitious composites: A review.” Constr. Build. Mater. 165: 346–362. https://doi.org/10.1016/j.conbuildmat.2017.12.124.
Yuan, B., Y. Yang, Y. Wang, and K. Zhang. 2017. “Self-healing efficiency of EVA-modified cement for hydraulic fracturing wells.” Constr. Build. Mater. 146: 563–570. https://doi.org/10.1016/j.conbuildmat.2017.04.128.
Yuan, X., W. Sun, X. Zuo, and H. Li. 2011. “The crack self-healing properties of cement-based material with EVA heat-melt adhesive.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 26 (4): 774–779. https://doi.org/10.1007/s11595-011-0309-y.
Zhang, J., et al. 2016. “A binary concrete crack self-healing system containing oxygen-releasing tablet and bacteria and its Ca2+-precipitation performance.” Appl. Microbiol. Biotechnol. 100 (24): 10295–10306. https://doi.org/10.1007/s00253-016-7741-z.
Zhang, M., F. Xing, K. Y. Shi, and X. X. Du. 2011. “Study on organic microcapsule based self-healing cementitious composite.” In Proc., Advanced Materials Research, 764–767. Zürich, Switzerland: Trans Tech Publications.
Zhang, Z., S. Qian, and H. Ma. 2014. “Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash.” Constr. Build. Mater. 52: 17–23. https://doi.org/10.1016/j.conbuildmat.2013.11.001.
Zhang, Z., and Q. Zhang. 2017. “Self-healing ability of engineered cementitious composites (ECC) under different exposure environments.” Constr. Build. Mater. 156: 142–151. https://doi.org/10.1016/j.conbuildmat.2017.08.166.
Zheng, P., and T. J. McCarthy. 2012. “A surprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism.” J. Am. Chem. Soc. 134 (4): 2024–2027. https://doi.org/10.1021/ja2113257.
Zhong, W., and W. Yao. 2008. “Influence of damage degree on self-healing of concrete.” Constr. Build. Mater. 22 (6): 1137–1142. https://doi.org/10.1016/j.conbuildmat.2007.02.006.
Zhu, Y., Y. Yang, and Y. Yao. 2012. “Autogenous self-healing of engineered cementitious composites under freeze-thaw cycles.” Constr. Build. Mater. 34: 522–530. https://doi.org/10.1016/j.conbuildmat.2012.03.001.
Zhu, Y., Z. C. Zhang, Y. Yao, X. M. Guan, and Y. Z. Yang. 2016. “Analysis of crack microstructure, self-healing products, and degree of self-healing in engineered cementitious composites.” J. Mater. Civ. Eng. 28 (6): 04016017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001533.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 9September 2019

History

Published online: Jun 17, 2019
Published in print: Sep 1, 2019
Discussion open until: Nov 17, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Magdalena Rajczakowska [email protected]
Ph.D. Student, Dept. of Civil, Environmental, and Natural Resources Engineering, Luleå Univ. of Technology, Luleå 971 87, Sweden (corresponding author). Email: [email protected]
Karin Habermehl-Cwirzen, Ph.D. [email protected]
Senior Lecturer, Dept. of Civil, Environmental, and Natural Resources Engineering, Luleå Univ. of Technology, Luleå 971 87, Sweden. Email: [email protected]
Hans Hedlund [email protected]
Professor, Dept. of Civil, Environmental, and Natural Resources Engineering, Luleå Univ. of Technology, Luleå 971 87, Sweden; Concrete Specialist, Skanska AB, Göteborg 412 65, Sweden. Email: [email protected]
Andrzej Cwirzen [email protected]
Professor, Dept. of Civil, Environmental and Natural Resources Engineering, Luleå Univ. of Technology, Luleå 971 87, Sweden. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share