Abstract

The corrosion risk in reinforced mortar slabs containing untreated sugarcane bagasse ash (UtSCBA) (0%, 10%, and 20% replacement of cement) was analyzed for 75 months. The mortars were prepared with a constant 0.63 water/cementitious-materials ratio. Cylinders and reinforced slabs were cast with the mortars. Two galvanized wire meshes were used as reinforcement for the slabs. Curing regimes of 0, 7, and 28 days were applied to the samples. The cylinders were used to obtain the compressive strength (CS) and the chloride diffusion coefficient (Deff) of the mortars. To evaluate the corrosion risk, the slabs were exposed to wet-dry cycles of 12 h each in a 3% NaCl solution. Corrosion potential measurements and linear polarization resistance tests were taken every 28 days for that purpose. It was found that the addition of 10% and 20% UtSCBA reduces the workability of the mortar binders and leads to a slight decrease in the CS of hardened mortars. However, it significantly reduced the Deff of the mortars by 50% and 65% (p0.05), respectively, and also decreased the corrosion risk of mortar slabs over time.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are grateful to Mexico’s Instituto Politécnico Nacional for the facilities and financial support provided during the development of this research. Further, the authors thank the Facultad de Ingeniería Civil of the Universidad Autónoma de Nuevo León for the facilities made available during the characterization of the materials. Finally, the authors are grateful to Mexico’s Consejo Nacional de Ciencia y Tecnología (CONACyT) for the doctoral scholarships granted to Marco Antonio Maldonado-García and Ur Iván Hernández-Toledo.

References

Akram, T., S. A. Memon, and H. Obaid. 2009. “Production of low cost self-compacting concrete using bagasse ash.” Constr. Build. Mater. 23 (2): 703–712. https://doi.org/10.1016/j.conbuildmat.2008.02.012.
Angst, U., B. Elsener, C. K. Larsen, and Ø. Vennesland. 2009. “Critical chloride content in reinforced concrete: A review.” Cem. Concr. Res. 39 (12): 1122–1138. https://doi.org/10.1016/j.cemconres.2009.08.006.
Aprianti, E., P. Shafigh, S. Bahri, and J. N. Farahani. 2015. “Supplementary cementitious materials origin from agricultural wastes: A review.” Constr. Build. Mater. 74 (Jan): 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010.
Arenas-Piedrahita, J. C., P. Montes-García, J. M. Mendoza-Rangel, H. Z. López-Calvo, P. L. Valdez-Tamez, and J. Martínez-Reyes. 2016. “Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash.” Constr. Build. Mater. 105 (Feb): 69–81. https://doi.org/10.1016/j.conbuildmat.2015.12.047.
ASTM. 1995. Standard test method for density of hydraulic cement. ASTM C188. West Conshohocken, PA: ASTM.
ASTM. 1997. Standard test method for conducting potentiodynamic polarization resistance measurements. ASTM G59. West Conshohocken, PA: ASTM.
ASTM. 2000. Standard practice for use of unbonded caps in determination of compressive strength of hardened concrete cylinders. ASTM C1231/C1231M. West Conshohocken, PA: ASTM.
ASTM. 2001a. Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete. ASTM C138/C138M. West Conshohocken, PA: ASTM.
ASTM. 2001b. Standard test method for flow of hydraulic cement mortar. ASTM C1437. West Conshohocken, PA: ASTM.
ASTM. 2004a. Standard specification for mortar cement. ASTM C1329. West Conshohocken, PA: ASTM.
ASTM. 2004b. Standard test method for air content of freshly mixed concrete by the pressure method. ASTM C231. West Conshohocken, PA: ASTM.
ASTM. 2004c. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39/C39M. West Conshohocken, PA: ASTM.
ASTM. 2009. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. ASTM C876. West Conshohocken, PA: ASTM.
ASTM. 2010. Standard test method for determining the penetration of chloride ion into concrete by ponding. ASTM C1543. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard practice for conventions applicable to electrochemical measurements in corrosion testing. ASTM G3. West Conshohocken, PA: ASTM.
ASTM. 2018a. Standard practice for petrographic examination of hardened concrete. ASTM C856. West Conshohocken, PA: ASTM.
ASTM. 2018b. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618-12a. West Conshohocken, PA: ASTM.
Austin, S. A., R. Lyons, and M. Ing. 2004. “Electrochemical behavior of steel reinforced concrete during accelerated corrosion testing.” Corrosion 60 (2): 203–212. https://doi.org/10.5006/1.3287722.
Bahurudeen, A., and M. Santhanam. 2015. “Influence of different processing methods in the pozzolanic performance of sugarcane bagasse ash.” Cem. Concr. Compos. 56 (13–14): 32–45. https://doi.org/10.1016/j.cemconcomp.2014.11.002.
Batra, V. S., S. Urbonaite, and G. Svensson. 2008. “Characterization of unburned carbon in bagasse fly ash.” Fuel 87 (13–14): 2972–2976. https://doi.org/10.1016/j.fuel.2008.04.010.
Broomfield, J. P. 1997. Corrosion of steel in concrete. London: E & FN Spon.
Choi, Y. S., J. G. Kim, and K. M. Lee. 2006. “Corrosion behavior of steel bar embedded in fly ash concrete.” Corros. Sci. 48 (7): 1733–1745. https://doi.org/10.1016/j.corsci.2005.05.019.
Chusilp, N., C. Jaturapitakkul, and K. Kiattikomol. 2009a. “Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars.” Constr. Build. Mater. 23 (12): 3523–3531. https://doi.org/10.1016/j.conbuildmat.2009.06.046.
Chusilp, N., C. Jaturapitakkul, and K. Kiattikomol. 2009b. “Utilization of bagasse ash as a pozzolanic material in concrete.” Constr. Build. Mater. 23 (11): 3352–3358. https://doi.org/10.1016/j.conbuildmat.2009.06.030.
Cordeiro, G. C., O. A. Paiva, R. D. Toledo-Filho, E. M. R. Fairbairn, and L. M. Tavares. 2018. “Long-term compressive behaviour of concretes with sugarcane bagasse ash as a supplementary cementitious material.” J. Test. Eval. 46 (2): 20160316. https://doi.org/10.1520/JTE20160316.
Cordeiro, G. C., R. D. Toledo-Filho, and E. M. R. Fairbairn. 2010. “Ultrafine sugarcane bagasse ash: High potential pozzolanic material for tropical countries.” Rev. IBRACON Estruturas Mater. 3 (1): 50–67. https://doi.org/10.1590/S1983-41952010000100004.
Cordeiro, G. C., R. D. Toledo-Filho, L. M. Tavares, and E. M. R. Fairbairn. 2012. “Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugarcane bagasse ashes.” Constr. Build. Mater. 29 (Apr): 641–646. https://doi.org/10.1016/j.conbuildmat.2011.08.095.
Darwin, D., J. Browning, M. O’Reilly, L. Xing, and J. Ji. 2009. “Critical chloride corrosion threshold of galvanized reinforcing bars.” ACI Mater. J. 106 (2): 176–183.
Deus, J. M., L. Freire, M. F. Montemor, and X. R. Nóvoa. 2012. “The corrosion potential of stainless steel rebars in concrete: Temperature effect.” Corros. Sci. 65 (Dec): 556–560. https://doi.org/10.1016/j.corsci.2012.09.001.
Dhengare, S., S. Amrodiya, M. Shelote, A. Asati, N. Bandwaf, K. Anand, and R. Jichkar. 2015. “Utilization of sugarcane bagasse ash as a supplementary cementitious material in concrete and mortar—A review.” Int. J. Civ. Eng. Technol. 6 (4): 94–106.
Frias, M., E. Villar, and H. Savastano. 2011. “Brazilian sugarcane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture.” Cem. Concr. Compos. 33 (4): 490–496. https://doi.org/10.1016/j.cemconcomp.2011.02.003.
Ganesan, K., K. Rajagopal, and K. Thangavel. 2007. “Evaluation of bagasse ash as supplementary cementitious material.” Cem. Concr. Compos. 29 (6): 515–524. https://doi.org/10.1016/j.cemconcomp.2007.03.001.
Gastaldini, A. L. G., G. C. Isaia, A. P. Saciloto, F. Missau, and T. F. Hoppe. 2010. “Influence of curing time on the chloride penetration resistance of concrete containing rice husk ash: A technical and economical feasibility study.” Cem. Concr. Compos. 32 (10): 783–793. https://doi.org/10.1016/j.cemconcomp.2010.08.001.
Hemalatha, T., and A. Ramaswamy. 2017. “A review on fly ash characteristics: Towards promoting high volume utilization in developing sustainable concrete.” J. Cleaner Prod. 147 (Mar): 546–559. https://doi.org/10.1016/j.jclepro.2017.01.114.
Jímenez-Quero, V. G., F. M. León-Martínez, P. Montes-García, C. Gaona-Tiburcio, and J. G. Chacón-Nava. 2013. “Influence of sugarcane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars.” Constr. Build. Mater. 40 (Mar): 691–701. https://doi.org/10.1016/j.conbuildmat.2012.11.023.
Katare, V. D., and M. V. Madurwar. 2017. “Experimental characterization of sugarcane biomass ash: A review.” Constr. Build. Mater. 152 (Oct): 1–15. https://doi.org/10.1016/j.conbuildmat.2017.06.142.
Liu, J., Q. Qiu, X. Chen, X. Wang, F. Xing, N. Han, and Y. He. 2016. “Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress.” Corros. Sci. 112 (Nov): 364–372. https://doi.org/10.1016/j.corsci.2016.08.004.
Lothenbach, B., K. Scrivener, and R. D. Hooton. 2011. “Supplementary cementitious materials.” Cem. Concr. Res. 41 (12): 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
Maldonado-García, M. A., U. I. Hernández-Toledo, P. Montes-García, and P. L. Valdez-Tamez. 2018. “The influence of untreated sugarcane bagasse ash on the microstructural and mechanical properties of mortars.” Mater. Constr. 68 (329): 148. https://doi.org/10.3989/mc.2018.13716.
Maldonado-García, M. A., P. Montes-García, and P. L. Valdez-Tamez. 2017. “A review of the use of sugarcane bagasse ash with a high LOI content to produce sustainable cement composites.” In PRO119: Proc., 2nd Int. Conf. on Bio-based Building Materials, 595–605. Paris: RILEM.
Malhotra, V. M. 1994. Fly ash in concrete. Ottawa: CANMET.
Martirena, F., B. Middenford, R. L. Day, M. Gehrke, P. Roque, L. Martinez, and S. Betancourt. 2006. “Rudimentary, low-tech incinerators as a means to produce reactive pozzolan out of sugarcane straw.” Cem. Concr. Res. 36 (6): 1056–1061. https://doi.org/10.1016/j.cemconres.2006.03.016.
Michel, A., M. Otieno, H. Stang, and M. R. Geiker. 2016. “Propagation of steel in concrete: Experimental and numerical investigations.” Cem. Concr. Compos. 70 (Jul): 171–182. https://doi.org/10.1016/j.cemconcomp.2016.04.007.
Montakarntiwong, K., N. Chusilp, W. Tangchirapat, and C. Jaturapitakkul. 2013. “Strength and head evolution of concretes containing bagasse ash from thermal power plants in sugar industry.” Mater. Des. 49 (Aug): 414–420. https://doi.org/10.1016/j.matdes.2013.01.031.
Morales, E. V., E. Villar-Cociña, M. Frías, S. F. Santos, and H. Savastano Jr. 2009. “Effects of calcining conditions on the microstructure of sugarcane waste ashes (SCWA): Influence in the pozzolanic activation.” Cem. Concr. Compos. 31 (1): 22–28. https://doi.org/10.1016/j.cemconcomp.2008.10.004.
Neville, A. 2000. Properties of concrete. London: Prentice Hall.
NT (Nordtest). 2011a. Concrete, hardened: Accelerated chloride penetration. NT BUILD 443. Tampere, Finland: NT.
NT (Nordtest). 2011b. Concrete, hardened: Chloride content by Volhard Titration. NT BUILD 208. Tampere, Finland: NT.
Nuñez-Jaquez, R. E., J. E. Buelna-Rodríguez, C. P. Barrios-Durstewitz, C. Gaona-Tiburcio, and F. Almeraya-Calderón. 2012. “Corrosion of modified concrete with sugarcane bagasse ash.” Int. J. Corros. 2012: 1–6. https://doi.org/10.1155/2012/451864.
Ramachandram, V. S. 2001. Handbook of analytical techniques in concrete science and technology: Principles, techniques and applications. Park Ridge, NJ: Noye Publicatios.
Ramezanianpour, A. A., and V. M. Malhotra. 1995. “Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume.” Cem. Concr. Compos. 17 (2): 125–133. https://doi.org/10.1016/0958-9465(95)00005-W.
Ríos-Parada, V., V. G. Jíménez-Quero, P. L. Valdez-Tamez, and P. Montes-García. 2017. “Characterization and use of an untreated Mexican sugarcane bagasse ash as supplementary material for the preparation of ternary concretes.” Const. Build. Mater. 157 (Dec): 83–95. https://doi.org/10.1016/j.conbuildmat.2017.09.060.
Rivera-Corral, J. O., G. Fajardo, G. Arliguie, R. Orozco-Cruz, F. Deby, and P. Valdez. 2017. “Corrosion behaviour of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish.” Constr. Build. Mater. 147 (Aug): 815–826. https://doi.org/10.1016/j.conbuildmat.2017.04.186.
Román, J., R. Vera, M. Bagnara, A. M. Carvajal, and W. Aperador. 2014. “Effect of chloride ions on the galvanized steel embedded in concrete prepared with cements of different composition.” Int. J. Electrochem. Sci. 9 (2): 580–592.
Sajedi, F., and H. A. Razak. 2011. “Effects of curing regimens and cement fineness on the compressive strength of ordinary cement mortars.” Constr. Build. Mater. 25 (4): 2036–2045. https://doi.org/10.1016/j.conbuildmat.2010.11.043.
Shi, X., N. Xie, K. Fortune, and J. Gong. 2012. “Durability of steel-reinforced concrete in chloride environments: An overview.” Constr. Build. Mater. 30 (May): 125–138. https://doi.org/10.1016/j.conbuildmat.2011.12.038.
Simčič, T., S. Pejovnik, G. De Schutter, and V. B. Bosiljkov. 2015. “Chloride ion penetration into fly ash modified concrete during wetting-drying cycles.” Constr. Build. Mater. 93 (Sep): 1216–1223. https://doi.org/10.1016/j.conbuildmat.2015.04.033.
Sistonen, E. 2009. “Service life of hot-dip galvanized reinforcement bars in carbonated and chloride-contaminated concrete.” Ph.D. dissertation, Dept. of Structural Engineering and Building Technology, Helsinki Univ. of Technology.
Sistonen, E., A. Cwirzen, and J. Puttonen. 2008. “Corrosion mechanism of hot-dip galvanised reinforcement bar in cracked concrete.” Corros. Sci. 50 (12): 3416–3428. https://doi.org/10.1016/j.corsci.2008.08.050.
Soares, M. M. N. S., F. S. J. Poggiali, A. C. S. Bezerra, R. B. Figueiredo, M. T. P. Aguilar, and P. R. Cetlin. 2014. “The effect of the calcination conditions on the physical and chemical characteristics of sugar cane bagasse ash.” Rev. Esc. Minas 67 (1): 33–39. https://doi.org/10.1590/S0370-44672014000100005.
Somna, R., C. Jaturapitakkul, P. Rattanachu, and W. Chalee. 2012. “Effect of ground bagasse ash on mechanical and durability properties of recycled aggregated concrete.” Mater. Des. 36 (Apr): 597–603. https://doi.org/10.1016/j.matdes.2011.11.065.
Song, H. W., C. H. Lee, and K. Y. Ann. 2008. “Factors influencing chloride transport in concrete structures exposed to marine environments.” Cem. Concr. Compos. 30 (2): 113–121. https://doi.org/10.1016/j.cemconcomp.2007.09.005.
Torres-Agredo, J., R. Mejía de Gutiérrez, C. E. Escandon-Giraldo, and L. O. González-Salcedo. 2014. “Characterization of sugarcane bagasse ash as supplementary material for portland cement.” Ing. Investigación 34 (1): 5–10. https://doi.org/10.15446/ing.investig.v34n1.42787.
Torres-Luque, M., E. Bastidas-Arteaga, F. Schoefs, M. Sánchez-Silva, and J. F. Osma. 2014. “Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges.” Constr. Build. Mater. 68 (Oct): 68–81. https://doi.org/10.1016/j.conbuildmat.2014.06.009.
UNC (Unión Nacional de Cañeros A. C.). 2017. “Homepage.” Accessed October 4, 2017. http://www.caneros.org.mx.
Valencia, G., R. Mejía de Gutierrez, J. Barrera, and S. Delvastos. 2012. “Estudio de durabilidad y corrosión en morteros armados adicionados con toba volcánica y ceniza de bagazo de caña de azúcar.” Rev. Constr. 12 (2): 112–122. https://doi.org/10.4067/S0718-915X2012000200010.
Verma, S. K., S. S. Bhadauria, and S. Akhtar. 2013. “Review of nondestructive testing methods for condition monitoring of concrete structures.” J. Constr. Eng. 2013 (Apr): 1–11. https://doi.org/10.1155/2013/834572.
Yeomas, S. R. 1998. “Corrosion of the zinc alloy coating in galvanized reinforced concrete.” Corrosion 653: 1–10.
Yurtdas, I., N. Burlion, and F. Skoczylas. 2004. “Experimental characterization of the drying effect on uniaxial mechanical behavior of mortar.” Mater. Struct. 37 (3): 170–176. https://doi.org/10.1007/BF02481616.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 4April 2019

History

Received: Mar 5, 2018
Accepted: Sep 17, 2018
Published online: Jan 30, 2019
Published in print: Apr 1, 2019
Discussion open until: Jun 30, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Marco Antonio Maldonado-García [email protected]
Ph.D. Candidate, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Hornos No. 1003, Col. Noche Buena, Sta. Cruz Xoxocotlán C.P. 71230, Oaxaca, México. Email: [email protected]
Ur Iván Hernández-Toledo [email protected]
Ph.D. Candidate, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Cd Universitaria S/N, San Nicolás de los Garza, C.P. 66451, Nuevo León, México. Email: [email protected]
Professor, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Hornos No. 1003, Col. Noche Buena, Sta. Cruz Xoxocotlán C.P. 71230, Oaxaca, México (corresponding author). ORCID: https://orcid.org/0000-0003-3799-8372. Email: [email protected]; [email protected]
Pedro Leobardo Valdez-Tamez, Ph.D., Aff.M.ASCE [email protected]
Professor, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Cd Universitaria S/N, San Nicolás de los Garza, C.P. 66451, Nuevo León, México. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share