Abstract

Proper disposal of industrial waste, the need to conserve nonrenewable resources, and high CO2 emissions are the major environmental issues at the present time. A significant portion of emissions from portland cement production is related to the energy required to maintain the clinker kiln at a temperature of approximately 1,450°C, which is necessary for alite formation. The alternative belite phase, however, requires lower temperatures for its formation (below 1,250°C). Although belite is less reactive than alite, it is equally efficient at higher hydration times. Thus, a belitic cement produced entirely with industrial waste (grits from the pulp and paper industry, steel slag, and quartzite mining tailings) is presented in this research. The raw meal was proportioned based on Bogue calculation and the firing was performed in a muffle furnace at a temperature of 1,250°C. A reference belitic cement was produced with limestone and clay under the same conditions. The results showed that both cements presented high belite contents and expected technological performance. The reference belitic cement revealed a higher reactivity, whereas the waste cement proved to be a technically feasible low-impact alternative.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge the financial support provided by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais – Brasil (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq), Universidade Federal de Ouro Preto (UFOP), Universidade Federal de Viçosa (UFV), and Fundação Gorceix. Equipment and technical support provided by the Laboratory of Electronic Microscopy NANOLAB, Redemat, UFOP; the Laboratory of Construction Materials, Dept. of Civil Engineering, UFOP; and the Laboratory of Construction Materials, Dept, of Civil Engineering, UFV are gratefully appreciated. Thanks are also due to Brennand Cimentos for support and supply of materials, and to the Research Group on Solid Waste RECICLOS-CNPq for infrastructure use and collaboration.

References

ABNT (Associaçao Brasileira de Normas Técnicas). 1991a. NBR 5733: High early strength portland cement: Specification. [In Portuguese.] Rio de Janeiro, Brazil: ABNT.
ABNT (Associaçao Brasileira de Normas Técnicas). 1991b. NBR 5735: Blast furnace slag portland cement: Specification. [In Portuguese.] Rio de Janeiro, Brazil: ABNT.
ABNT (Associaçao Brasileira de Normas Técnicas). 1996a. NBR NM 76: Portland cement: Determination of fineness by the air permeability method (Blaine method). [In Portuguese.] Rio de Janeiro, Brazil: ABNT.
ABNT (Associaçao Brasileira de Normas Técnicas). 1996b. NBR 7215: Portland cement: Determination of compressive strength. [In Portuguese.] Rio de Janeiro, Brazil: ABNT.
ABNT (Associaçao Brasileira de Normas Técnicas). 2001. NBR NM 23: Portland cement and other powdered material: Determination of density. [In Portuguese.] Rio de Janeiro, Brazil: ABNT.
ABNT (Associaçao Brasileira de Normas Técnicas). 2003. NBR NM 65: Portland cement: Determination of setting times. [In Portuguese.] Rio de Janeiro, Brazil: ABNT.
ABNT (Associaçao Brasileira de Normas Técnicas). 2016. NBR 11582: Portland cement: Determination of soundness by Le Chatelier test. [In Portuguese.] Rio de Janeiro, Brazil: ABNT.
Ali, M. B., and M. S. Hossain. 2011. “A review on emission analysis in cement industries.” Renewable Sustainable Energy Rev. 15 (5): 2252–2261. https://doi.org/10.1016/j.rser.2011.02.014.
Aloui, T., A. Ounis, and F. Chaabani. 2008. “Maastritchian limestones of Feriana Mountain used in white cement production (Central West Tunisia).” J. Am. Ceram. Soc. 91 (11): 3704–3713. https://doi.org/10.1111/j.1551-2916.2008.02725.x.
Altoé, L. M., G. C. Xavier, F. S. Albuquerque, P. C. A. Maia, J. Alexandre, and L. G. Pedroti. 2012. “Estudy of natural and degradation by salt spray of red ceramics incorporated with ornamental rock waste.” In Vols. 727–728 of Materials science forum, edited by L. Salgado and F. A. Filho, 1519–1524. Trans Tech.
Amani, M. H., and A. C. S. Costa. 2013. “Magnesioferrite synthesized from magnesian-magnetites.” Semina: Ciências Exatas e Tecnológicas 34 (2): 135–144. https://doi.org/10.5433/1679-0375.2013v34n2p135.
Antao, S. M., J. Hanson, I. Hassan, J. Chen, and J. B. Parise. 2002. “Thermal analyses of magnesioferrite.” In Proc., American Geophysical Union, Fall Meeting 2002. Washington, DC: AGU.
Aprianti, E. 2017. “A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production—A review Part II.” J. Cleaner Prod. 142: 4178–4194. https://doi.org/10.1016/j.jclepro.2015.12.115.
AZO. 2002. “Calcium aluminate cements (CAC)—Phases and structure of calcium aluminate cements.” Accessed November 7, 2017. https://www.azom.com/article.aspx?ArticleID=1635.
Bastos, L. A. C., G. C. Silva, J. C. Mendes, and R. A. F. Peixoto. 2016. “Using of iron ore tailings from tailing dams as road material.” J. Mater. Civ. Eng. 28 (10): 04016102. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001613.
Battagin, A. F. 2011. “Cimento portland.” Chap. 6 in Concreto Ciência e Tecnologia, edited by G. C. Isaia, 185–232. [In Portuguese.] 1st ed. São Paulo, Brazil: Arte Interativa.
Bensted, J. 2002. “Calcium aluminate cements.” In Structure and performance of cements, edited by P. Barnes and J. Bensted, 114–139. 2nd ed. London: Spon.
Bogue, R. H. 1929. “Calculation of the compounds in portland cement.” Ind. Eng. Chem. Anal. 1 (4): 192–197. https://doi.org/10.1021/ac50068a006.
Bouzidi, M., A. Tahakourt, N. Bouzidi, and D. Merabet. 2014. “Synthesis and characterization of belite cement with high hydraulic reactivity and low environmental impact.” Arab. J. Sci. Eng. 39 (12): 8659–8668. https://doi.org/10.1007/s13369-014-1471-2.
Crumbie, A., G. Walenta, and T. Füllmann. 2006. “Where is the iron? Clinker microanalysis with XRD Rietveld, optical microscopy/point counting, Bogue and SEM-EDS techniques.” Cem. Concr. Res. 36 (8): 1542–1547. https://doi.org/10.1016/j.cemconres.2006.05.031.
Da Silva, M. J., B. P. De Souza, J. C. Mendes, G. J. Brigolini, S. N. Da Silva, and R. A. F. Peixoto. 2016. “Feasibility study of steel slag aggregates in precast concrete pavers.” ACI Mater. J. 113 (4): 439–446.
Dias, L. S., R. M. R. Mol, K. D. C. Silva, P. A. M. Campos, J. C. Mendes, and R. A. F. Peixoto. 2016. “Rejeitos de mineração de quartzito para produção de argamassa colante.” [In Portuguese.] In Anais do 22 Congresso brasileiro de Engenharia e Ciência dos Materiais, 1–12. São Paulo, Brazil: Associação Brasileira de Cerâmica.
Diniz, D. H., J. M. F. Carvalho, J. C. Mendes, and R. A. F. Peixoto. 2017. “Blast oxygen furnace slag as chemical soil stabilizer for use in roads.” J. Mater. Civ. Eng. 29 (9): 04017118. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001969.
DNPM (Departamento Nacional de Produção Mineral). 2015. Sumário mineral 2015. [In Portuguese.] Brasília, Brazil: Departamento Nacional de Produção Mineral.
Fassoni, D. P., R. C. S. S. Alvarenga, L. G. Pedroti, and B. Mendes. 2016. “Clinker production from wastes of cellulose and granite industries.” In Characterization of minerals, metals, and materials, 691–696. Cham, Switzerland: Springer.
Sant’Ana Filho, J. N., S. N. Silva, G. C. Silva, J. C. Mendes, and R. A. F. Peixoto. 2017. “Technical and environmental feasibility of interlocking concrete pavers with iron ore tailings from tailings dams.” J. Mater. Civ. Eng. 29 (9): 04017104. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001937.
Fontes, W. C., J. C. Mendes, S. N. Silva, and R. A. F. Peixoto. 2016. “Mortars for laying and coating produced with iron ore tailings from tailing dams.” Constr. Build. Mater. 112: 988–995. https://doi.org/10.1016/j.conbuildmat.2016.03.027.
Han, J., D. Jia, and P. Yan. 2016. “Understanding the shrinkage compensating ability of type K expansive agent in concrete.” Constr. Build. Mater. 116: 36–44. https://doi.org/10.1016/j.conbuildmat.2016.04.092.
Hewlett, P. O. 2004. Lea’s chemistry of cement and concrete. 4th ed. Oxford, UK: Elsevier.
Iacobescu, R. I., G. N. Angelopoulos, P. T. Jones, B. Blanpain, and Y. Pontikes. 2016. “Ladle metallurgy stainless steel slag as a raw material in ordinary portland cement production: A possibility for industrial symbiosis.” J. Clean. Prod. 112 (1): 872–881. https://doi.org/10.1016/j.jclepro.2015.06.006.
Iacobescu, R. I., D. Koumpouri, Y. Pontikes, R. Saban, and G. N. Agelopoulos. 2011. “Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.” J. Hazard. Mater. 196: 287–294. https://doi.org/10.1016/j.jhazmat.2011.09.024.
Ishak, S. A., and H. Hashim. 2015. “Low carbon measures for cement plant: A review.” J. Clean. Prod. 103: 260–274. https://doi.org/10.1016/j.jclepro.2014.11.003.
Kacimi, L., A. Simon-Masseron, S. Salem, A. Ghomari, and Z. Derriche. 2009. “Synthesis of belite cement clinker of high hydraulic reactivity.” Cem. Concr. Res. 39 (7): 559–565. https://doi.org/10.1016/j.cemconres.2009.02.004.
Kajaste, R., and M. Hurme. 2016. “Cement industry greenhouse gas emissions e management options and abatement cost.” J. Cleaner. Prod. 112: 4041–4052. https://doi.org/10.1016/j.jclepro.2015.07.055.
Koumpouri, D., and G. N. Angelopoulos. 2016. “Effect of boron waste and boric acid addition on the production of low energy belite cement.” Cem. Concr. Compos. 68: 1–8. https://doi.org/10.1016/j.cemconcomp.2015.12.009.
Li, J., Q. Yu, J. Wei, and T. Zhang. 2011. “Structural characteristics and hydration kinetics of modified steel slag.” Cem. Concr. Res. 41 (3): 324–329. https://doi.org/10.1016/j.cemconres.2010.11.018.
Londono-Zuluaga, D., J. I. Tobón, M. A. G. Aranda, I. Santacruz, and A. G. De la Torre. 2017. “Clinkering and hydration of belite-alite-ye´elimite cement.” Cem. Concr. Compos. 80: 333–341. https://doi.org/10.1016/j.cemconcomp.2017.04.002.
Marinho, A. L. B., C. M. M. Santos, J. M. F. Carvalho, J. C. Mendes, G. J. Brigolini, and R. A. F. Peixoto. 2017. “Ladle furnace slag as binder for cement-based composites.” J. Mater. Civ. Eng. 29 (11): 04017207. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002061.
Masurero, A. B., D. C. C. DalMolin, and A. C. F. Vilela. 2004. “Stabilization and technical feasibility of electric steel slag.” [In Portuguese.] Ambient Constr. 4 (2): 57–81.
Mehta, P. K., and P. J. M. Monteiro. 2006. Concrete: Microstructure, properties, and materials. New York: McGraw-Hill.
Meyers, G. D., G. McLeod, and M. A. Anbarci. 2006. “An international waste convention: Measures for achieving sustainable development.” Waste Manage. 24 (6): 505–513. https://doi.org/10.1177/0734242X06069474.
Miller, S. A., P. J. M. Monteiro, C. P. Ostertag, and A. Horvath. 2016. “Comparison indices for design and proportioning of concrete mixtures takin environmental impacts account.” Cem. Concr. Compos. 68: 131–143. https://doi.org/10.1016/j.cemconcomp.2016.02.002.
Mindat. 2017a. “Larnite.” Accessed November 7, 2017. https://www.mindat.org/min-2333.html.
Mindat. 2017b. “Magnesioferrite.” Accessed November 8, 2017. https://www.mindat.org/min-2501.html.
Pedroti, L. G., C. M. F. Vieira, S. N. Monteiro, F. S. Candido, G. C. Xavier, and J. Alexandre. 2014. “Incorporation of granite waste from diamond wire sawing process into cement matrix concrete.” In Vol. 775–776 of Materials science forum, 571–576. Zurich, Switzerland: Trans Tech Publications.
Pimraksa, K., S. Hanjitsuwan, and P. Chindaprasirt. 2009. “Synthesis of belite cement from lignite fly ash.” Ceram. Int. 35 (6): 2415–2425. https://doi.org/10.1016/j.ceramint.2009.02.006.
Pinheiro, M. L., R. C. S. S. Alvarenga, B. C. Ribeiro, P. R. Silva Jr., M. S. Sarmet, and D. P. Fassoni. 2013. “Experimental evaluation of pressed blocks of soil-cement with grits addition.” Ambient Constr. 13 (2): 29–46. https://doi.org/10.1590/S1678-86212013000200004.
Pöllmann, H. 2002. “Composition of cement phases.” Chap. 2 in Structure and performance of cements. 2nd ed., edited by P. Barnes and J. Bensted, 25–56. London: Spon Press.
Popescu, C. D., M. Muntean, and J. H. Sharp. 2003. “Industrial trial production of low energy belite cement.” Cem. Concr. Compos. 25 (7): 689–693. https://doi.org/10.1016/S0958-9465(02)00097-5.
Ramachandran, V. S., R. M. Paroli, J. J. Beaudoin, and A. H. Delgado. 2002. Handbook of thermal analysis of construction materials. Norwich, England: Noyes Publications.
Santos, R. F., R. C. S. S. Alvarenga, B. C. Mendes, J. M. F. Carvalho, and L. G. Pedroti. 2017. “Evaluation of incorporation of dregs in mortar production in replacement of hydrated lime.” In Vol. 881 of Materials science forum, 351–356. Zurich, Switzerland: Trans Tech Publications.
Shen, Y., J. Qian, Y. Huang, and D. Yang. 2015. “Synthesis of belite sulfoaluminate-ternesite cements with phosphogypsum.” Cem. Concr. Compos. 63: 67–75. https://doi.org/10.1016/j.cemconcomp.2015.09.003.
Souza, T. I., and A. V. Cardoso. 2008. “Utilização de resídulos sólidos da indústria de celulose kraft na fabricaçao de cimento; caracterização físico-química.” [In Portuguese.] In Proc., Annals of the XVIII Brazilian Congress on Engineering and Material Science. São Paulo, Brazil: Associação Brasileira de Cerâmica.
Stutzman, P., A. Heckert, A. Tebbe, and S. Leigh. 2014. “Uncertainty in Bogue-calculated phase composition of hydraulic cements.” Cem. Concr. Res. 61–62: 40–48. https://doi.org/10.1016/j.cemconres.2014.03.007.
Taylor, H. F. W. 1990. Cement chemistry. London: Academic Press.
UN-HABITAT (United Nations Centre for Human Settlements). 1993. Small-scale production of portland cement. Nairobi, Kenya: United Nations Centre for Human Settlements.
Vilaplana, A. S., V. J. Ferreira, A. M. Lopez-Sabiron, A. Aranda-Uson, C. Lausin-Gonzales, C. Berganza-Conde, and G. Ferreira. 2015. “Utilization of Ladle Furnace slag from a steelwork for laboratory scale production of portland cement.” Constr. Build. Mater. 94: 837–843. https://doi.org/10.1016/j.conbuildmat.2015.07.075.
WHD (WHD Microanalysis Consultants Ltd). 2017. “Portland cement clinker: The Bogue calculation.” Accessed January 18, 2017. http://www.understanding-cement.com/bogue.html#.
Yamnova, N. A., N. V. Zubcova, N. N. Eremin, A. E. Zadov, and V. M. Gazeev. 2011. “Crystal structure of larnite β-Ca24 and specific features of polymorphic transitions in dicalcium orthosilicate.” Crystallogr. Rep. 56 (2): 210–220. https://doi.org/10.1134/S1063774511020209.
Zhang, M., Y. Wang, Y. Song, T. Zhang, and J. Wang. 2016. “Manifest system for management of non-hazardous industrial solid wastes: Results from a Tianjin industrial park.” J. Cleaner Prod. 133: 252–261. https://doi.org/10.1016/j.jclepro.2016.05.102.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 2February 2019

History

Received: Mar 6, 2018
Accepted: Aug 27, 2018
Published online: Dec 7, 2018
Published in print: Feb 1, 2019
Discussion open until: May 7, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Laboratório de Materiais de Construção Civil, Escola de Minas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, 35400-000 Ouro Preto, Minas Gerais, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-5785-3213. Email: [email protected]
Paula Anunciação Matias Campos [email protected]
Bachelor Student, Laboratório de Materiais de Construção Civil, Escola de Minas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, 35400-000 Ouro Preto, Minas Gerais, Brazil. Email: [email protected]
Keoma Defáveri [email protected]
Ph.D. Student, Laboratório de Materiais de Construção Civil, Escola de Minas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, 35400-000 Ouro Preto, Minas Gerais, Brazil. Email: [email protected]
Guilherme Jorge Brigolini [email protected]
Professor, Laboratório de Materiais de Construção Civil, Escola de Minas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, 35400-000 Ouro Preto, Minas Gerais, Brazil. Email: [email protected]
Leonardo Gonçalves Pedroti [email protected]
Professor, Laboratório de Engenharia Civil, Departamento de Engenharia Civil, Universidade Federal de Viçosa, Campus Universitário, 36570-900 Viçosa, Minas Gerais, Brazil. Email: [email protected]
Ricardo André Fiorotti Peixoto [email protected]
Professor, Laboratório de Materiais de Construção Civil, Escola de Minas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro, 35400-000 Ouro Preto, Minas Gerais, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share