Technical Papers
Nov 14, 2018

Effect of Partial Substitution of Highly Reactive Mineral Additions by Nanosilica in Cement Pastes

Publication: Journal of Materials in Civil Engineering
Volume 31, Issue 1

Abstract

The phenomena involved in portland cement hydration and interactions with nanosilica are very complex and not yet fully understood. In addition, few papers have currently proposed to investigate the microstructure and mechanical properties of ternary mixtures using portland cement, colloidal nanosilica, and highly reactive mineral additions. This article investigates, for the first time, the behavior of different highly reactive mineral additions (silica fume and metakaolin) when partially replaced by colloidal nanosilica in the microstructure and hydration of cementitious materials. For the study of the cementitious material microstructures, a Langavant calorimeter, compressive strength, X-ray diffraction, thermogravimetry, infrared spectroscopy, and mercury intrusion porosimetry were used. The pastes with a 1% substitution of highly reactive mineral additions by nanosilica showed higher compressive strength and more refined porosity than the pastes with only silica fume or metakaolin. The results show that nanosilica appears to have better synergism with metakaolin than with silica fume.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge support provided by the European Commission, the Marie Curie International Research Staff Exchange Scheme (IRSES) Project Geotechnical and Geological Responses to Climate Change Exchanging Approaches and Technologies on a Worldwide Scale (GREAT) (Grant No. FP7-PEOPLE-2013-IRSES-612665), the Addendum to the Framework Agreement for Collaboration between University of Brasilia (UnB-Brazil) and Spanish National Research Council (CSIC-Spain) (Grant No. 201504001653451013W-2017), and the Laboratory of Ceramic Materials (LACER) of the Federal University of Rio Grande do Sul (UFRGS-Brasil) for the laser granulometry and specific surface BET tests.

References

ABNT (Associação Brasileira de Normas Técnicas). 1991. Cimento portland de alta resistência inicial. [Initial high strength portland cement]. NBR 5733. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 1997. Cimento portland—Determinação da resistência à compressão [Portland cement—Determination of compressive strength]. NBR 7215. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2005. Argamassa para assentamento e revestimento de paredes e tetos—Preparo da mistura e determinação do índice de consistência. [Mortars applied on walls and ceilings—Determination of the consistence index]. NBR 13276. Rio de Janeiro, Brazil: ABNT.
Ahari, R. S., T. K. Erdem, and K. Ramyar. 2015. “Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete.” Constr. Build. Mater. 75 (30): 89–98. https://doi.org/10.1016/j.conbuildmat.2014.11.014.
Alonso-Dominguez, D., I. Álvarez-Serrano, E. Reyes, and A. Moragues. 2017. “New mortar fabricated by electrostatic dry deposition of nano and microsilica additions: Enhanced properties.” Constr. Build. Mater. 135: 186–192. https://doi.org/10.1016/j.conbuildmat.2017.01.011.
Alonso-Dominguez, D., A. Moragues, E. Reyes, and I. Álvarez-Serrano. 2015. “Estudio de la variacion de la estructura del gel C─ S─ H em materiales base cemento com adiciones de sílice de distinta granulometria.” In Proc., XIII CONPAT. Mérida-Yucatan, México: ALCONPAT International.
Amin, M., and K. Abu. 2015. “Effect of using different types of nano materials on mechanical properties of high strength concrete.” Constr. Build. Mater. 80 (1): 116–124. https://doi.org/10.1016/j.conbuildmat.2014.12.075.
Andrade, D. S., J. H. S. Rêgo, P. C. Morais, and M. Frías. 2018. “Chemical and mechanical characterization of ternary cement pastes containing metakaolin and nanosilica.” Constr. Build. Mater. 159: 18–26. https://doi.org/10.1016/j.conbuildmat.2017.10.123.
Barbhuiya, S., P. L. Choer, and S. Menon. 2015. “Microstructure, hydration and nanomechanical properties of concrete containing metacaulim.” Constr. Build. Mater. 95: 696–702. https://doi.org/10.1016/j.conbuildmat.2015.07.101.
Birick, H., and M. Sarier. 2014. “Comparative study of the characteristics of nanosilica-silica-fume and fly ash incorporated cement mortars.” Mater. Res. 1 (3): 370–382. https://doi.org/10.1590/S1516-14392014005000054.
Chen, Y., Y. Deng, and M. Li. 2016. “Influence of nano-SiO2 on the consistency, setting time, early-age strength, and shrinkage of composite cement pastes.” Adv. Mat. Sci. Eng. 2016: 8. https://doi.org/10.1155/2016/5283706.
EDANA (European Disposals and Nonwovens Association). 2002. “Recommended test method: Free swell capacity.” ERT 440.2-02. Bruxelles, Belgium: EDANA.
European Standard. 2011a. Cement. Part 1: Composition, specifications and conformity criteria for common cements. EN 197-1. London: British Standards Institution.
European Standard. 2011b. Methods of testing cement. Part 5: Pozzolanicity test for pozzolanic cement. EN 196-5. European Standard.
Frías, M. 2006. “The effect of MK on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature.” Adv. Cem. Res. 18 (1): 1–6.
Frías, M., O. Rodriguez, and M. I. Sanchez de Rojas. 2015. “Paper sludge, an environmentally sound alternative source of MK-based cementitious materials: A review.” Constr. Build. Mater. 74: 37–48. https://doi.org/10.1016/j.conbuildmat.2014.10.007.
Frías, M., M. I. Sanchez de Rojas, and J. Cabrera. 2000. “The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars.” Cem. Concr. Res. 30 (2): 209–216. https://doi.org/10.1016/S0008-8846(99)00231-8.
Garg, R., M. Bansaland, and Y. Aggarwal. 2016. “Strength, rapid chloride penetration and microstructure study of cement mortar incorporating micro and nano silica.” Int. J. Electrochem. Sci. 11: 3697–3713. https://doi.org/10.20964/110455.
Gesoglu, M., E. Gunoisi, D. Assad, and M. Fakhraddin. 2016. “Properties of low binder ultra-high performance cementitious composites: Comparison of nanosilica and microsilica.” Constr. Build. Mater. 102 (15): 706–713. https://doi.org/10.1016/j.conbuildmat.2015.11.020.
Guerrero, A. M. B., J. J. Gaitero, G. P. A. Quinines, and S. G. Elizaide. 2014. “Multi-scale analysis of cement pastes with nanosilica addition.” Adv. Cem. Res. 26 (5): 271–280. https://doi.org/10.1680/adcr.13.00023.
Hou, P., J. Qian, X. Cheng, and S. P. Shah. 2015. “Effects of the pozzolanic reactivity of nano-SiO2 on cement-based materials.” Cem. Concr. Compos. 55: 250–258. https://doi.org/10.1016/j.cemconcomp.2014.09.014.
Isfahani, F. T., E. Redaelli, F. Lollini, W. Li, and L. Bertolini. 2016. “Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios.” Adv. Mat. Sci. Eng. 2016: 16. https://doi.org/10.1155/2016/8453567.
Jalal, M., A. Pouladkhan, O. F. Harandi, and D. Jafari. 2015. “Comparative study on effects of class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete.” Constr. Build. Mater. 94 (30): 90–104. https://doi.org/10.1016/j.conbuildmat.2015.07.001.
Juenger, M. C. G., and R. Siddique. 2015. “Recent advances in understanding the role of supplementary cementitious materials in concrete.” Cem. Concr. Res. 78: 71–80. https://doi.org/10.1016/j.cemconres.2015.03.018.
Kantro, D. 1980. “Influence of water-reducing admixtures on properties of cement paste: A miniature slump test.” Cem. Concr. Aggr. 2 (2): 95–102. https://doi.org/10.1520/CCA10190J.
Khaloo, M., H. Mobili, and P. Housseini. 2016. “Influence of different types of nano-SiO2 particles on properties of high-performance concrete.” Constr. Build. Mater. 113: 188–201. https://doi.org/10.1016/j.conbuildmat.2016.03.041.
Kong, D., S. Young, D. Xiangfei, Y. Yang, and S. P. Shah. 2013. “Influence of nano-silica agglomeration on fresh properties of cement pastes.” Constr. Build. Mater. 43: 557–562. https://doi.org/10.1016/j.conbuildmat.2013.02.066.
Lazaro, Q., L. Yu, and H. J. H. B. Brouwers. 2016. “Nanotechnologies for sustainable construction.” In Sustainable construction materials. Amsterdan, Netherlands: Elsevier.
Lothenback, B., K. Scrivener, and R. D. Hooton. 2011. “Supplementary cementitious materials.” Cem. Concr. Res. 41 (12): 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
Mehta, P. K., and P. J. M. Monteiro. 2014. Concreto: Estrutura, propriedades e materiais [Concrete: Structure, properties and materials]. 3rd ed. São Paulo, Brasil: Ibracon.
Mindess, S., J. Francis, and D. Darwin. 2003. Concrete. 2nd ed. Upper Saddle River, NJ: Pearson Education.
Mlinarik, L., and K. Kopecskó. 2013. “Impact of metakaolin—A new supplementary material—on the hydration mechanism of cements.” Acta Tech. Nap.: Civ. Eng. Arch. 56: 100–110.
Moon, J., M. M. Redataha, K. Youm, and J. J. Kim. 2016. “Investigation of pozzolanic reaction in nanosilica-cement blended pastes based on solid-state kinetic models and 29Si MAS NMR.” Materials 9 (2): 99. https://doi.org/10.3390/ma9020099.
Nili, M., and A. Eshan. 2015. “Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume.” Mat. Des. 75: 174–183. https://doi.org/10.1016/j.matdes.2015.03.024.
Pérez, G., A. Guerrero, J. J. Gaitero, and S. Goñi. 2014. “Structural characterization of C─ S─ H gel through an improved deconvolution analysis of NMR spectra.” J. Mater. Sci. 49 (1): 142–152. https://doi.org/10.1007/s10853-013-7688-8.
Puentes, J., G. Barluenga, and I. Palomar. 2015. “Effect of silica-based nano and micro additions on SCC at early age and on hardened porosity and permeability.” Constr. Build. Mater. 81: 154–161. https://doi.org/10.1016/j.conbuildmat.2015.02.053.
Rossen, J. E., B. Lothenback, and K. L. Scrivener. 2015. “Composition of C─ S─ H in pastes with increasing levels of silica fume additions.” Cem. Concr. Res. 75: 14–22. https://doi.org/10.1016/j.cemconres.2015.04.016.
Sáez del Bosque, I. F., S. Martinez-Ramirez, and M. T. Blanco-Varela. 2015. “Calorimetric study of the early stage of the nanosilica-tricalcium silicate hydration: Effect of temperature.” Mat. Const. 65: 320. https://doi.org/10.3989/mc.2015.06814.
Sanchez, F., and K. Sobolev. 2010. “Nanotechnology in concrete: A review.” Constr. Build. Mater. 24 (11): 2060–2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014.
Seekkuarachchi, I. N., K. Tanaka, and H. Kumazawa. 2008. “Dispersion mechanism of nano-particulate aggregates using a high pressure wet-type jet mill.” Chem. Eng. Sci. 63 (9): 2341–2366. https://doi.org/10.1016/j.ces.2008.01.004.
Senff, L. 2009. “Efeito da adição de micro e nanossílica no comportamento reológico e propriedades no estado endurecido de argamassas e pastas de cimento. [Effect of the addition of micro and nanosilica on rheological behavior and properties in the hardened state of mortar sand cement pastes].” Ph.D. thesis, Postgraduate Program in Science and Engineering Materials, Federal Univ. of Santa Catarina.
Singh, L. P., D. Ali, and U. Sharma. 2016. “Studies on optimization of silica nanoparticles dosage in cementitious system.” Cem. Concr. Comp. 70: 60–68. https://doi.org/10.1016/j.cemconcomp.2016.03.006.
Singh, L. P., S. K. Bhattacharyya, G. Mishra, S. Ahalawat, and U. Sharma. 2015a. “Studies on early stage hydration on tricalcium silicate incorporating silica nanoparticles: Part I.” Constr. Build. Mater. 74: 278–286. https://doi.org/10.1016/j.conbuildmat.2014.08.046.
Singh, L. P., A. Goel, S. K. Battacharyya, U. Sharma, and G. Mishra. 2015b. “Hydration studies of cementitious materials using silica nanoparticles.” J. Adv. Concr. Technol. 13 (7): 345–354. https://doi.org/10.3151/jact.13.345.
Tobón, J. I., J. J. Payá, M. V. Borrachero, and O. J. Restrepo. 2012. “Mineralogical evolution of portland cement blended with silica nanoparticles and its effect on mechanical strength.” Constr. Build. Mater. 36: 736–742. https://doi.org/10.1016/j.conbuildmat.2012.06.043.
Torres, D., L. J. Fernandez-Carrasco, S. Martinez-Ramirez. 2015. “C─ S─ H gels in blended cements: Study by infrared spectroscopy.” In Proc., 14th Int. Congress on the Chemistry of Cement. Beijing: China Building Materials Academy.
Vázquez-Moreno, T., and M. T. Blanco-Varela. 1981. “Tabla de frecuencias y espectros de absorción infrarroja de compuestos relacionados con la química del cemento.” Mat. Constr. 31 (182): 31–48.
Zhang, Z., B. Zhang, and P. Yuyan. 2016. “Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures.” Const. Build. Mater. 121: 483–490. https://doi.org/10.1016/j.conbuildmat.2016.06.014.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 31Issue 1January 2019

History

Received: Oct 17, 2017
Accepted: Jul 17, 2018
Published online: Nov 14, 2018
Published in print: Jan 1, 2019
Discussion open until: Apr 14, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

João Henrique da Silva Rêgo [email protected]
D.Sc.
Professor, Postgraduate Program in Structural Engineering and Construction, Univ. of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil (corresponding author). Email: [email protected]
Moisés Frías Rojas
D.Sc.
Scientific Researcher, Materials Dept., Eduardo Torroja Institute for Construction Science, C/Serrano Galvache, 4, Madrid 28033, Spain.
Amparo Moragues Terrades
D.Sc.
Professor, Higher Technical School of Road, Channel and Port Engineers, Polytechnic Univ. of Madrid, C/Profesor Aranguren s/n. Ciudad Universitaria, Madrid 28040, Spain.
Lucía Fernández-Carrasco
D.Sc.
Professor, Higher Technical School of Road, Channel and Port Engineers, Polytechnic Univ. of Catalonia, C/Jordi Girona 1-3, Barcelona 08034, Spain.
Enrique Romero Morales
D.Sc.
Professor, Higher Technical School of Road, Channel and Port Engineers, Polytechnic Univ. of Catalonia, C/Jordi Girona 1-3, Barcelona 08034, Spain.
Maria Isabel Sánchez de Rojas
D.Sc.
Scientific Researcher, Materials Dept., Eduardo Torroja Institute for Construction Science, C/Serrano Galvache, 4, Madrid 28033, Spain.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share