Technical Notes
Jun 28, 2018

Applicability of the Porosity/Binder Index to Nonhomogeneous Mixtures of Fine-Grained Soil with Lignite Fly Ash

Publication: Journal of Materials in Civil Engineering
Volume 30, Issue 9

Abstract

Soil treatment using binders is an important method to enhance the strength, stiffness, and durability of soils. The porosity/binder concept has been developed to help with the mixture design for soil stabilization measures and has been verified for homogeneous mixtures. Unfortunately, in cases in which the base soil is fine-grained, it is typically not possible to obtain perfect mixture homogeneity on site. In such cases the binder typically forms a crust around soil clods. This study examines the applicability of the porosity/binder index to such non-homogeneous mixtures. For this purpose, the unconfined compressive strength of samples produced from homogeneous and non-homogeneous mixtures have been compared. In these mixtures, the addition rate, the dry density, and the water content were varied. It was found that the porosity/binder concept can be used to predict the strength of non-homogeneous field gradations of stabilized soils, provided that the clod size and water content of the laboratory samples resemble the clod size and water content of the material on site. The precision of predictability decreases with increasing variations of water content and mixture homogeneity.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank the company Mitteldeutsche Umwelt- und Entsorgung GmbH (MUEG) for providing the fly ash. We also thank Dr.-Ing. Dirk Heyer for his support and Mr. Andreas Eder, M.Sc. for his help with the preliminary works preceding this study.

References

Arnbal, C. A. 1965. “Effects of delay in compaction on compressive strength of soil cement and soil-lime-cement mixtures.” M.Sc. thesis, Dept. of Civil, Construction, and Environmental Engineering, Iowa State Univ. https://lib.dr.iastate.edu/rtd/16665/?utm_source=lib.dr.iastate.edu%2Frtd%2F16665&utm_medium=PDF&utm_campaign=PDFCoverPages.
ASTM. 2017. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618-17. West Conshohocken, PA: ASTM.
Beetham, P., T. Dijkstra, N. Dixon, P. Fleming, R. Hutchison, and J. Bateman. 2015. “Lime stabilisation for earthworks: A UK perspective.” Proc. Inst. Civ. Eng. Ground Improv. 168 (2): 81–95. https://doi.org/10.1680/grim.13.00030.
Bell, F. G. 1996. “Lime stabilization of clay minerals and soils.” Eng. Geol. 42 (4): 223–237. https://doi.org/10.1016/0013-7952(96)00028-2.
Bozbey, I., B. Demir, M. Komut, A. Saglik, S. Comez, and A. Mert. 2016. “Importance of soil pulverization level in lime stabilized soil performance.” Procedia Eng. 143: 642–649. https://doi.org/10.1016/j.proeng.2016.06.091.
Bozbey, I., and S. Garaisayev. 2010. “Effects of soil pulverization quality on lime stabilization of an expansive clay.” Environ. Earth Sci. 60 (6): 1137–1151. https://doi.org/10.1007/s12665-009-0256-5.
Consoli, N. C., M. A. A. Bassani, and L. Festugato. 2010a. “Effect of fiber-reinforcement on the strength of cemented soils.” Geotext. Geomembr. 28 (4): 344–351. https://doi.org/10.1016/j.geotexmem.2010.01.005.
Consoli, N. C., R. C. Cruz, M. F. Floss, and L. Festugato. 2010b. “Parameters controlling tensile and compressive strength of artificially cemented sand.” J. Geotech. Geoenviron. Eng. 136 (5): 759–763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
Consoli, N. C., A. Dalla Rosa, and R. B. Saldanha. 2011a. “Parameters controlling strength of industrial waste-lime amended soil.” Soils Found. 51 (2): 265–273. https://doi.org/10.3208/sandf.51.265.
Consoli, N. C., C. G. da Rocha, and C. Silvani. 2013a. “Effect of curing temperature on the strength of sand, coal fly ash, and lime blends.” J. Mater. Civ. Eng. 26 (8): 06014015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001011.
Consoli, N. C., C. G. da Rocha, and C. Silvani. 2014a. “Devising dosages for soil–fly ash–lime blends based on tensile strength controlling equations.” Constr. Build. Mater. 55: 238–245. https://doi.org/10.1016/j.conbuildmat.2014.01.044.
Consoli, N. C., L. da Silva Lopes Jr., A. Dalla Rosa, and J. R. Masuero. 2013b. “The strength of soil–industrial by-products–lime blends.” Proc. Inst. Civ. Eng. Geotech. Eng. 166 (5): 431–440. https://doi.org/10.1680/geng.10.00130.
Consoli, N. C., L. da Silva Lopes Jr., and K. S. Heineck. 2009. “Key parameters for the strength control of lime stabilized soils.” J. Mater. Civ. Eng. 21 (5): 210–216. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:5(210).
Consoli, N. C., L. da Silva Lopes Jr., P. D. M. Prietto, L. Festugato, and R. C. Cruz. 2011b. “Variables controlling stiffness and strength of lime-stabilized soils.” J. Geotech. Geoenviron. Eng. 137 (6): 628–632. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000470.
Consoli, N. C., R. R. de Moraes, and L. Festugato. 2013c. “Parameters controlling tensile and compressive strength of fiber-reinforced cemented soil.” J. Mater. Civ. Eng. 25 (10): 1568–1573. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000555.
Consoli, N. C., and D. Foppa. 2014. “Porosity/cement ratio controlling initial bulk modulus and incremental yield stress of an artificially cemented soil cured under stress.” Géotech. Lett. 4 (1): 22–26. https://doi.org/10.1680/geolett.13.00081.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., S. F. V. Marques, M. F. Floss, and L. Festugato. 2017a. “Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils.” J. Mater. Civ. Eng. 29 (6): 06017004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001858.
Consoli, N. C., P. D. M. Prietto, L. Silva Lopes, and D. Winter. 2014b. “Control factors for the long term compressive strength of lime treated sandy clay soil.” Transp. Geotech. 1 (3): 129–136. https://doi.org/10.1016/j.trgeo.2014.07.005.
Consoli, N. C., R. A. Quiñónez, L. E. González, and R. A. López. 2017b. “Influence of molding moisture content and porosity/cement index on stiffness, strength, and failure envelopes of artificially cemented fine-grained soils.” J. Mater. Civ. Eng. 29 (5): 04016277. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001819.
Consoli, N. C., R. Rizzatti de Moraes, and L. Festugato. 2013d. “Variables controlling strength of fibre-reinforced cemented soils.” Proc. Inst. Civ. Eng. Ground Improv. 166 (4): 221–232. https://doi.org/10.1680/grim.12.00004.
Consoli, N. C., A. D. Rosa, and R. B. Saldanha. 2011c. “Variables governing strength of compacted soil-fly ash-lime mixtures.” J. Mater. Civ. Eng. 23 (4): 432–440. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000186.
Consoli, N. C., R. A. Q. Samaniego, S. F. V. Marques, G. I. Venson, E. Pasche, and L. E. G. Velásquez. 2016. “Single model establishing strength of dispersive clay treated with distinct binders.” Can. Geotech. J. 53 (12): 2072–2079. https://doi.org/10.1139/cgj-2015-0606.
Consoli, N. C., F. Zortéa, M. de Souza, and L. Festugato. 2011d. “Studies on the dosage of fiber-reinforced cemented soils.” J. Mater. Civ. Eng. 23 (12): 1624–1632. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000343.
Croft, J. B. 1967. “The influence of soil mineralogical composition on cement stabilization.” Géotechnique 17 (2): 119–135. https://doi.org/10.1680/geot.1967.17.2.119.
Cuisinier, O., T. Le Borgne, D. Deneele, and F. Masrouri. 2011. “Quantification of the effects of nitrates, phosphates and chlorides on soil stabilization with lime and cement.” Eng. Geol. 117 (3): 229–235. https://doi.org/10.1016/j.enggeo.2010.11.002.
Dash, S. K., and M. Hussain. 2012. “Lime stabilization of soils: Reappraisal.” J. Mater. Civ. Eng. 24 (6): 707–714. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000431.
Davidson, D. T., G. L. Pitre, M. Mateos, and K. P. George. 1962. “Moisture-density, moisture-strength and compaction characteristics of cement-treated soil mixtures.” HRB Bull. 353: 42–63.
Diambra, A., E. Ibraim, A. Peccin, N. C. Consoli, and L. Festugato. 2017. “Theoretical derivation of artificially cemented granular soil strength.” J. Geotech. Geoenviron. Eng. 143 (5): 04017003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646.
DIN (Deutsches Institut für Normung). 1995. Fly ash for concrete: Definitions, requirements and quality control. [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 1997. Soil investigation and testing: Consistency limits—Part 1: Determination of liquid limit and plastic limit. [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2001. Characterization of sludges: Determination of dry residue and water content. [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2003. Soil, investigation and testing: Unconfined compression test. [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2005. Geotechnical investigation and testing: Laboratory testing of soil. Part 7: Unconfined compression test on fine-grained soil (Pre-Standard). [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2011a. Soil, investigation and testing: Determination of density of solid particles: Capillary pyknometer, wide mouth pycnometer, gas pycnometer. [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2011b. Soil, investigation and testing: Determination of grain-size distribution. [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2011c. Testing of solid fuels: Determination of chemical composition of fuel ash. Part 10: X-Ray fluorescence analysis. [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2012. Soil, investigation and testing: Proctor-test. [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2013a. Hydraulically bound mixtures: Specifications—Part 4: Fly ash for hydraulically bound mixtures. [In German.]. Berlin: DIN.
DIN (Deutsches Institut für Normung). 2013b. Method of testing cement: Part 2: Chemical analysis of cement. [In German.]. Berlin: DIN.
Eades, J. L., and R. E. Grim. 1966. “A quick test to determine lime requirements of lime stabilization.” Highway Res. Rec. 139: 61–72.
Edil, T. B., H. A. Acosta, and C. H. Benson. 2006. “Stabilizing soft fine-grained soils with fly ash.” J. Mater. Civ. Eng. 18 (2): 283–294. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(283).
FGSV (Forschungsgesellschaft für Straßen- und Verkehrswesen). 2004. Merkblatt über Bodenverfestigungen und Bodenverbesserungen mit Bindemitteln. [In German.]. Cologne, Germany: FGSV.
FGSV (Forschungsgesellschaft für Straßen- und Verkehrswesen). 2009a. Additional technical conditions of contract and directives for earthworks in road construction. Cologne, Germany: FGSV.
FGSV (Forschungsgesellschaft für Straßen- und Verkehrswesen). 2009b. Merkblatt über die Verwendung von Kraftwerksnebenprodukten im Straßenbau: M KNP. [In German.] Cologne, Germany: FGSV.
Gallavresi, F. 1992. “Grouting improvement of foundation soils.” In Proc., 1992 ASCE Specialty Conf. on Grouting, Soil Improvement and Geosynthetics, edited by R. H. Borden, R. O. Holtz, and I. Juran, 1–38. New York: ASCE.
Grimer, F. J., and N. F. Ross. 1957. “The effects of pulverization on the quality of clay cement.” In Vol. 2 of Proc., 4th Int. Conf. SMFE, 109–113. London: Butterworth & Company.
Han, J. 2015. Principles and practice of ground improvement. Hoboken, NJ: Wiley.
Horpibulsuk, S., N. Miura, and T. S. Nagaraj. 2003. “Assessment of strength development in cement-admixed high water content clays with Abram’s law as a basis.” Géotechnique 53 (4): 439–444. https://doi.org/10.1680/geot.2003.53.4.439.
Horpibulsuk, S., N. Miura, and T. S. Nagaraj. 2005. “Clay-water/cement ratio identity for cement admixed soft clays.” J. Geotech. Geoenviron. Eng. 131 (2): 187–192. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(187).
Horpibulsuk, S., R. Rachan, A. Chinkulkijniwat, Y. Raksachon, and A. Suddeepong. 2010. “Analysis of strength development in cement-stabilized silty clay from microstructural considerations.” Constr. Build. Mater. 24 (10): 2011–2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011.
Horpibulsuk, S., R. Rachan, and A. Suddeepong. 2011. “Assessment of strength development in blended cement admixed Bangkok clay.” Constr. Build. Mater. 25 (4): 1521–1531. https://doi.org/10.1016/j.conbuildmat.2010.08.006.
Horpibulsuk, S., A. Suddeepong, C. Suksiripattanapong, A. Chinkulkijniwat, A. Arulrajah, and M. M. Disfani. 2014. “Water-void to cement ratio identity of lightweight cellular-cemented material.” J. Mater. Civ. Eng. 26 (10): 06014021. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001110.
Ingles, O. G., and J. B. Metcalf. 1972. Soil stabilization: Principles and practice. Sydney, Australia: Butterworths Pty. Limited.
Janz, M., and S. E. Johansson. 2002. The function of different binding agents in deep stabilization. [English Translation] Linkoping, Sweden: Swedish Deep Stabilization Research Centre.
Kézdi, Á. 1973. Stabilisierte Erdstraßen. Berlin: VEB Verlag für Bauwesen.
Kolias, S., V. Kasselouri-Rigopoulou, and A. Karahalios. 2005. “Stabilisation of clayey soils with high calcium fly ash and cement.” Cem. Concr. Compos. 27 (2): 301–313. https://doi.org/10.1016/j.cemconcomp.2004.02.019.
Lee, F. H., Y. Lee, S. H. Chew, and K. Y. Yong. 2005. “Strength and modulus of marine clay-cement mixes.” J. Geotech. Geoenviron. Eng. 131 (2): 178–186. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(178).
Little, D. N., and S. Nair. 2009. Recommended practice for stabilization of subgrade soils and base materials: NCHRP Web-Only Document 144. Washington, DC: Transportation Research Board.
Locat, J., M. A. Berube, and M. Choquette. 1990. “Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development.” Can. Geotech. J. 27 (3): 294–304. https://doi.org/10.1139/t90-040.
Lorenzo, G. A., and D. T. Bergado. 2004. “Fundamental parameters of cement-admixed clay—New approach.” J. Geotech. Geoenviron. Eng. 130 (10): 1042–1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042).
Lothenbach, B., F. Winnefeld, C. Alder, E. Wieland, and P. Lunk. 2007. “Effect of temperature on the pore solution, microstructure and hydration products of portland cement pastes.” Cem. Concr. Res. 37 (4): 483–491. https://doi.org/10.1016/j.cemconres.2006.11.016.
Mackiewicz, S. M., and E. G. Ferguson. 2005. “Stabilization of soil with self-cementing coal ashes.” In Proc., 2005 World of Coal Ash (WOCA), 1–7. Lexington, KY: University of Kentucky Center for Applied Energy Research and the American Coal Ash Association.
Misra, A., D. Biswas, and S. Upadhyaya. 2005. “Physico-mechanical behavior of self-cementing class C fly ash-clay mixtures.” Fuel 84 (11): 1410–1422. https://doi.org/10.1016/j.fuel.2004.10.018.
Miura, N., S. Horpibulsuk, and T. S. Nagaraj. 2001. “Engineering behavior of cement stabilized clay at high water content.” Soils Found. 41 (5): 33–45. https://doi.org/10.3208/sandf.41.5_33.
Naveena, P. C., K. H. Mamatha, and S. V. Dinesh. 2013. “Prediction of strength development in stabilized sandy clay at high water contents.” Int. J. Geol. 7 (1): 9–23.
Nowak, P., and P. Gilbert. 2015. Earthworks: A guide. 2nd ed. London: ICE Publishing.
Osinubi, K. J. 1998. “Influence of compactive efforts and compaction delays on lime-treated soil.” J. Transp. Eng. 124 (2): 149–155. https://doi.org/10.1061/(ASCE)0733-947X(1998)124:2(149).
Osinubi, K. J., and C. M. Nwaiwu. 2006. “Compaction delay effects on properties of lime-treated soil.” J. Mater. Civ. Eng. 18 (2): 250–258. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(250).
Petry, T. M., and S. K. Wohlgemuth. 1988. “Effects of pulverization on the strength and durability of highly active clay soils stabilized with lime and portland cement.” Transp. Res. Rec. 1190: 38–45.
Premkumar, S., J. Piratheepan, and P. Rajeev. 2017. “Effect of brown coal fly ash on dispersive clayey soils.” Proc. Inst. Civ. Eng. Ground Improv. 170 (4): 231–244. https://doi.org/10.1680/jgrim.17.00008.
Ramesh, H. N. G., and P. V. Sivapullaiah. 2011. “Role of moulding water content in lime stabilization of soil.” Proc. Inst. Civ. Eng. Ground Improv. 164 (1): 15–19. https://doi.org/10.1680/grim.900040.
Rogers, C. D. F., and S. Glendinning. 2000. “Lime requirement for stabilization.” Transp. Res. Rec. 1721 (1): 9–18. https://doi.org/10.3141/1721-02.
Sariosseiri, F., and B. Muhunthan. 2009. “Effect of cement treatment on geotechnical properties of some Washington State soils.” Eng. Geol. 104 (1): 119–125. https://doi.org/10.1016/j.enggeo.2008.09.003.
Senol, A., T. B. Edil, M. S. Bin-Shafique, H. A. Acosta, and C. H. Benson. 2006. “Soft subgrades’ stabilization by using various fly ashes.” Resour. Conserv. Recycl. 46 (4): 365–376. https://doi.org/10.1016/j.resconrec.2005.08.005.
Sezer, A., G. İnan, H. R. Yılmaz, and K. Ramyar. 2006. “Utilization of a very high lime fly ash for improvement of Izmir clay.” Build. Environ. 41 (2): 150–155. https://doi.org/10.1016/j.buildenv.2004.12.009.
Shabjareh, S. S., F. Soltani, A. Heidaripanah, S. Jahandari, and M. Abedi. 2014. “Laboratory study of the effect of temperature on strength and strain-stress curve of lime-stabilized soil.” Bull. Environ. Pharmacol. Life Sci. 4 (1): 376–381.
Sivapullaiah, P. V., A. Sridharan, and H. N. Ramesh. 2000. “Strength behaviour of lime-treated soils in the presence of sulphate.” Can. Geotech. J. 37 (6): 1358–1367. https://doi.org/10.1139/t00-052.
Sivapullaiah, P. V., A. Sridharan, and H. N. Ramesh. 2006. “Effect of sulphate on the shear strength of lime-treated kaolinitic soil.” Proc. Inst. Civ. Eng. Ground Improv. 10 (1): 23–30. https://doi.org/10.1680/grim.2006.10.1.23.
Tastan, E. O., T. B. Edil, C. H. Benson, and A. H. Aydilek. 2011. “Stabilization of organic soils with fly ash.” J. Geotech. Geoenviron. Eng. 137 (9): 819–833. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000502.
Tremblay, H., J. Duchesne, J. Locat, and S. Leroueil. 2002. “Influence of the nature of organic compounds on fine soil stabilization with cement.” Can. Geotech. J. 39 (3): 535–546. https://doi.org/10.1139/t02-002.
Tuncer, E. R., and A. A. Basma. 1991. “Strength and stress-strain characteristics of a lime-treated cohesive soil.” Transp. Res. Rec. 1295: 70–79.
Vichan, S., and R. Rachan. 2013. “Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash.” Soils Found. 53 (2): 272–281. https://doi.org/10.1016/j.sandf.2013.02.007.
Wilkinson, A., A. Haque, and J. Kodikara. 2010a. “Stabilisation of clayey soils with industrial by-products: Part A.” Proc. Inst. Civ. Eng. Ground Improv. 163 (3): 149–163. https://doi.org/10.1680/grim.2010.163.3.149.
Wilkinson, A., A. Haque, and J. Kodikara. 2010b. “Stabilisation of clayey soils with industrial by-products: Part B.” Proc. Inst. Civ. Eng. Ground Improv. 163 (3): 165–172. https://doi.org/10.1680/grim.2010.163.3.165.
Yunus, N. M., D. Wanatowski, and L. R. Stace. 2013. “Lime stabilisation of organic clay and the effects of humic acid content.” Geotech. Eng. 44 (1): 19–25.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 30Issue 9September 2018

History

Received: Dec 18, 2017
Accepted: Mar 30, 2018
Published online: Jun 28, 2018
Published in print: Sep 1, 2018
Discussion open until: Nov 28, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Christoph Henzinger [email protected]
Researcher, Chair of Soil Mechanics and Foundation Engineering, Rock Mechanics and Tunneling, Technical Univ. of Munich, Baumbachstraße 7, 81245 Munich, Germany (corresponding author). Email: [email protected]
Sarah Anna Schuhmacher [email protected]
Project Engineer, Motorway Directorate of Southern Bavaria, Munich office (Autobahndirektion Südbayern, Dienststelle München), Bahnhofstraße 23, 82216 Maisach, Germany. Email: [email protected]
Lucas Festugato [email protected]
Senior Lecturer, Dept. of Civil Engineering, Federal Univ. of Rio Grande do Sul, Av. Osvaldo Aranha 99, 90035-190 Porto Alegre, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share