Abstract

Blast furnace slags (BFS) have interesting physical properties and chemical compositions for the production of mastics in asphalt mixtures. However, most of the studies conducted on this material and their applications in asphalt mixtures have been as substitutes for the coarse fraction of natural aggregates (NGA). In the present study, an experimental program was devised to evaluate the effect on the resistance of a hot mix asphalt (HMA), due to the replacement of fine fraction of a NGA by a BFS. The mechanical properties investigated were indirect tensile strengths, resilient modulus, permanent deformation, resistance to fatigue, and moisture damage. Analysis of variance (ANOVA) tests were performed to verify or reject the null hypothesis that the results are statically equal to those of the reference mixture. X-ray diffractometry (XRD) and X-ray fluorescence (XRF) tests were carried out on particles of BFS and NGA. Additionally, the samples were subjected to imaging processing in a scanning electron microscope (SEM). Characterization tests (viscosity, softening point, penetration, and indirect tension) were performed on mixtures made of fine particles (NGA and BFS) and asphalt. The BFS used as fine aggregate tends to generate, in conjunction with asphalt, a material with improved properties of resistance under monotonic and dynamic load.

Get full access to this article

View all available purchase options and get full access to this article.

References

AASHTO. 1991a. Standard method of test for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. AASHTO T96. Washington, DC: AASHTO.
AASHTO. 1991b. Standard method of test for specific gravity and absorption of coarse aggregate. AASHTO T85. Washington, DC: AASHTO.
AASHTO. 2000. Standard method of test for specific gravity and absorption of fine aggregate. AASHTO T84. Washington, DC: AASHTO.
AASHTO. 2002. Standard method of test for plastic fines in graded aggregates and soils by use of the sand equivalent test. AASHTO T176. Washington, DC: AASHTO.
AASHTO. 2004. Standard method of test for specific gravity of semi-solid asphalt materials. AASHTO T228. Washington, DC: AASHTO.
AASHTO. 2005. Standard method of test for resistance of coarse aggregate to degradation by abrasion in the Micro-Deval apparatus. AASHTO T327. Washington, DC: AASHTO.
AASHTO. 2013. Standard method of test for viscosity determination of asphalt binder using rotational viscometer. AASHTO T316. Washington, DC: AASHTO.
AASHTO. 2015a. Standard method of test for resistance to plastic flow of bituminous mixtures using Marshall apparatus. AASHTO T245. Washington, DC: AASHTO.
AASHTO. 2015b. Standard test method for organic impurities in fine aggregates for concrete. AASHTO T21. Washington, DC: AASHTO.
Abu-Eishah, S. I., A. S. El-Dieb, and M. S. Bedir. 2012. “Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region.” Constr. Build. Mater. 34: 249–256. https://doi.org/10.1016/j.conbuildmat.2012.02.012.
AENOR (Norma Técnica Española). 2000. “Contenido de impurezas (agregado grueso) [Impurities content (coarse aggregate)].” UNE 14613. Madrid, Spain: AENOR.
Airey, G. D., A. C. Collop, and N. H. Thom. 2004. “Mechanical performance of asphalt mixtures incorporating slag and glass secondary aggregates.” In Proc., 8th Conf. Asphalt Pavements for Southern Africa (CAPSA’04). Pretoria, South Africa: CSIR Transportek, Asphalt Academy.
Akbarnejad, S., L. J. M. Houben, and A. A. A. Molenaar. 2014. “Application of aging methods to evaluate the long-term performance of road bases containing blast furnace slag materials.” Road Mater. Pavement Des. 15 (3): 488–506. https://doi.org/10.1080/14680629.2014.907196.
Al-Hdabi, A., and H. Al Nageim. 2017. “Improving asphalt emulsion mixtures properties containing cementitious filler by adding GGBS.” J. Mater. Civ. Eng. 29 (5): 04016297. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001859.
Anderson, D. A., and W. H. Goetz. 1973. “Mechanical behavior and reinforcement of mineral filler-asphalt mixtures.” Proc. Assoc. Asphalt Paving Technol. 42: 37–66.
ASA (Australasian Slag Association). 2002. A guide to the use of iron and steel slag in roads. Sydney, Australia: ASA.
ASTM. 1995. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36. West Conshohocken, PA: ASTM.
ASTM. 1999. Standard test method for ductility of bituminous materials. ASTM D-113. West Conshohocken, PA: ASTM.
ASTM. 2000. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2001. Standard test method for determining the percentage of fractured particles in coarse aggregate. ASTM D5821. West Conshohocken, PA: ASTM.
ASTM. 2006. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36. West Conshohocken, PA: ASTM.
ASTM. 2009. Standard test method for preparation and determination of the relative density of hot mix asphalt (HMA) specimens by means of the superpave gyratory compactor. ASTM D6925. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). ASTM D2872-12e1. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test method for penetration of bituminous materials. ASTM D5/D5M. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for effect of moisture on asphalt concrete paving mixtures. ASTM D4867/D4867M. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402/D4402M. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test method for bulk specific gravity and density of non-absorptive compacted asphalt mixtures. ASTM D2726/D2726M. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for indirect tensile (IDT) strength of asphalt mixtures. ASTM D6931. West Conshohocken, PA: ASTM.
Beckhoff, B., B. Kanngießer, N. Langhoff, R. Wedell, and H. Wolff. 2006. Handbook of practical X-ray fluorescence analysis. New York, NY: Springer.
BSI (British Standards Institution). 2000. Bituminous mixtures test methods for hot mix asphalt. Part 25: Cyclic compression test. BS EN 12697-25. London: BSI.
BSI (British Standards Institution). 2005a. Bituminous mixtures test methods for hot mix asphalt. Part 24: Resistance to fatigue. BS EN 12697-24. London: BSI.
BSI (British Standards Institution). 2005b. Bituminous mixtures test methods for hot mix asphalt. Part 26: Stiffness. BS EN 12697-26. London: BSI.
Cheng, Y., J. Tao, Y. Jiao, Q. Guo, and C. Li. 2015. “Influence of diatomite and mineral powder on thermal oxidative ageing properties of asphalt.” Adv. Mater. Sci. Eng. 2015: 1–10. https://doi.org/10.1155/2015/947834.
Cheng, Y., J. Tao, Y. Jiao, G. Tan, Q. Guo, S. Wang, and P. Ni. 2016. “Influence of the properties of filler on high and medium temperature performances of asphalt mastic.” Constr. Build. Mater. 118: 268–275. https://doi.org/10.1016/j.conbuildmat.2016.05.041.
Chipera, S., and D. Bish. 2001. “Baseline studies of The Clay Minerals Society source clays: Powder X-ray diffraction analysis.” Clays and Clay Miner. 49 (5): 398–409. https://doi.org/10.1346/CCMN.2001.0490507.
Dan, L., Z. Chuanfeng, Q. Yong, B. Heng, L. Keyao, and H. Junfei. 2014. “Analysing the effects of the mesoscopic characteristics of mineral powder fillers on the cohesive strength of asphalt mortars at low temperatures.” Constr. Build. Mater. 65: 330–337. https://doi.org/10.1016/j.conbuildmat.2014.04.123.
Das, B., S. Prakash, P. S. R. Reddy, and V. N. Misra. 2007. “An overview of utilization of slag and sludge from steel industries.” Resour. Conserv. Recycl. 50 (1): 40–57. https://doi.org/10.1016/j.resconrec.2006.05.008.
Davis, C., and C. Castorena. 2015. “Implications of physico-chemical interactions in asphalt mastics on asphalt microstructure.” Constr. Build. Mater. 94: 83–89. https://doi.org/10.1016/j.conbuildmat.2015.06.026.
DNER (Departamento Nacional de Estradas de Rodagem). 1998. Avaliação da resistência mecânica pelo método dos 10% de finos [Evaluation of mechanical resistance to coarse aggregate using 10% method]. DNER-ME 096. Rio de Janeiro, Brazil: Departamento Nacional de Infraestrutura de Transporte.
Emery, J. J. 1982. “Slag utilization in pavement construction.” In Extending aggregate resources, 95–118. Philadelphia, PA: ASTM.
FHWA (Federal Highway Administration Research and Technology). 2008. Coordinating, developing, and delivering highway transportation innovations: User guidelines for waste and byproduct materials in pavement construction. Washington, DC: FHWA.
Geiseler, J. 1996. “Use of steelworks slag in Europe.” Waste Manage. 16 (1–3): 59–63. https://doi.org/10.1016/S0956-053X(96)00070-0.
Guo, M., Y. Tan, A. Bhasin, J. Wei, X. Yang, and Y. Hou. 2016. “Using molecular dynamics to investigate interfacial adhesion between asphalt binder and mineral aggregate.” In Proc., 4th Chinese-European Workshop on Functional Pavement Design (4th CEW 2016), edited by S. Erkens, X. Liu, K. Anupam, and Y. Tan, 517–527. Delft, Netherlands: Taylor & Francis Group.
HERALDO. 2016. “Colombia aumentó en 2015 la producción de hierro, oro y esmeraldas [Colombia increased the production of iron, gold and emeralds in 2015].” Accessed November 17, 2017. https://www.elheraldo.co/economia/colombia-aumento-en-2015-la-produccion-de-hierro-oro-y-esmeraldas-243818.
Houben, L. J. M., S. Akbarnejad, and A. A. A. Molenaar. 2010. “Performance of pavements with blast furnace base courses.” In Proc., GeoShanghai 2010 Int. Conf. on Paving Materials and Pavement Analysis Geotechnical, 476–483. Reston, VA: ASCE.
INVIAS (Instituto Nacional de Vías). 2013. Especificaciones generales de construcción de carreteras. Bogotá, Colombia: INVIAS.
Jones, D. E. 1982. “Application of steel plant by-products to roadworks.” In Proc., Conf. Australian Road Research Board. Melbourne, Australia: ARRB Group Limited.
Kuity, A., and A. Das. 2015. “Homogeneity of filler distribution within asphalt mix – A microscopic study.” Constr. Build. Mater. 95: 497–505. https://doi.org/10.1016/j.conbuildmat.2015.07.043.
León, N. A., N. R. Rojas, B. U. Suárez, and O. Bustamante. 2009. “Evaluación experimental de unidades sílico-calcáreas a partir de escoria de alto horno y cal hidráulica para mampostería [Experimental evaluation of silicon-calcareous units from blast furnace slag and hydraulic lime for masonry].” Dyna 76 (160): 247–254.
Li, C., Z. Chen, S. Wu, B. Li, J. Xie, and Y. Xiao. 2017. “Effects of steel slag fillers on the rheological properties of asphalt mastic.” Constr. Build. Mater. 145 (1): 383–391. https://doi.org/10.1016/j.conbuildmat.2017.04.034.
Li, R., H. Du, Z. Fan, and J. Pei. 2016. “Molecular dynamics simulation to investigate the interaction of asphaltene and oxide in aggregate.” Adv. Mater. Sci. Eng. 2016: 1–10. https://doi.org/10.1155/2016/3817123.
Liao, M. C., and J. S. Chen. 2011. “Zero shear viscosity of bitumen-filler mastics.” J. Mater. Civ. Eng. 23 (12): 1672–1680. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000331.
Marriaga, J. L., and P. Claisse. 2011. “The influence of the blast furnace slag replacement on chloride penetration in concrete.” Ingeniería e Investigación 31 (2): 38–47.
Misra, A., D. Biswas, and S. Upadhyaya. 2005. “Physico-mechanical behavior of self cementing class C fly ash-clay mixtures.” Fuel 84 (11): 1410–1422. https://doi.org/10.1016/j.fuel.2004.10.018.
Modarres, A., and M. Rahmanzadeh. 2014. “Application of coal waste powder as filler in hot mix asphalt.” Constr. Build. Mater. 66: 476–483. https://doi.org/10.1016/j.conbuildmat.2014.06.002.
Moore, D., and R. Reynolds. 1997. X-Ray diffraction and the identification and analysis of clay minerals. 2nd ed. New York: Oxford University Press.
Muniandy, R., E. Aburkaba, and L. Mahdi. 2013. “Effect of mineral filler type and particle size on asphalt-filler mastic and stone mastic asphalt laboratory measured properties.” Aust. J. Basic Appl. Sci. 7 (11): 475–487.
Nassar, A. I., M. K. Mohammed, N. Thom, and T. Parry. 2016. “Mechanical, durability and microstructure properties of cold asphalt emulsion mixtures with different types of filler.” Constr. Build. Mater. 114: 352–363. https://doi.org/10.1016/j.conbuildmat.2016.03.112.
NLT (Norma Laboratorio de Transporte). 1991. Standard method for the determination of the flakiness index of the aggregate. NLT 354. Madrid, Spain: Centro de Estudios y Experimentación de Obras Públicas.
Normas NLT. 1988. Método para determinar la variación de la consistencia del betún asfáltico con los cambios de temperatura (susceptibilidad) [Method to determine the variation in the consistency of asphalt bitumen with temperature changes (susceptibility)]. NLT 181. Madrid, Spain: Normas NLT.
Noureldin, A. S., and R. S. McDaniel. 1990. “Evaluation of surface mixtures of steel slag and asphalt.” Transp. Res. Rec. 1269: 133–149.
Nouvion, S., A. Jullien, M. Sommier, and V. Basuyau. 2009. “Environmental modeling of blast furnace slag aggregate production.” Road Mater. Pavement Des. 10 (4): 715–745. https://doi.org/10.3166/rmpd.10.715-745.
NSA (National Slag Association). 2006. “Blast furnace slag.” Accessed April 11, 2016. http://nationalslag.org/blast-furnace-slag.
Okumura, H. 2013. “Recycling of iron and steelmaking slags in Japan.” In Proc., 1st Int. Conf. on Processing Materials for Properties, 803–806. Warrendale, PA: Minerals, Metals, and Materials Society (TMS).
Proctor, D. M., K. A. Fehling, E. C. Shay, J. L. Wittenborn, C. Avent, R. D. Bigham, M. Connolly, B. Lee, T. O. Shepker, and M. A. Zak. 2000. “Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags.” Environ. Sci. Technol. 34 (8): 1576–1582. https://doi.org/10.1021/es9906002.
Reed, S. J. B. 2005. Electron microprobe analysis and scanning electron microscopy in geology. Cambridge, UK: Univ. of Cambridge.
Shen, H., and E. Forssberg. 2003. “An overview of recovery of metals from slags.” Waste Manage. 23 (10): 933–949. https://doi.org/10.1016/S0956-053X(02)00164-2.
Shi, C. 2004. “Steel slag—Its production, processing, characteristics, and cementitious properties.” J. Mater. Civ. Eng. 16 (3): 230–236. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(230).
Sorlini, S., A. Sanzeni, and L. Rondi. 2012. “Reuse of steel slag in bituminous paving mixtures.” J. Hazard. Mater. 209–210: 84–91. https://doi.org/10.1016/j.jhazmat.2011.12.066.
Tenza-Abril, A. J., J. M. Saval, and A. Cuenca. 2015. “Using sewage-sludge ash as filler in bituminous mixes.” J. Mater. Civ. Eng. 27 (4): 04014141. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001087.
Transport Roads and Maritime Services. 2012. Test method T220 Iron unsoundness in metallurgical slag. Camperdown, NSW, Australia: Transport Roads and Maritime Services.
Ucrós, J. C. 2009. “Propuesta para la implementación de instrumentos de política ambiental en la planta siderúrgica de Acerías Paz del Río S.A. [Proposal for the implementation of environmental policy instruments in the steel plant Acerías Paz del Río S.A.].” M.S. thesis, Pontificia Universidad Javeriana.
UPME (Unidad de Planeación Minero Energética). 2014. Indicadores de la minería en Colombia [Indicators of mining in Colombia]. Bogotá, Colombia: UPME.
Van Oss, H. G. 2003. Slag-iron and steel, 69.1–69.7. Reston, VA: US Geologycal Survey.
Veytskin, Y., C. Bobko, C. Castorena, and R. Kim. 2015. “Nanoindentation investigation of asphalt binder and mastic cohesion.” Constr. Build. Mater. 100: 163–171. https://doi.org/10.1016/j.conbuildmat.2015.09.053.
WSDOT (Washington State Department of Transportation). 2015. Strategies regarding use of steel slag aggregate in pavements. A report to the state legislature in response to 2ESHB 1299. Olympia, WA: Washington State DOT Construction Division Pavements Office.
Yiqiu, T., L. Xiaolin, and W. Jiantao. 2012. “Internal influence factors of asphalt-aggregate filler interactions based on rheological characteristics.” J. Mater. Civ. Eng. 24 (12): 1520–1528. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000506.
Zarei, Z., and M. B. Reza. 2015. “Application of iron slag at different pavement layers.” J. Environ. Treat. Technol. 3 (3): 158–162.
Zhang, G., J. Germaine, M. Torrence, and A. A. Whittle. 2003. “A simple sample-mounting method for random powder X-ray diffraction.” Clays Clay Miner. 51 (2): 218–225. https://doi.org/10.1346/CCMN.2003.0510212.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 30Issue 10October 2018

History

Received: Jul 24, 2017
Accepted: Mar 2, 2018
Published online: Jul 12, 2018
Published in print: Oct 1, 2018
Discussion open until: Dec 12, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Hugo Alexander Rondón-Quintana, Ph.D. [email protected]
Full Professor, Faculty of Environment and Natural Resources, Universidad Distrital Francisco José de Caldas, Avenida Circunvalar sede Vivero UD, Bogotá, DC 110131, Colombia (corresponding author). Email: [email protected]; [email protected]
Juan Carlos Ruge-Cárdenas, Ph.D. [email protected]
Full Professor, Civil Engineering Program, Faculty of Engineering, Universidad Piloto de Colombia, Carrera 9 No. 45A-44, Bogotá, DC 110231, Colombia. Email: [email protected]
Daniel Francisco Patiño-Sánchez [email protected]
Assistant Professor, Technology Faculty, Universidad Distrital Francisco José de Caldas, Cl. 68D Bis A Sur N° 49F - 70, Universidad Distrital, Bogotá, DC 111931, Colombia. Email: [email protected]
Hermes Ariel Vacca-Gamez [email protected]
Associate Professor, Dept. of Civil Engineering, Faculty of Engineering, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, DC 110231, Colombia. Email: [email protected]
Fredy Alberto Reyes-Lizcano, Ph.D. [email protected]
Full Professor, Dept. of Civil Engineering, Faculty of Engineering, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, DC 110231, Colombia. Email: [email protected]
Márcio Muniz de Farias, Ph.D. [email protected]
Full Professor, Faculty of Technology, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900, Brasília-DF, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share